當前位置:首頁 » 語數英語 » 數學三要求

數學三要求

發布時間: 2021-08-02 23:22:07

數學三 是指什麼。。。

暈,樓上兩人純粹胡說。數一二三四都有高數好吧,不過貌似09年考研的時候數三數四合並為數三了。
數一二三四區別只是考的高數的內容不同,整體而言都是從高等數學、線性代數、概率論與數理統計三本書裡面劃范圍,側重點不同而已。數一難度最大,三本全考,理工科大部分都考數一,具體考什麼內容要看考研大綱的。一般來說都是8月份的時候出新大綱的,但是數學每年考綱變動都很小,所以你現在完全可以按照2010數三大綱復習,待8月份新大綱發布之後再查補也是完全可以的。
2010年數三考研大綱在網路文庫裡面有,網址:
http://wenku..com/view/38cf7e7f5acfa1c7aa00cc84.html
2010年數一考研大綱
http://wenku..com/view/42fe52cfa1c7aa00b52acb84.html
2010年數二考研大綱
http://wenku..com/view/6fa9995f804d2b160b4ec084.html

2010年全國碩士研究生入學統一考試數學考試大綱--數學三

考試科目:微積分.線性代數.概率論與數理統計

考試形式和試卷結構

一、試卷滿分及考試時間

試卷滿分為150分,考試時間為180分鍾.

二、答題方式

答題方式為閉卷、筆試.

三、試卷內容結構

微積分 56%

線性代數 22%

概率論與數理統計 22%

四、試卷題型結構

試卷題型結構為:

單項選擇題選題 8小題,每題4分,共32分

填空題 6小題,每題4分,共24分

解答題(包括證明題) 9小題,共94分

微 積 分

一、函數、極限、連續

考試內容

函數的概念及表示法 函數的有界性.單調性.周期性和奇偶性 復合函數.反函數.分段函數和隱函數基本初等函數的性質及其圖形 初等函數 函數關系的建立

數列極限與函數極限的定義及其性質 函數的左極限和右極限 無窮小量和無窮大量的概念及其關系 無窮小量的性質及無窮小量的比較 極限的四則運算極限存在的兩個准則:單調有界准則和夾逼准則 兩個重要極限:

函數連續的概念函數間斷點的類型 初等函數的連續性 閉區間上連續函數的性質

考試要求

1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.

2.了解函數的有界性.單調性.周期性和奇偶性.

3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.

4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.

5.了解數列極限和函數極限(包括左極限與右極限)的概念.

6.了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法.

7.理解無窮小的概念和基本性質.掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系.

8.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.

9.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理.介值定理),並會應用這些性質.

二、一元函數微分學

考試內容

導數和微分的概念 導數的幾何意義和經濟意義 函數的可導性與連續性之間的關系 平面曲線的切線與法線 導數和微分的四則運算 基本初等函數的導數 復合函數.反函數和隱函數的微分法 高階導數 一階微分形式的不變性 微分中值定理 洛必達(L'Hospital)法則 函數單調性的判別 函數的極值 函數圖形的凹凸性.拐點及漸近線 函數圖形的描繪 函數的最大值與最小值

考試要求

1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.

2.掌握基本初等函數的導數公式.導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數 會求反函數與隱函數的導數.

3.了解高階導數的概念,會求簡單函數的高階導數.

4.了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.

5.理解羅爾(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應用.

6.會用洛必達法則求極限.

7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用.

8.會用導數判斷函數圖形的凹凸性(註:在區間 內,設函數 具有二階導數.當 時, 的圖形是凹的;當 時, 的圖形是凸的),會求函數圖形的拐點和漸近線.

9.會描述簡單函數的圖形.

三、一元函數積分學

考試內容

原函數和不定積分的概念 不定積分的基本性質 基本積分公式 定積分的概念和基本性質 定積分中值定理 積分上限的函數及其導數 牛頓一萊布尼茨(Newton- Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應用

考試要求

1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法.

2.了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.

3.會利用定積分計算平面圖形的面積.旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題.

4.了解反常積分的概念,會計算反常積分.

四、多元函數微積分學

考試內容

多元函數的概念 二元函數的幾何意義 二元函數的極限與連續的概念有界閉區域上二元連續函數的性質 多元函數偏導數的概念與計算 多元復合函數的求導法與隱函數求導法 二階偏導數全微分 多元函數的極值和條件極值.最大值和最小值 二重積分的概念.基本性質和計算 無界區域上簡單的反常二重積分

考試要求

1.了解多元函數的概念,了解二元函數的幾何意義.

2.了解二元函數的極限與連續的概念,了解有界閉區域上二元連續函數的性質.

3.了解多元函數偏導數與全微分的概念,會求多元復合函數一階、二階偏導數,會求全微分,會求多元隱函數的偏導數.

4.了解多元函數極值和條件極值的概念,掌握多元函數極值存在的必要條件,了解二元函數極值存在的充分條件,會求二元函數的極值,會用拉格朗日乘數法求條件極值,會求簡單多元函數的最大值和最小值,並會解決簡單的應用問題.

5.了解二重積分的概念與基本性質,掌握二重積分的計算方法(直角坐標.極坐標).了解無界區域上較簡單的反常二重積分並會計算.

五、無窮級數

考試內容

常數項級數收斂與發散的概念 收斂級數的和的概念 級數的基本性質與收斂的必要條件 幾何級數與 級數及其收斂性 正項級數收斂性的判別法 任意項級數的絕對收斂與條件收斂 交錯級數與萊布尼茨定理 冪級數及其收斂半徑.收斂區間(指開區間)和收斂域 冪級數的和函數 冪級數在其收斂區間內的基本性質 簡單冪級數的和函數的求法 初等函數的冪級數展開式

考試要求

1.了解級數的收斂與發散.收斂級數的和的概念.

2.了解級數的基本性質和級數收斂的必要條件,掌握幾何級數及 級數的收斂與發散的條件,掌握正項級數收斂性的比較判別法和比值判別法.

3.了解任意項級數絕對收斂與條件收斂的概念以及絕對收斂與收斂的關系,了解交錯級數的萊布尼茨判別法.

4.會求冪級數的收斂半徑、收斂區間及收斂域.

5.了解冪級數在其收斂區間內的基本性質(和函數的連續性、逐項求導和逐項積分),會求簡單冪級數在其收斂區間內的和函數.

6.了解 . . . 及 的麥克勞林(Maclaurin)展開式.

六、常微分方程與差分方程

考試內容

常微分方程的基本概念 變數可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質及解的結構定理 二階常系數齊次線性微分方程及簡單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數線性差分方程 微分方程的簡單應用

考試要求

1.了解微分方程及其階、解、通解、初始條件和特解等概念.

2.掌握變數可分離的微分方程.齊次微分方程和一階線性微分方程的求解方法.

3.會解二階常系數齊次線性微分方程.

4.了解線性微分方程解的性質及解的結構定理,會解自由項為多項式.指數函數.正弦函數.餘弦函數的二階常系數非齊次線性微分方程.

5.了解差分與差分方程及其通解與特解等概念.

6.了解一階常系數線性差分方程的求解方法.

7.會用微分方程求解簡單的經濟應用問題.

線 性 代 數

一、行列式

考試內容

行列式的概念和基本性質 行列式按行(列)展開定理

考試要求

1.了解行列式的概念,掌握行列式的性質.

2.會應用行列式的性質和行列式按行(列)展開定理計算行列式.

二、矩陣

考試內容

矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算

考試要求

1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣的定義及性質,了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質.

2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.

3.理解逆矩陣的概念,掌握逆矩陣的性質以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣.

4.了解矩陣的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法.

5.了解分塊矩陣的概念,掌握分塊矩陣的運演算法則.

三、向量

考試內容

向量的概念 向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關系 向量的內積 線性無關向量組的正交規范化方法

考試要求

1.了解向量的概念,掌握向量的加法和數乘運演算法則.

2.理解向量的線性組合與線性表示、向量組線性相關、線性無關等概念,掌握向量組線性相關、線性無關的有關性質及判別法.

3.理解向量組的極大線性無關組的概念,會求向量組的極大線性無關組及秩.

4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關系.

5.了解內積的概念.掌握線性無關向量組正交規范化的施密特(Schmidt)方法.

四、線性方程組

考試內容

線性方程組的克萊姆(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎解系和通解 非齊次線性方程組的解與相應的齊次線件方程組(導出組)的解之間的關系 非齊次線性方程組的通解

考試要求

1.會用克萊姆法則解線性方程組.

2.掌握非齊次線性方程組有解和無解的判定方法.

3.理解齊次線性方程組的基礎解系的概念,掌握齊次線性方程組的基礎解系和通解的求法.

4.理解非齊次線性方程組解的結構及通解的概念.

5.掌握用初等行變換求解線性方程組的方法.

五、矩陣的特徵值和特徵向量

考試內容

矩陣的特徵值和特徵向量的概念、性質 相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣 實對稱矩陣的特徵值和特徵向量及相似對角矩陣

考試要求

1.理解矩陣的特徵值、特徵向量的概念,掌握矩陣特徵值的性質,掌握求矩陣特徵值和特徵向量的方法.

2.理解矩陣相似的概念,掌握相似矩陣的性質,了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.

3.掌握實對稱矩陣的特徵值和特徵向量的性質.

六、二次型

考試內容

二次型及其矩陣表示合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標准形和規范形 用正交變換和配方法化二次型為標准形 二次型及其矩陣的正定性

考試要求

1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念.

2.了解二次型的秩的概念,了解二次型的標准形、規范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標准形.

3.理解正定二次型.正定矩陣的概念,並掌握其判別法.

概率論與數理統計

一、隨機事件和概率

考試內容

隨機事件與樣本空間 事件的關系與運算 完備事件組 概率的概念 概率的基本性質 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨立性 獨立重復試驗

考試要求

1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算.

2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等.

3.理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法.

二、隨機變數及其分布

考試內容

隨機變數 隨機變數的分布函數的概念及其性質 離散型隨機變數的概率分布 連續型隨機變數的概率密度常見隨機變數的分布 隨機變數函數的分布

考試要求

1.理解隨機變數的概念,理解分布函數

的概念及性質,會計算與隨機變數相聯系的事件的概率.

2.理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布 、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用.

3.掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布.

4.理解連續型隨機變數及其概率密度的概念,掌握均勻分布 、正態分布 、指數分布及其應用,其中參數為 的指數分布 的概率密度為

5.會求隨機變數函數的分布.

三、多維隨機變數及其分布

考試內容

多維隨機變數及其分布函數 二維離散型隨機變數的概率分布、邊緣分布和條件分布 二維連續型隨機變數的概率密度、邊緣概率密度和條件密度 隨機變數的獨立性和不相關性 常見二維隨機變數的分布 兩個及兩個以上隨機變數的函數的分布

考試要求

1.理解多維隨機變數的分布函數的概念和基本性質.

2.理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度、掌握二維隨機變數的邊緣分布和條件分布.

3.理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件,理解隨機變數的不相關性與獨立性的關系.

4.掌握二維均勻分布和二維正態分布 ,理解其中參數的概率意義.

5.會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布.

四、隨機變數的數字特徵

考試內容

隨機變數的數學期望(均值)、方差、標准差及其性質 隨機變數函數的數學期望切比雪夫(Chebyshev)不等式 矩、協方差、相關系數及其性質

考試要求

1.理解隨機變數數字特徵(數學期望、方差、標准差、矩、協方差、相關系數)的概念,會運用數字特徵的基本性質,並掌握常用分布的數字特徵.

2.會求隨機變數函數的數學期望.

3.了解切比雪夫不等式.

五、大數定律和中心極限定理

考試內容

切比雪夫大數定律 伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列維—林德伯格(Levy-Lindberg)定理

考試要求

1.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變數序列的大數定律).

2.了解棣莫弗—拉普拉斯中心極限定理(二項分布以正態分布為極限分布)、列維—林德伯格中心極限定理(獨立同分布隨機變數序列的中心極限定理),並會用相關定理近似計算有關隨機事件的概率.

六、數理統計的基本概念

考試內容

總體 個體 簡單隨機樣本 統計量 經驗分布函數樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數 正態總體的常用抽樣分布

考試要求

1.了解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為

2.了解產生 變數、 變數和 變數的典型模式;了解標准正態分布、 分布、 分布和 分布得上側 分位數,會查相應的數值表.

3.掌握正態總體的樣本均值.樣本方差.樣本矩的抽樣分布.

4.了解經驗分布函數的概念和性質.

七、參數估計

考試內容

點估計的概念 估計量與估計值 矩估計法 最大似然估計法

考試要求

1.了解參數的點估計、估計量與估計值的概念.

2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.

② 考研數學三的要求

參照最新大綱,一定沒錯
輔導班可能更新不及時

③ 數學三包含什麼內容

考試科目

微積分、線性代數、概率論與數理統計

形式結構

1、試卷滿分及考試版時間

試卷滿分為150分,考權試時間為180分鍾.

2、答題方式

答題方式為閉卷、筆試.

3、試卷內容結構

微積分 56%

線性代數 22%

概率論與數理統計 22%

4、試卷題型結構

試卷題型結構為:

單項選擇題選題8小題,每題4分,共32分

填空題 6小題,每題4分,共24分

解答題(包括證明題) 9小題,共94分

(3)數學三要求擴展閱讀

須使用數學二的招生專業

工學門類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中所有的二級學科、專業。

須選用數學一或數學二的招生專業(由招生單位自定)

工學門類中的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較高的二級學科、專業選用數學一,對數學要求較低的選用數學二。

須使用數學三的招生專業

1、經濟學門類的各一級學科。

2、管理學門類中的工商管理、農林經濟管理一級學科。

3、授管理學學位的管理科學與工程一級學科。

④ 考研數學三哪些不需要看

每年數三考題都嚴格按照大綱出題,考研數學三大綱主要包括微積分、線性代數、概率論與數理統計。詳情參考網路:http://ke..com/link?url=-

⑤ 考研數學三考什麼

考研數學三考什麼?考研數學三考什麼內容?數學三大綱包括微積分、線性代數、概率論與數理統計。均要求理解概念,掌握表示法,會建立應用問題的函數關系。
考試內容:
一、微積分函數、極限、連續考試要求1.理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系.2.了解函數的有界性.單調性.周期性和奇偶性.3.理解復合函數及分段函數的概念,了解反函數及隱函數的概念.4.掌握基本初等函數的性質及其圖形,了解初等函數的概念.5.了解數列極限和函數極限(包括左極限與右極限)的概念.6.了解極限的性質與極限存在的兩個准則,掌握極限的四則運演算法則,掌握利用兩個重要極限求極限的方法.7.理解無窮小的概念和基本性質.掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系.8.理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型.9.了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理.介值定理),並會應用這些性質.
二、一元函數微分學考試要求1.理解導數的概念及可導性與連續性之間的關系,了解導數的幾何意義與經濟意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程.2.掌握基本初等函數的導數公式.導數的四則運演算法則及復合函數的求導法則,會求分段函數的導數 會求反函數與隱函數的導數.3.了解高階導數的概念,會求簡單函數的高階導數.4.了解微分的概念,導數與微分之間的關系以及一階微分形式的不變性,會求函數的微分.5.理解羅爾(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應用.6.會用洛必達法則求極限.7.掌握函數單調性的判別方法,了解函數極值的概念,掌握函數極值、最大值和最小值的求法及其應用.8.會用導數判斷函數圖形的凹凸性(註:在區間 內,設函數具有二階導數.當 時, 的圖形是凹的當 時, 的圖形是凸的),會求函數圖形的拐點和漸近線.9.會描述簡單函數的圖形.
三、一元函數積分學考試要求1.理解原函數與不定積分的概念,掌握不定積分的基本性質和基本積分公式,掌握不定積分的換元積分法和分部積分法.2.了解定積分的概念和基本性質,了解定積分中值定理,理解積分上限的函數並會求它的導數,掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法.3.會利用定積分計算平面圖形的面積.旋轉體的體積和函數的平均值,會利用定積分求解簡單的經濟應用問題.4.了解反常積分的概念,會計算反常積分.

⑥ 考研數學三是什麼

微積分、線性代數、概率論與數理統計。

試卷內容結構:微積分 56%;線性代數 22%;概率論與數理統計 22%。

微積分函數、極限、連續考試要求:

1、理解函數的概念,掌握函數的表示法,會建立應用問題的函數關系;

2、了解函數的有界性.單調性.周期性和奇偶性;

3、理解復合函數及分段函數的概念,了解反函數及隱函數的概念;

4、掌握基本初等函數的性質及其圖形,了解初等函數的概念;

5、理解無窮小的概念和基本性質.掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關系;

6、理解函數連續性的概念(含左連續與右連續),會判別函數間斷點的類型;

7、了解連續函數的性質和初等函數的連續性,理解閉區間上連續函數的性質(有界性、最大值和最小值定理.介值定理),並會應用這些性質。

(6)數學三要求擴展閱讀:

常微分方程與差分方程考試要求:

1、了解微分方程及其階、解、通解、初始條件和特解等概念;

2、掌握變數可分離的微分方程.齊次微分方程和一階線性微分方程的求解方法;

3、會解二階常系數齊次線性微分方程;

4、了解線性微分方程解的性質及解的結構定理,會解自由項為多項式.指數函數.正弦函數.餘弦函數的二階常系數非齊次線性微分方程;

5、了解差分與差分方程及其通解與特解等概念;

6、了解一階常系數線性差分方程的求解方法;

7、會用微分方程求解簡單的經濟應用問題。

參考資料:

考研數學三大綱--網路

⑦ 考了數學一後能報考要求數學三的專業嗎

高數難,數學一最難,我今年考的研,幾乎所有人都反映栽到了高數上,考研數學無論1,2,3,4沒有單純考一門高數的,都要和線性代數與概率論合起來考,在考研的數學中,數學共分為四個等級。現在,國家教育部劃分出了34所高校,這34所高校有權決定自己專業題的出題權,注意此處的專業課包括數學。因為在新大綱中,數學已經劃為專業課范圍,而所有計算機初試待考的專業課程則統一被放在一張滿分為150分的試卷內。數學的四個等級劃分如下: 數學一:包含線代,高數,概率。適用的學科為: 1.工學門類的力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、計算機科學與技術、土木工程、水利工程、測繪科學與技術、交通運輸工程、船舶與海洋工程、航空宇航科學與技術、兵器科學與技術、核科學與技術、生物醫學工程等一級學科中所有的二級學科、專業. 2.工學門類的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較高的二級學科、專業. 3.管理學門類中的管理科學與工程一級學科 按此劃分,絕大多數院校的計算機專業都會選擇考數學一,這也是從事計算機所必須的最低數學功底。 數學二:包含線代,高數。適用的學科為: 1.工學門類的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等一級學科中所有的二級學科、專業. 2.工學門類的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較低的二級學科、專業. 數學三:常被稱為經濟數學,包含線代,概率,高數。適用學科為: 1.經濟學門類的應用經濟學一級學科中統計學、數量經濟學二級學科、專業. 2.管理學門類的工商管理一級學科中企業管理、技術經濟及管理二級學科、專業. 3.管理學門類的農林經濟管理一級學科中對數學要求較高的二級學科、專業 數學四:包含線代,概率,高數,但是考核內容要不同於數學一,具體可參見大綱。適用學科為: 經濟學門類中除上述規定的必考數學三的二級學科、專業外,其餘的二級學科、專業可選用數學三或數學四;管理學門類的工商管理一級學科中除上述規定的必考數學三的二級學科、專業外,其餘的二級學科專業可選用數學三或數學四.管理學門類的農林經濟管理一級學科中對數學要求較低的二級學科、專業

⑧ 考研數學三的范圍

答:浙大教材是用來看概率論和數理統計部分的,不用全部看,只要看考綱要求的部分就行,高數看同濟大學的教材
概率統計
隨機事件和概率
考試要求
1.了解樣本空間(基本事件空間)的概念,理解隨機事件的概念,掌握事件的關系及運算.
2.理解概率、條件概率的概念,掌握概率的基本性質,會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等.
3.理解事件的獨立性的概念,掌握用事件獨立性進行概率計算;理解獨立重復試驗的概念,掌握計算有關事件概率的方法.
隨機變數及其分布
考試要求
1.理解隨機變數的概念,理解分布函數的概念及性質,會計算與隨機變數相聯系的事件的概率.
2.理解離散型隨機變數及其概率分布的概念,掌握0-1分布、二項分布 、幾何分布、超幾何分布、泊松(Poisson)分布 及其應用.
3.掌握泊松定理的結論和應用條件,會用泊松分布近似表示二項分布.
4.理解連續型隨機變數及其概率密度的概念,掌握均勻分布 、正態分布 、指數分布及其應用,其中參數為 的指數分布 的概率密度為
5.會求隨機變數函數的分布.
多維隨機變數及其分布
考試要求
1.理解多維隨機變數的分布函數的概念和基本性質.
2.理解二維離散型隨機變數的概率分布和二維連續型隨機變數的概率密度、掌握二維隨機變數的邊緣分布和條件分布.
3.理解隨機變數的獨立性和不相關性的概念,掌握隨機變數相互獨立的條件,理解隨機變數的不相關性與獨立性的關系.
4.掌握二維均勻分布和二維正態分布 ,理解其中參數的概率意義.
5.會根據兩個隨機變數的聯合分布求其函數的分布,會根據多個相互獨立隨機變數的聯合分布求其函數的分布.
隨機變數的數字特徵
考試要求
1.理解隨機變數數字特徵(數學期望、方差、標准差、矩、協方差、相關系數)的概念,會運用數字特徵的基本性質,並掌握常用分布的數字特徵.
2.會求隨機變數函數的數學期望.
3.了解切比雪夫不等式.
大數定律和中心極限定理
考試要求
1.了解切比雪夫大數定律、伯努利大數定律和辛欽大數定律(獨立同分布隨機變數序列的大數定律).
2.了解棣莫弗—拉普拉斯中心極限定理(二項分布以正態分布為極限分布)、列維—林德伯格中心極限定理(獨立同分布隨機變數序列的中心極限定理),並會用相關定理近似計算有關隨機事件的概率.
數理統計的基本概念
考試要求
1.了解總體、簡單隨機樣本、統計量、樣本均值、樣本方差及樣本矩的概念,其中樣本方差定義為
2.了解產生 變數、 變數和 變數的典型模式;了解標准正態分布、 分布、分布和分布得上側 分位數,會查相應的數值表.
3.掌握正態總體的樣本均值.樣本方差.樣本矩的抽樣分布.
4.了解經驗分布函數的概念和性質.
參數估計
考試內容:點估計的概念 估計量與估計值 矩估計法 最大似然估計法
考試要求
1.了解參數的點估計、估計量與估計值的概念.
2.掌握矩估計法(一階矩、二階矩)和最大似然估計法.

⑨ 自學~數學三需要多久

這個因人而異,主要看自己努力程度。一般2個月到半年就可以了。
高等教育自學考試(Higher self-examination),簡稱自考,1981年經國務院批准創立,是對自學者進行的以學歷考試為主的高等教育國家考試。是個人自學、社會助學和國家考試相結合的高等教育形式,是我國社會主義高等教育體系的重要組成部分。其任務是通過國家考試促進廣泛的個人自學和社會助學活動,貫徹憲法鼓勵自學成才的有關規定,進行以學歷考試為主的高等教育國家考試。造就和選拔德才兼備的專門人才,提高全民族的思想道德、科學文化素質,適應社會主義現代化建設的需要。
自學考試是我國高等教育重要的組成部分,是以學歷考試為主的高等教育國家考試制度,是個人自學、社會助學、國家考試相結合的高等教育形式。學生經過系統的學習後,通過畢業論文的答辯、學位英語的考核達到規定成績符合條件的畢業生,可申請授予成人學士學位、參加研究生考試,並可繼續攻讀碩士學位和博士學位。

熱點內容
我的師德師風觀 發布:2025-07-20 04:56:00 瀏覽:677
江蘇教師與13歲 發布:2025-07-20 02:03:48 瀏覽:935
軍魂老師 發布:2025-07-20 00:40:21 瀏覽:665
雪教學實錄 發布:2025-07-19 23:16:59 瀏覽:929
2017安徽中考語文試卷及答案 發布:2025-07-19 22:04:16 瀏覽:737
蘋果平板哪個好 發布:2025-07-19 21:30:33 瀏覽:339
少兒美術分班名稱 發布:2025-07-19 19:44:27 瀏覽:870
2016應用統計暑期學校 發布:2025-07-19 18:49:42 瀏覽:80
小學教師調動申請 發布:2025-07-19 18:28:09 瀏覽:737
安徽是哪個省 發布:2025-07-19 16:10:52 瀏覽:167