當前位置:首頁 » 語數英語 » 初中數學圓

初中數學圓

發布時間: 2021-08-02 16:35:59

① 初中數學圓有什麼定義

初中數學圓有2個定義。

定義1:到定點的距離等於定長的點的集合叫做圓(circle).這個定點叫做圓的圓心。

定義2:到定點的距離等於定長的點都在圖形上,在圖形上的點到定點的距離都等於定長。

在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數個對稱軸。

在同一平面內,到定點的距離等於定長的點的集合叫做圓。圓可以表示為集合{M||MO|=r},圓的標准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圓心,r 是半徑。

(1)初中數學圓擴展閱讀:

圓的歷史

圓形,是一個看來簡單,實際上是十分奇妙的形狀。古代人最早是從太陽、陰歷十五的月亮得到圓的概念的。在一萬八千年前的山頂洞人曾經在獸牙、礫石和石珠上鑽孔,那些孔有的就很像圓。到了陶器時代,許多陶器都是圓的。圓的陶器是將泥土放在一個轉盤上製成的。

當人們開始紡線,又制出了圓形的石紡錘或陶紡錘。古代人還發現搬運圓的木頭時滾著走比較省勁。後來他們在搬運重物的時候,就把幾段圓木墊在大樹、大石頭下面滾著走,這樣當然比扛著走省勁得多。

約在6000年前,美索不達米亞人,做出了世界上第一個輪子——圓型的木盤。大約在4000多年前,人們將圓的木盤固定在木架下,這就成了最初的車子。

② 初中數學圓有什麼定義

定義1:到定點的距離等於定長的點的集合叫做圓(circle).這個定點叫做圓的圓心。
定義2:到定點的距離等於定長的點都在圖形上,在圖形上的點到定點的距離都等於定長。

③ 初中數學的圓

解:如下圖,

④ 初中數學中圓的所有概念

1
在同一平面內,到定點的距離等於定長的點的集合叫做圓(circle).這個定點叫做圓的圓心。圖形一周的長度,就是圓的周長。
2
連接圓心和圓上的任意一點的線段叫做半徑,字母表示為r(radius)。
3
通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d(diameter)。直徑所在的直線是圓的對稱軸。
4
連接圓上任意兩點的線段叫做弦(chord).
最長的弦是直徑。
5
圓上任意兩點間的部分叫做圓弧,簡稱弧(arc).大於半圓的弧稱為優弧,優弧是用三個字母表示。小於半圓的弧稱為劣弧,劣弧用兩個字母表示。半圓既不是優弧,也不是劣弧。優弧是大於180度的弧,劣弧是小於180度的弧。
圓的周長公式=C=πd=2πr≈6.28r[1]
圓的面積公式=S=π×r×r[2]
(以此類推,半圓的周長公式=C/2=πr≈3.14r
面積=S/2=π×r×r÷2)
6
由兩條半徑和一段弧圍成的圖形叫做扇形(sector)。
7
由弦和它所對的一段弧圍成的圖形叫做弓形。
8
頂點在圓心上的角叫做圓心角(central
angle)。
9
頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
10
圓周長度與圓的直徑長度的比值叫做圓周率。它是一個超越數,通常用π表示,π=3.14159265……在實際應用中,一般取π≈3.14。
11
圓周角等於相同弧所對的圓心角的一半。

⑤ 初三數學關於圓的公式

〖圓的定義〗

幾何說:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等於定長的點的集合叫做圓。

〖圓的相關量〗

圓周率:圓周長度與圓的直徑長度的比叫做圓周率,值是3.14159265358979323846…,通常用π表示,計算中常取3.1416為它的近似值。

圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。

圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。

扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

〖圓和圓的相關量字母表示方法〗

圓—⊙ 半徑—r 弧—⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S

1.圓的周長C=2πr=πd
2.圓的面積S=πr²
3.扇形弧長l=nπr/180
4.扇形面積S=nπr²/360=rl/2
5.圓錐側面積S=πrl

〖圓的定義〗
幾何說:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等於定長的點的集合叫做圓。

〖圓的相關量〗

圓周率:圓周長度與圓的直徑長度的比叫做圓周率,
值是3....,
通常用π表示,計算中常取3.14為它的近似值(但奧數常取3或3.1416)。

圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。

圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。

扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

〖圓和圓的相關量字母表示方法〗

圓—⊙ 半徑—r 弧—⌒ 直徑—d 扇形弧長/圓錐母線—l 周長—C 面積—S

〖圓和其他圖形的位置關系〗

圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。

直線與圓有3種位置關系:
無公共點為相離;
有兩個公共點為相交;
圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
以直線AB與圓O為例(設OP⊥AB於P,則PO是AB到圓心的距離):

AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。

兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。

【圓的平面幾何性質和定理】

[編輯本段]一有關圓的基本性質與定理

⑴圓的確定:不在同一直線上的三個點確定一個圓。 圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的2條弧。
逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的2條弧。

⑵有關圓周角和圓心角的性質和定理 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那麼他們所對應的其餘各組量都分別相等。 一條弧所對的圓周角等於它所對的圓心角的一半。 直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

⑶有關外接圓和內切圓的性質和定理

①一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
②內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。
③S三角=1/2*△三角形周長*內切圓半徑
④兩相切圓的連心線過切點(連心線:兩個圓心相連的線段)

〖有關切線的性質和定理〗

圓的切線垂直於過切點的半徑;經過半徑的一端,並且垂直於這條半徑的直線,是這個圓的切線。
切線判定定理:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
切線的性質:
(1)經過切點垂直於這條半徑的直線是圓的切線。
(2)經過切點垂直於切線的直線必經過圓心。
(3)圓的切線垂直於經過切點的半徑。

切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。

〖有關圓的計算公式〗

1.圓的周長C=2πr=πd
2.圓的面積S=πr^2;
3.扇形弧長l=nπr/180
4.扇形面積S=nπr^2;/360=rl/2
5.圓錐側面積S=πrl

【圓的解析幾何性質和定理】
[編輯本段]〖圓的解析幾何方程〗

圓的標准方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標准方程是(x-a)^2+(y-b)^2=r^2。

圓的一般方程:把圓的標准方程展開,移項,合並同類項後,可得圓的一般方程是x^2+y^2+Dx+Ey+F=0。和標准方程對比,其實D=-2a,E=-2b,F=a^2+b^2。

圓的離心率e=0,在圓上任意一點的曲率半徑都是r。

〖圓與直線的位置關系判斷〗

平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等於0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關於x的一元二次方程f(x)=0。

利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行於y軸(或垂直於x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,並且規定x1<x2,那麼:當x=-C/A<x1或x=-C/A>x2時,直線與圓相離;當x1<x=-C/A<x2時,直線與圓相交;

半徑r,直徑d在直角坐標系中,圓的解析式為:(x-a)^2+(y-b)^2=r^2x^2+y^2+Dx+Ey+F=0 => (x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F => 圓心坐標為(-D/2,-E/2) 其實不用這樣算 太麻煩了 只要保證X方Y方前系數都是1 就可以直接判斷出圓心坐標為(-D/2,-E/2) 這可以作為

⑥ 圓初中數學

1、
設P坐標(x,4/x)
x²+(4/x)²=(x-4)²+(4/x)²
即x²=x²-8x+16
解得x=2
即P坐標為(2,2)
圓P半徑為OP=√2²+2²=2√2
2、
OP=AP=2√2
OA=4
即OA²=OP²+AP²
所以∠OPA=90
1/4圓P面積:(1/4)*(2√2)²л=2л
△OPA面積:(1/2)*(2√2)*(2√2)=4
陰影部分面積:2л-4

⑦ 初中數學圓的定理

圓是在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A所形成的圖形叫做圓。其固定的端點O叫做圓心,線段OA叫做半徑。

⑧ 初中數學圓的全部詳細公式

1過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
21 全等三角形的對應邊、對應角相等
22邊角邊公理 有兩邊和它們的夾角對應相等的兩個三角形全等
23 角邊角公理 有兩角和它們的夾邊對應相等的兩個三角形全等
24 推論 有兩角和其中一角的對邊對應相等的兩個三角形全等
25 邊邊邊公理 有三邊對應相等的兩個三角形全等
26 斜邊、直角邊公理 有斜邊和一條直角邊對應相等的兩個直角三角形全等
27 定理1 在角的平分線上的點到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點的集合
30 等腰三角形的性質定理 等腰三角形的兩個底角相等
31 推論1 等腰三角形頂角的平分線平分底邊並且垂直於底邊
32 等腰三角形的頂角平分線、底邊上的中線和高互相重合
33 推論3 等邊三角形的各角都相等,並且每一個角都等於60°
34 等腰三角形的判定定理:如果一個三角形有兩個角相等,那麼這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等於60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等於30°那麼它所對的直角邊等於斜邊的一半
38 直角三角形斜邊上的中線等於斜邊上的一半
39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關於某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關於某直線對稱,那麼對稱軸是對應點連線的垂直平分線
44定理3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點在對稱軸上
45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱
46勾股定理 直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a+b=c
47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a+b=c,那麼這個三角形是直角三角形
48定理 四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理 n邊形的內角的和等於(n-2)×180°
51推論 任意多邊的外角和等於360°
52平行四邊形性質定理1 平行四邊形的對角相等
53平行四邊形性質定理2 平行四邊形的對邊相等
54推論 夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3 平行四邊形的對角線互相平分
56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1 矩形的四個角都是直角
61矩形性質定理2 矩形的對角線相等
62矩形判定定理1 有三個角是直角的四邊形是矩形
63矩形判定定理2 對角線相等的平行四邊形是矩形
64菱形性質定理1 菱形的四條邊都相等
65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即S=(a×b)÷2
67菱形判定定理1 四邊都相等的四邊形是菱形
68菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1 關於中心對稱的兩個圖形是全等的
72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱
74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理 如果一組平行線在一條直線上截得的線段 相等,那麼在其他直線上截得的線段也相等
79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81 三角形中位線定理 三角形的中位線平行於第三邊,並且等於它的一半
82 梯形中位線定理 梯形的中位線平行於兩底,並且等於兩底和的一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性質 如果a:b=c:d,那麼ad=bc。如果ad=bc,那麼a:b=c:d
84 (2)合比性質 如果a/b=c/d,那麼(a±b)/b=(c±d)/d
85 (3)等比性質 如果a/b=c/d=…=m/n(其中,b+d+…+n≠0),那麼(a+c+…+m)/(b+d+…+n)=a/b
86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應線段成比例
87 推論 平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那麼這條直線平行於三角形的第三邊
89 平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90 定理 平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)
92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94 判定定理3 三邊對應成比例,兩三角形相似(SSS)
95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似
96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97 性質定理2 相似三角形周長的比等於相似比
98 性質定理3 相似三角形面積的比等於相似比的平方
99 任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理 不在同一直線上的三個點確定一條直線
110垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2 圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那麼它們所對應的其餘各組量都相等
116定理 一條弧所對的圓周角等於它所對的圓心角的一半
117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3 如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形
120定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121
①直線L和⊙O相交 d<r
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
122切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理 圓的切線垂直於經過切點的半徑
124推論1 經過圓心且垂直於切線的直線必經過切點
125推論2 經過切點且垂直於切線的直線必經過圓心
126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理 弦切角等於它所夾的弧對的圓周角
129推論 如果兩個弦切角所夾的弧相等,那麼這兩個弦切角也相等
130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131推論 如果弦與直徑垂直相交,那麼弦的一半是它分直徑所成的兩條線段的比例中項
132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那麼切點一定在連心線上
135
①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-r<d<R+r(R>r)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含d<R-r(R>r)
136定理 相交兩圓的連心線垂直平分兩圓的公共弦
137定理 把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
142內公切線長= d-(R-r) 外公切線長= d-(R+r)
143面積公式:①S正Δ=- -×(邊長)2.-②S平行四邊形=底×高.③S菱形=底×高=- -×(對角線的積) -④S圓=πR2.⑤C圓周長=2πR.⑥弧長L=- -.-⑦S扇形=- -=- -LR.⑧S圓柱側=底面周長×高.-⑨S圓錐側=- -×底面周長×母線=πrR,並且-2πr

⑨ 初三數學圓的定義

(1)圓:在一個平面內,線段OA繞它固定的一個頂點O旋轉一周,另一個端點A隨之

旋轉所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.
(2)弦:連接圓上任意兩點的線段叫做弦.

直徑:經過圓心的弦叫做直徑.
(3)弧:圓上任意兩點間的部分叫做圓弧.

半圓:圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫做半圓.

優弧:大於半圓的弧.

劣弧:小於半圓的弧.

等弧:能夠互相重合的弧.
(4)同心圓:圓心相同,半徑不相等的兩個圓.

等圓:能夠重合的兩個圓.
3、點與圓的位置關系
(1)點在圓外
點到圓心的距離大於半徑.
(2)點在圓上
點到圓心的距離等於半徑.
(3)點在圓內
點到圓心的距離小於半徑.

⑩ 初中數學關於圓的定義

初中數學圓有2個定義。
定義1:到定點的距離等於定長的點的集合叫做圓(circle).這個定點叫做圓的圓心。
定義2:到定點的距離等於定長的點都在圖形上,在圖形上的點到定點的距離都等於定長。

熱點內容
七年級語文書內容 發布:2025-07-21 01:23:59 瀏覽:674
丑石教學設計 發布:2025-07-20 23:56:06 瀏覽:989
貝拉國際教育 發布:2025-07-20 23:17:16 瀏覽:581
線上一對多教學 發布:2025-07-20 22:04:59 瀏覽:771
安全教育班會心得 發布:2025-07-20 20:57:23 瀏覽:957
三年級教學視頻 發布:2025-07-20 19:31:26 瀏覽:816
黨員師德演講稿 發布:2025-07-20 19:19:14 瀏覽:4
生物質鏈條爐 發布:2025-07-20 17:50:30 瀏覽:938
青年教師師德徵文 發布:2025-07-20 17:44:47 瀏覽:596
高一數學教學視頻全套 發布:2025-07-20 17:21:18 瀏覽:567