数学是符号
它在数学是乘号的意思。
星形标示号*通常置于有关的词句的左上角或右上角,作为划分文章不同部分的符号成组使用时单独占一行。在电脑中,由于“×”容易和未知数x混淆,且不方便打字,所以使用*来代替乘号。
例如:3*4=12,4*(3+6)=36,而在c和c++中表示间接运算符。如:long* p,表示long类型的指针p。在c语言中,为了表示指针变量和它所指向变量之间的联系,用“*”表示指向。
此时应当注意的是,在变量声明中的“*”和表达式中的“*”意义是不一样的,变量声明中的“*”意味着定义一个存放地址的指针变量,而表达式中的“*”表示间接存取指针变量所指向变量的值。在编程序是经常用到。
(1)数学是符号扩展阅读:
整数的乘法:
1、从个位乘起,依次用第二个因数每位上的数去乘第一个因数;
2、用第二个因数那一位上的数去乘,得数的末位就和第二个因数的那一位对齐;
3、再把几次乘得的数加起来。
乘法运算性质
1、几个数的积乘一个数,可以让积里的任意一个因数乘这个数,再和其他数相乘。
例如:(25×3 × 9)×4=25×4×3×9=2700。
2、两个数的差与一个数相乘,可以让被减数和减数分别与这个数相乘,再把所得的积相减。
例如: (137-125)×8=137×8-125×8=96。
② 数学符号大全
数学符号(理科符号)——运算符号
1.基本符号:+ - × ÷(/)
2.分数号:/
3.正负号:±
4.相似全等:∽ ≌
5.因为所以:∵ ∴
6.判断类:= ≠ < ≮(不小于) > ≯(不大于)
7.集合类:∈(属于) ∪(并集) ∩(交集)
8.求和符号:∑
9.n次方符号:¹(一次方) ²(平方) ³(立方) ⁴(4次方) ⁿ(n次方)
10.下角标:₁ ₂ ₃ ₄ (如:A₁B₂C₃D₄)
11.或与非的"非":¬
12.导数符号(备注符号):′ 〃
13.度:° ℃
14.任意:∀
15.推出号:⇒
16.等价号:⇔
17.包含被包含:⊆ ⊇ ⊂ ⊃
18.导数:∫ ∬
19.箭头类:↗ ↙ ↖ ↘ ↑ ↓ ↔ ↕ ↑ ↓ → ←
20.绝对值:|
21.弧:⌒
22.圆:⊙
23.平均数-,ba拔
③ 数学符号都有哪些
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
1.运算符号:
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
2.关系符号:
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”(例如a|b表示“a能整除b”),x,y等任何字母都可以代表未知数。
3.结合符号:
如小括号“()”,中括号“[ ]”,大括号“{ }”,横线“—”
4.性质符号:
如正号“+”,负号“-”,正负号“
5.省略符号:
∵因为
∴所以
6.排列组合符号:
C组合数
A (或P)排列数
n元素的总个数
r参与选择的元素个数
!阶乘,如5!=5×4×3×2×1=120,规定0!=1
7.离散数学符号
∀全称量词
∃存在量词
其他:
在Microsoft Word中可以插入一般应用条件下的所有数学符号,以Word2010软件为例介绍操作方法:第1步,打开Word2010文档窗口,单击需要添加数学符号的公式,并将插入条光标定位到目标位置。第2步,在“公式工具/设计”功能区的“符号”分组中,单击“其他”按钮打开符号面板。默认显示的“基础数学”符号面板。用户可以在“基础数学”符号面板中找到最常用的数学符号。同样地,Alt+41420(即压下Alt不放,依次按41420(小键盘),最后放开Alt 就可以打出 √。
④ 数学中※ 符号是什么意思
这个符号在数学中一般表示乘方,如:2^3=2³=2×2×2=8
⑤ 数学符号意思
∈属于符号,表示元素与集合之间的一种从属关系
∏求积符号
∑求和符号
∕相当于除号÷
√算术平方根,如±2的平方是4,那么4的算术平方根是2
∝正比于,常见于物理学,如a∝b说明当a增加,b也增加
∞无穷
表示一种趋向,+∞表示不断变大的趋势
∟直角符号
∠角符号
∣绝对值符号与除号
‖平行
刻画两直线的关系
∧交符号
逻辑基本符号,表示两个命题同时发生则命题成立
∨并符号
逻辑基本符号,表示两个命题有一个发生则命题成立
∩交符号
集合基本符号,表示两个集合同时满足
∪并符号
集合基本符号,表示至少满足一个集合
∫不定积分符号
微积分基本符号
∮积分符号
微积分基本符号
∴所以
∵因为
∶比例符号
∷比例
∽属于符号
集合基本符号
刻画两个集合间的从属关系
≈约等于符号
≌相似符号
刻画集合图形的基本特征
≈约等号
刻画两个关系式之间的关系
≠不等号
两者存在差异的地方
≡同余符号
数论基本符号,表示两个整数除以同一个特定的整数余数相等,例如5=2×2+1,7=2×3+1,那么5≡7
(mod
2)
≤不大于
关系符号
前者小于或者等于后者
≥不小于
关系符号
前者大于或者等于后者
≤远小于等于
关系符号
前者远小于后者或与后者相等
≥远大于等于
关系符号
前者远大于后者或与后者相等
≮非小于
同≥
≯非大于
同≤
⊙圆
⊙O表示圆心为O的圆
⊥垂直
刻画两直线或空间间关系
⊿三角形
⌒反三角函数
sin正弦函数
Cos余弦函数
tan正切函数
cot余切函数
sec正割函数
csc余割函数
log对数
ln自然对数
lg常用对数
+加法
-减法
×乘法
÷除法
⑥ 数学符号,所有的
1、几何符号
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2、代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号
∪ ∩ ∈
5、特殊符号
∑ π(圆周率)
6、推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
11、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘 ,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列
⑦ 数学符号是什么符号
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现代数学常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
关系符号
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→ ”表示变量变化的趋势等。
(7)数学是符号扩展阅读:
数学符号的发展:
例如加号曾经有好几种,现代数学通用“+”号。“+”号是由拉文“et”(“和”的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文“plu”(“加”的意思)的第一个字母表示加,草为“μ”最后都变成了“+”号。“-”号是从拉丁文“minus”(“减”的意思)演变来的,一开始简写为m,再因快速书写而简化为“-”了。
也有人说,卖酒的商人用“-”表示酒桶里的酒卖了多少。以后,当把新酒灌入大桶的时候,就在“-”上加一竖,意思是把原线条勾销,这样就成了个“+”号。到了十五世纪,德国数学家魏德美正式确定:“+”用作加号,“-”用作减号。
乘号曾经用过十几种,现代数学通用两种。一个是“×”,最早是英国数学家奥屈特1631年提出的;一个是“·”,最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:“×”号像拉丁字母“X”,可能引起混淆而加以反对,并赞成用“·”号(事实上点乘在某些情况下亦易与小数点相混淆)。后来他还提出用“∩“表示相乘。这个符号在现代已应用到集合论中了。
⑧ 数学中⊂是什么符号
数学中⊂是集合符号包含于。
包含关系(inclusionr relotion)是概念外延间关系的一种,通常即指属种关系。有时也仅仅作为真包含关系和真包含于关系的统称。一说包含关系还包括溉念外延问(或类与类间)的全同关系。
在一个随机现象中有两个事件A与B。若事件A中任一个样本点必在B中,则称A被包含在B中,或B包含A,记为“A包含于B”:A⊂B或“B包含A”:B⊃A,这时事件A的发生必导致事件B发生。
(8)数学是符号扩展阅读:
常见的数学符号:
1、大于号
表示左边的数量大于右边数量的符号。记作“>”,读作“大于”。例如9>8,表示9大于8。
2、小于号
表示左边的数量小于右边的数量的符号。记作“<”,读作“小于”。例如:8<9,表示8小于9。
3、运算符号
表示属于某一种运算的符号。例如:加号“+”,减号“一”,乘号“×”,除号“÷”。,
4、运算顺序符号
表示运算顺序的符号。例如:小括号“( )”,中括号“[ ],大括号“{ }”。运用这些符号能改变正常的运算顺序,还能表示几个数或几种运算结合在一起,所以也叫做结合符号。
5、元素与集合的关系
元素与集合的关系是属于(∈)不属于(∉)的关系。
集合与集合的关系是包含(⊂,=,⊃)不包含(⊄,⊅)。
⑨ 数学所有符号解释大全
(1)数量符号:如 :i,2+ i,a,x,自然对数底e,圆周率 ∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号( ),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”
(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”
(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号 意义
∞ 无穷大
PI 圆周率
|x| 函数的绝对值
∪ 集合并
∩ 集合交
≥ 大于等于
≤ 小于等于
≡ 恒等于或同余
ln(x) 以e为底的对数
lg(x) 以10为底的对数
floor(x) 上取整函数
ceil(x) 下取整函数
x mod y 求余数
小数部分 x - floor(x)
∫f(x)δx 不定积分
∫[a:b]f(x)δx a到b的定积分
P为真等于1否则等于0
∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况
如:∑[n is prime][n < 10]f(n)
∑∑[1≤i≤j≤n]n^2
lim f(x) (x->?) 求极限
f(z) f关于z的m阶导函数
C(n:m) 组合数,n中取m
P(n:m) 排列数
m|n m整除n
m⊥n m与n互质
a ∈ A a属于集合A
#A 集合A中的元素个数
⑩ 数学符号有哪些
数学符号,读法
常用数学输入符号: ≈ ≡ ≠ = ≤≥ < > ≮ ≯ ∷ ± + - × ÷ / ∫ ∮ ∝ ∞ ∧ ∨ ∑ ∏ ∪ ∩ ∈ ∵ ∴ ≱ ‖ ∠ ≲ ≌ ∽ √ () 【】{} Ⅰ Ⅱ ⊕ ≰∥α β γ δ ε δ ε ζ Γ
大写 小写 英文注音 国际音标注音 中文注音
Α α alpha alfa 阿耳法
Β β beta beta 贝塔
Γ γ gamma gamma 伽马
Γ δ deta delta 德耳塔
Δ ε epsilon epsilon 艾普西隆
Ε δ zeta zeta 截塔
Ζ ε eta eta 艾塔
Θ ζ theta ζita 西塔
Η η iota iota 约塔
Κ θ kappa kappa 卡帕
∧ ι lambda lambda 兰姆达
Μ κ mu miu 缪
Ν λ nu niu 纽
Ξ μ xi ksi 可塞
Ο ν omicron omikron 奥密可戎
∏ π pi pai 派
Ρ ξ rho rou 柔
∑ ζ sigma sigma 西格马
Τ η tau tau 套