解决数学难题
1.哥德巴赫猜想:1个偶数可分为2个质数相加《本题未解》(本题被誉为数学王冠上的明珠,陈景润证明了1个偶数可分为1个质数加上2个质数相乘,俗称1+2)
2.费马猜想:任意自然数abc,当n大于2时,a的n次方加b的n次方必不等于c的n次方《本题已解,奖金已送出》(法律专业的费马写完这个猜想后说道:我已想到这个题目的美妙解法,无奈这页空白太少,写不下,就不写了…后来的数学家看到这句话后大为光火,奋而求解,终于在350多年后怀尔斯用模椭圆曲线和群论搞定了本题)
3.四色猜想:任何地图只要4种颜色就可以区分所有国家《本题已解》(1976年美国数学家阿佩尔、哈肯用2台计算机经过50多天100多亿次逻辑判断证明了出来,据说刚开始它作为答案仅仅是因为没人能证明该证明过程是错的)
4.植树问题:种20棵树,4棵为1行,问最多能种几行(16世纪排出16行,19世纪排出18行,20世纪末排出20行,那么你呢…)
5.欧氏第五公设问题:…等价表达…过直线外1点只有1条平行线《本题无解》(欧几里德通过这个假设推出了欧氏几何,也叫平面几何;顽强而又不幸的罗巴切夫斯基通过这个假设的反面推出了非欧几何,也叫黎曼几何,广义相对论的基础…)
6.黎曼猜想:黎曼zeta函数等0时的所有解在同一直线上《本题未解》(本题非常的神秘,据说它涉及数论函数甚至经济社会等等方面,博奕论鼻祖纳什曾经用n年时间求解此题,不幸疯掉…)
7.角谷猜想:1个自然数,是偶数就除2,是奇数就乘3加1,最后结果总会是1《本题未解》
8.单色3角形问题:有6个点,每2点用黑色或红色相连,是否必定存在1个单色3角形?《本题未解》(另一表达:6个人在一起,必有3个人认识或不认识)
Ⅱ 怎样解决数学难题
如果你仅仅是指考试中的数学难题,你可以首先确定自身的能力,平时做题的过程是一个积累的过程,一个提高自身能力的过程,碰到难题结合自己所学的知识多思考,还可以向其他人请教
Ⅲ 怎么解决数学难题 并且快速提高数学成绩
呵呵,我也明年高考,告诉你
1.请家教就不必。伤财,并且没什么效果
2.看看高考的体型,将所要复习的东西分类。(建议买下天利38)
3.接下来就是做题,但不要盲目,做完题目要总结,看下参考答案有什么好的方法,记下来,做多了你会发现题目就开始重复了,
4.别着急,跟着第一轮复习的脚步,一章章来,你会成功的,让我们一起面对高考把。
Ⅳ 世界十大数学难题已经解决了哪些
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题 在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
“千僖难题”之二: 霍奇(Hodge)猜想 二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
“千僖难题”之三: 庞加莱(Poincare)猜想 如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
“千僖难题”之四: 黎曼(Riemann)假设 有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
“千僖难题”之五: 杨-米尔斯(Yang-Mills)存在性和质量缺口 量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于 “夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
“千僖难题”之六: 纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
“千僖难题”之七: 贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想 数学家总是被诸如x^2+y^2=z^2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
八:几何尺规作图问题 这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题 1.化圆为方-求作一正方形使其面积等於一已知圆; 2.三等分任意角; 3.倍立方-求作一立方体使其体积是一已知立方体的二倍。 4.做正十七边形。 以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。
九:哥德巴赫猜想 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
十:四色猜想 1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。 1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。
Ⅳ 如何解决数学难题
你的说法是对的。
学习好的同学其实就是平时做的题型多,了解各种题型的解法,才能自己独立完成各种难题。
你可以向成绩好的同学请教一下学习的具体方法。
如果他们不太愿意向你介绍方法,你可以多留意一下他们是怎么学习的。
但是,不论怎样的学习方法,都离不开多练、多总结。
首先要把课本的内容弄懂,搞清楚各个知识点之间的联系。将各个知识点对应的题型做上一遍,应该说这部分的内容就算学透了。当然了,也不是说要搞题海战,但是,要掌握各个知识点,没有练到一定的程度,是不可能掌握好的。做题后,也要反思一下,这道题所涉及的知识点是什么?出题的人为什么要这样出?坚持做下去,你会有很大的提高。
所以,平时要多积累,多思考。
Ⅵ 解决数学难题
解:
延长AO交圆于点D,连接DC
则AD为圆的直径
∴∠ACD=90°
即∠DAC+∠ADC=90°
又∵∠ADC=∠B
(
AC所对的
圆周角相等)
且∠B=∠CAE
∴∠DAC+∠CAE=90°
即DA⊥EF
∴
EF是圆的切线。