6年级数学重点
❶ 小学数学1到6年级全部重点
小学生数学复习考试全图
这些知识归结了小学全部数学重点。这些知识可能在每次考试中以不同形式(填空、选择、判断、连线、解答应用题等)出现,也是学生将来进入初中、高中的基础,所以一定要牢固掌握。
一、 小学生数学法则知识归类
(一)笔算两位数加法,要记三条:
1、相同数位对齐;
2、从个位加起;
3、个位满10向十位进1。
(二)笔算两位数减法,要记三条:
1、相同数位对齐;
2、从个位减起;
3、个位不够减从十位退1,在个位加10再减。
(三)混合运算计算法则:
1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序去处;
2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;
3、算式里有括号的要先算括号里面的。
(四)四位数的读法:
1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;
2、中间有一个0或两个0只读一个“零”;末位不管有几个0都不读。
(五)四位数写法:
1、从高位起,按照顺序写;
2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条:
1、相同数位对齐;
2、从个位减起;
3、位数不够减,从前位退1,在本位加10再减。
(七)一位数乘多位数乘法法则:
1、从个位起,用一位数依次乘多位数中的每一位数;
2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则:
1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;
2、除数除到哪一位,就把商写在那一位上面;每求出一位商,余下的数必须比除数小。
(九)一个因数是两位数的乘法法则:
1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;
2、再用两位数十位上的数去乘另一个因数,得数的末位和两位数十位对齐;
3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则:
1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,再试除前三位数;
2、除到被除数的哪一位就在哪一位上面写商;
3、每求出一位商,余下的数必须比除数小。
(十一)万级数的读法法则:
1、先读万级,再读个级;
2、万级的数要按个级的读法来读,再在后面加上一个“万”字;
3、每级末位不管有几个0都不读,其它数位有一个0或连续几个0都只读一个“零”。
(十二)多位数的读法法则:
1、从高位起,一级一级往下读;
2、读亿级或万级时,要按照个级数的读法来读,再往后后面加上“亿”或“万”字;
3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个“零”。
(十三)小数大小的比较:
比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则:
计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。
(十五)小数简洁的计算法则:
计算小数乘法,先按照简洁的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则:
除数是整数的小数除法,按照整数除法的法则却除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
(十七)除数是小数的除法运算法则:
除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足),然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤:
1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;
2、确定每一步该怎样算,列出算式,算出得数;
3、进行检验,写出答案。
(十九)列方程解应用题的一般步骤:
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;检验、写出答案。
(二十)同分母分数加减的法则:
同分母分数相加减,分母不变,只把分子相加减。
(二十一)同分母带分数加减的法则:
带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则:
异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。
(二十三)分数乘以整数的计算法则:
分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则:
分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。
(二十五)一个数除以分数的计算法则:
一个数除以,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法:
把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、 小学教学口诀定义归类
1、 什么是图形的周长?
围成一个图形所有边长的总和就是这个图形的周长。
2、 什么是面积?
物体的表面或围成的平面图形的大小叫做他们的面积。
3、 加法各部分之间的关系:
一个加数=和-另一个加数
4、 减法各部分之间的关系:
差数=被减数-差,被减数=差数+差
5、 乘法各部分之间的关系:
一个因数=积÷另一个因数
6、 除法各部分之间的关系:
除数=被除数÷商,被除数=商×除数
7、 角:
(1)什么是角?
从一点引出两条射线所组成的图形叫做角。
(2)什么是角的顶点?
围成角的端点叫顶点。
(3)什么是角的边?
围成角的射线叫角的边。
(4)什么是直角?
度数为90°的角叫直角。
(5)什么是平角?
角的两条边成一条直线,这样的角叫平角。
(6)什么是锐角?
小于90°的角叫锐角。
(7)什么是钝角?
大于90°而小于180°的角叫做钝角。
(8)什么是周角?
一条射线绕它的闪电战旋转一周所在的角叫周角,一个周角是360°。
8、
(1)什么是互相垂直?什么是垂线?什么是垂足?
两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
(2)什么是点到直线的距离?
从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。
9、 三角形
(1)什么是三角形?
有三条线段围成的图形叫三角形。
(2)什么是三角形的边?
围成三角形的每条线段叫三角形的边。
(3)什么是三角形的顶点?
每两条线段的交点叫三角形的顶点。
(4)什么是锐角三角形?
三个角都是锐角的三角形叫锐角三角形。
(5)什么是直角三角形?
有一个角是直角的三角形叫直角三角形。
(6)什么是钝角三角形?
有一个角是钝角的三角形叫钝角三角形。
(7)什么是等腰三角形?
两条边相等的三角形叫等腰三角形。
(8)什么是等腰三角形的腰?
在等腰三角形里,相等的两个边叫等腰三角形的腰。
(9)什么是等腰三角形的顶点?
两腰的交点叫做等腰三角形的顶点。
(10)什么是等腰三角形的底?
在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。
(11)什么是等腰三角形的底角?
底边上两个相等的角叫做等腰三角形的底角。
(12)什么是等边三角形?
三条边都相等的三角形叫等边三角形,也叫正三角形。
(13)什么是三角形的高?
什么叫三角形的底?从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。
(14)三角形的内角和是多少度?
三角形的内角和是180°。
10、 四边形
(1)什么是四边形?
有四条线段围成的图形叫四边形。
(2)什么是平行四边形?
两组对边分别平行的四边形叫做平行四边形。
(3)什么是平行四边形的高?
从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。
(4)什么是梯形?
只有一组对边平行的四边形叫做梯形。
(5)什么是梯形的底?
在梯形里互相平行的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。
(6)什么是梯形的腰?
在梯形里,不平行的一组对边叫梯形的腰。
(7)什么是梯形的高?
从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
(8)什么是等腰梯形?
两腰相等的梯形叫做等腰梯形。
11、 什么是自然数?
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。
12、 什么是四舍五入法?
求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。
这种求近似数的方法,叫做四舍五入法。
13、 加法意义和运算定律
(1)什么是加法?
把两个数合并成一个数的运算叫加法。
(2)什么是加数?
相加的两个数叫加数。
(3)什么是和?
加数相加的结果叫和。
(4)什么是加法交换律?
两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。
14、 什么是减法?
已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。
15、 什么是被减数?
什么是减数?什么叫差?在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。
16、 加法各部分之间的关系:
和=加数+加数,加数=和-另一加数
17、 减法各部分之间的关系:
差=被减数-减数,减数=被减数-差,被减数=减数+差
18、 乘法:
(1)什么是乘法?
求几个相同加数的和的简便运算叫乘法。
(2)什么是因数?
相乘的两个数叫因数。
(3)什么是积?
因数相乘所得的数叫积。
(4)什么是乘法交换律?
两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。
(5)什么是乘法结合律?
三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。
19、 除法:
(1)什么是除法?
已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。
(2)什么是被除数?
在除法中,已知的积叫被除数。
(3)什么是除数?
在除法中已知的一个因数叫除数。
(4)什么是商?
在除法中求出的未知因数叫商。
20、 乘法各部分之间的关系:
积=因数×因数,一个因数=积÷另一个因数。
21、(1)除法各部分之间的关系:
商=被除数÷除数,除数=被除数÷商,被除数=商×除数。
(2)有余数的除法各部分之间的关系:
被除数=商×除数+余数。
22、 什么是名数?
通常量得的数和单位名称合起来的数叫名数。
23、 什么是单名数?
只带有一个单位名称的数叫单名数。
24、 什么是复名数?
有两个或两个以上单位名称的数叫复名数。
25、 什么是小数?
仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。
26、 什么是小数的基本性质?
小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。
27、 什么是而有限小数?
小数部分的位数是有限的小数叫有限小数。
28、 什么是无限小数?
小数部分的位数是无限的小数叫无限小数。
29、 什么是循环节?
一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。
30、 什么是纯循环小数?
循环节从小数第一位开始的叫纯循环小数。
31、 什么是混循环小数?
循环节不是从小数部分第一位开始的叫做混循环小数。
32、 什么是四则运算?
我们把学过的加、减、乘、除四种运算统称四则运算。
33、 什么是方程?
含有未知数的等式叫方程。
34、 什么是解方程?
求方程解的过程叫解方程。
35、 什么是倍数?什么叫约数?
如果a能被b整除,a就是b的倍数。b就叫a的约数(或a的因数)。
36、 什么样的数能被2整除?
个位上是0、2、4、6、8的数都能被2整除。
37、 什么是偶数?
能被2整除的数叫偶数。
38、 什么是奇数?
不能被2整除的数叫奇数。
39、 什么样的数能被5整除?
个位上是“0”或是“5”的数能被5整除。
40、 什么样的数能被3整除?
一个数的各位上的和能被3整除,这个数就能被3整除。
41、 什么是质数(或素数)?
一个数如果只有1和它本身两个约数,这样的数叫质数。
42、 什么是合数?
一个数除了1和它本身还有别的约数,这样的数叫合数。
43、 什么是质因数?
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。
44、 什么是分解质因数?
把一个合数用质因数相乘的形式表示出来叫做分解质因数。
45、 什么是公约数?
什么叫最大公约数?几个数公有的约数叫公约数,其中最大的一个叫最大公约数。
46、 什么是互质数?
公约数只有1的两个数叫互质数。
47、 什么是公倍数?
什么叫最小公倍数?几个数公有的倍数叫这几个数的公倍数,其中最小的一个叫这几个数的最小公倍数。
48、 分数:
(1)什么是分数?
把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。
(2)什么是分数线?
在分数里中间的横线叫分数线。
(3)什么是分母?
分数线下面的部分叫分母。
(4)什么是分子?
分数线上面的部分叫分子。
(5)什么是分数单位?
把单位“1”平均分成若干份,表示其中的一份叫分数单位。
49、 怎么比较分数大小?
(1)分母相同两个分数,
分子大的分数比较大。
(2)分子相同的两个分数,
分母小的分数较大。
(3)什么是真分数?
分子比分母小的分数叫真分数。
(4)什么是假分数?
分子比分母大或者分子和分母相等的分数叫假分数。
(5)什么是带分数?
由整数和真分数合成的数通常叫带分数。
(6)什么是分数的基本性质?
分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。
(7)什么是约分?
把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。
(8)什么是最简分数?
分子、分母是互质数的分数叫最简分数。
50、 比:
(1)什么是比?
两个数相除又叫两个数的比。
(2)什么是比的前项?
比号前面的数叫比的前项。
(3)什么是比的后项?
比号后面的数叫比的后项。
(4)什么是比值?
比的前项除以后项所得的商叫比值。
(5)什么是比的基本性质?
比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。
51、 长方体和正方体:
(1)什么是棱?
两个面相交的边叫棱。
(2)什么是顶点?
三条棱相交的点叫顶点。
(3)什么是长方体的长、宽、高?
相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。
(4)什么是正方体(立方体)?
长宽高都相等的长方体叫正方体(立方体)。
(5)什么是长方体的表面积?
长方体六个面的总面积叫长方体的表面积。
(6)什么是物体的体积?
物体所占空间的大小叫做物体的体积。
52、 圆
(1)什么是圆心?
圆中心的点叫圆心。
(2)什么是半径?
连接圆心和圆上任意一点的线段叫半径。
(3)什么是直径?
通过圆心,并且两端都在圆上的线段叫直径。
(4)什么是圆的周长?
围成圆的曲线叫圆的周长。
(5)什么是圆周率?
我们把圆的周长和直径的比值叫圆周率。
(6)什么是圆的面积?
圆所围平面的大小叫圆的面积。
(7)什么是弧?
在圆上两点之间的部分叫弧。
(8)什么是扇形?
一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。
(9)什么是圆心角?
顶点在圆心上的角叫圆心角。
(10)什么是对称图形?
如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。
53、 什么是百分数?
表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。
54、 比例:
(1)什么是比例?
表示两个比相等的式子叫比例。
(2)什么是比例的项?
组成比例的四个数叫比例的项。
(3)什么是比例外项?
两端的两项叫比例外项。
(4)什么是比例内项?
中间的两项叫比例内项。
(5)什么是比例的基本性质?
在比例中两个外项的积等于两个内项的积。
(6)什么是解比例?
求比例中的未知项叫解比例。
(7)什么是正比例关系?
两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。
(8)什么是反比例关系?
两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反比例关系。
55、 圆柱:
(1)什么是圆柱底面?
圆柱的上下两个面叫圆柱的底面。
(2)什么是圆柱的侧面?
圆柱的曲面叫圆柱的侧面。
(3)什么是圆柱的高?
圆柱两个底面的距离叫圆柱的高。
三、 小学数学量的计算单位及进率归类
(1)长度计量单位及进率:千米(公里)、米、分米、厘米、毫米
1千米=1公里,
1千米=1000米,
1米=10分米,
1分米=10厘米,
1厘米=10毫米
(2)面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷,
1平方千米=1000000平方米
1公顷=10000平方米,
1平方米=100平方分米,
1平方分米=100平方厘米
(3)体积容积计量单位及进率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米,
1立方分米=1000立方厘米,
1升=1000毫升
1立方分米=1升,
1立方厘米=1毫升
(4)质量单位及进率:吨、千克、公斤、克
1吨=1000千克,
1千克=1公斤,
1千克=1000克
(5)时间单位及进率:世纪、年、月、日、小时、分、秒
1世纪=100年,
1年=12个月
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天),
1天=24小时,
1小时=60分,
1分=60秒
四、 常用计算公式表
(1)长方形面积=长×宽,计算公式:S=a×b
(2)正方形面积=边长×边长,计算公式:S=a×a
(3)长方形周长=(长+宽)×2,计算公式:C=(a+b)×2
(4)正方形周长=边长×4,计算公式:C=4a
(5)平行四边形面积=底×高,计算公式:S=ah
(6)三角形面积=底×高÷2,计算公式:S=a×h÷2
(7)梯形面积=(上底+下底)×高÷2,计算公式:S=(a+b)×h÷2
(8)长方体体积=长×宽×高,计算公式:V=abh
(9)圆的面积=圆周率×半径平方,计算公式:S=πr2
(10)正方体体积=棱长×棱长×棱长,计算公式:V=a3
(11)长方体和正方体的体积都可以写成:底面积×高,计算公式:V=sh
(12)圆柱的体积=底面积×高,计算公式:V=sh
(13)圆锥的体积=底面积×高÷3,计算公式:V=s×h÷3
等底等高的圆柱体积是圆锥体积的3倍。
❷ 六年级下册数学重点
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率×工作时间=工作总量。 工作总量÷工作效率=工作时间。工作总量÷工作时间
=工作效率 6、单产量×数量=总产量 总产量÷数量=单产量 总产量÷单产量=数量 7、收入×税率=应纳税额 。利息÷本金×100%=利率。利息=本金×利率×时间。利息税=利
息×5% 。税后利息=本金×利率×时间×(1-5%) . 8、加数+加数=和 和-一个加数=另一个加数
9、被减数-减数=差 被减数-差=减数 差+减数=被减数 10、因数×因数=积 积÷一个因数=另一个因数
11、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
总数÷总份数=平均数 12、浓度问题
溶质的重量+溶剂的重量=溶液的重量 。溶质的重量÷溶液的重量×100%=浓度 。 溶液的重量×浓度=溶质的重量 。 溶质的重量÷浓度=溶液的重量 13、利润问题
利润=售出价-成本 。利润率=利润÷成本×100%
14、分数百分数问题:关键是找标准量,即单位一。若单位“1”已知,用乘法计算;若单位
一未知,用除法计算。
1)简单的分数、百分数应用题:单位“1”×分率=比较量 比较量÷分率=单位“1” 2)求甲比乙多(或少)几分之几(百分之几)的解题规律:(甲-乙)÷乙 3)已知甲比乙多(或少)几分之几(百分之几),求甲的解题规律:乙×(1±几分之几) 4)已知甲比乙多(或少)几分之几(百分之几),求乙的解题规律:甲÷(1±几分之几)
小学数学图形计算公式
1、正方形 (C:周长 S:面积 a:边长 )
周长=边长×4 C=4a 面积=边长×边长 S=a×a 2、正方体 (V:体积 a:棱长 )
表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S:面积 a:边长 )
周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)
(1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh
5、三角形 (s:面积 a:底 h:高)
面积=底×高÷2 s=ah÷2
三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6、平行四边形 (s:面积 a:底 h:高)
面积=底×高 s=ah
7、梯形 (s:面积 a:上底 b:下底 h:高)
面积=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圆形 (S:面积 C:周长 d=直径 r=半径 圆周率: )
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л S=л
8、圆形 (S:面积 C:周长 d=直径 r=半径 圆周率: )
(1)周长=直径×л=2×л×半径 C=лd=2лr
(2)面积=半径×半径×л S=лr2
9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)
(1)侧面积=底面周长×高=ch(2лrh或лdh) (2)表面积=侧面积+底面积×2
S=ch+(c÷л÷2)2×2,S=2лrh+лr2×2
S=лdh + л)(2d2 ×2 (3)体积=底面积×高 V=sh(лr2h或者л)(2d2h)
10、圆锥体(v:体积 h:高 s:底面积 r:底面半径)
体积=底面积×高÷3 V=sh÷3(лr2h÷3 л)(2d2h÷3)
常用单位换算
长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算
1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算
1元=10角 1角=10分 1元=100分 时间单位换算
1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒
❸ 小学1到6年级数学知识重点
(一)、数和数的运算(20课时)
这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。
1、系统地整理有关数的内容,建立概念体系,加强概念的理解(4课时),包括“数的意义”、“数的读法与写法”、“数的改写”、“数的大小比较”、“数的整除”等知识点。
2、沟通内容间的联系,促进整体感知(2课时),包括“分数、小数的性质”、“整除的概念比较”。
3、全面概念四则运算和计算方法,提高计算水平(6课时),包括“四则运算的意义和法则”、“四则混合运算”。
4、利用运算定律,掌握简便运算,提高计算效率(5课时),包括“运算定律和简便运算”。
5、精心设计练习,提高综合计算能力(3课时)。
(二)、代数的初步知识(10课时)
本节重点内容应放在掌握简易方程及比和比例的辨析。
1、形成系统知识、加强联系(3课时),包括“字母表示数”、“比和比例”、“正、反比例”等知识点。
2、抓解题训练,提高解方程和解比例的能力(4课时),包括“简易方程”、“解比例”。
3、 辨析概念,加深理解(3课时),包括“比和比例”、“正比例和反比例”。
(三)、应用题(30课时)
这节重点应放在应用题的分析和解题技能的发展上,难点内容是分数应用题。
1、简单应用题的分析与整理(3课时)。
2、复合应用题的分析与整理(6课时)。
3、列方程解应用题的分析与整理(5课时)。
4、分数应用题的分析与整理(10课时)。
5、用比例知识解答应用题的分析与整理(3课时)。
6、应用题的综合训练(3课时)。
(四)、量的计量
本节重点放在名数的改写和实际观念上。
1、整理量的计量知识结构(2课时),包括“长度、面积、体积单位”、“重量与时间单位”。
2、巩固计量单位,强化实际观念(4课时),包括“名数的改写”。
3、综合训练与应用(1课时)。
(五)、几何初步知识(12课时)
本节重点放在对特征的辨析和对公式的应用上。
1、强化概念理解和系统化(2课时),包括“平面图形的特征”、“立体图形的特征”。
2、准确把握图形特征,加强对比分析,揭示知识间的联系与区别(4课时),包括“平面图形的周长与面积”、“立体图形的表面积和体积”。
3、加强对公式的应用,提高掌握计算方法(5课时)。能实现周长、面积、体积的正确计算。
4、整体感知、实际应用(1课时)。
(六)、简单的统计(6课时)
本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
1、求平均数的方法(1课时)。
2、加深统计图表的特点和作用的认识(3课时),包括“统计表”、“统计图”。
3、进一步对图表分析和回答问题(2课时),包括填图和根据图表回答问题。
五、复习中应注意的问题
1、对于小学数学毕业总复习内容、过程和时间的计划安排,在实际教学中要根据实际情况作出调整。
2、要注意小学数学知识与中学知识结构上的衔接,要为中学的学习做些铺垫,适当拓展知识点。
3、要把握考纲要求,根据实际需要对计划的复习内容、过程和时间上做出调整。既要全面学到知识,又要掌握复习知识的深浅程度。
北师:
小学数学四年级前四个单元知识点总结
1、路程速度时间公式:s=vt v=s÷t t=s÷v
2、正方形周长公式:C=4a
3、正方形面积公式:S=a2
4、长方形周长公式:C=2(a+b)
5、长方形面积公式:S=ab
6、加法交换律:a+b=b+a
7、加法结合律:a+b+c=a+(b+c)
8、乘法交换律:a·b=b·a
9、乘法结合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分类,从小到大是:锐角、直角、钝角、平角、周角
12、锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。
13、三角形按角分类:锐角三角形,直角三角形,钝角三角形
14、三个角都是锐角是锐角的三角形叫锐角三角形;有一个角是直角的三角形叫直角三角形;有一个角是钝角的三角形叫钝角三角形。
15、三角形按边分类有:不等边三角形,等腰三角形,等边三角形
16、从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
17、小数的计数单位是十分之一,百分之一,千分之一--------记作0.1,0.01,0.001-----
18、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有稳定性
22、三角形任意两边之和大于第三边
23、三角形的内角和是180度
24、学会画角
25、会比较小数的大小
26、单位换算
长度单位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
质量单位:1千克=1000克 1吨=1000千克=1000000克
钱的换算:1元=10角=100分 1角=10分
时间单位:1时=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小时
一三五七八十腊,三十一天永不差。四六九十一三十,平年二月二十八,闰年二月二十九。
面积单位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公顷=10000平方米 1平方千米=100公顷=1000000平方米
周长公式:长方形周长=(长+宽)×2 C=2(a+b)
正方形周长=边长×4 C=4a
圆的周长=圆周率×直径 C=πd C =2πr
半圆的周长=圆周长的一半+直径 πr+d
面积公式:长方形面积=长×宽 S=ab
正方形面积=边长×边长 S=a2
平行四边形面积=底×高 S=ah
三角形面积=底×高÷2 S=ah÷2
梯形面积=(上底+下底)×高÷2 S=(a+b)h÷2
圆的面积=圆周率×半径的平方 S=πr2
圆柱的侧面积=底面周长×高 S=Ch
表面积公式:长方体表面积=(长×宽+长×高+宽×高)×2
S=(ab+ah+bh)×2
正方体表面积=边长×边长×6 S=6a2
圆柱体侧面积=底面周长×高 S=C h
圆柱体表面积=侧面积+底面积×2 S=S侧+2 S底
体积公式:长方体体积=长×宽×高 V=abh
正方体体积=棱长×棱长×棱长 V=a3
圆柱体体积=底面积×高 V=Sh
(将近似长方体平放得到:圆柱体体积=侧面积的一半×半径 V=Ch÷2×r=2πr÷2×r=πr×r)
圆锥体体积=底面积×高÷3 V=Sh÷3或1/3Sh
1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
小学数学几何形体周长 面积 体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
1、 每份数×份数=总数 总数÷每份数=份数总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
长度单位换算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面积单位换算
1平方千米=100公顷
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
体(容)积单位换算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量单位换算
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
小学数学几何形体周长 面积 体积计算公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径
❹ 六年级 数学重点
一、常识填空(共9分)
1、回忆你学过的古诗,选出能表现下列季节特点的句子各一句。(4分)
春:
夏:
秋:
冬:
2、目前,中国正在为举办( )年的夏季奥运会而积极努力。中国体育健儿在奥运会上勇于拼搏,硕果累累。你能写出四位中国奥运会冠军和他(她)从事的项目吗?(4分)
3、在日常生活中,难免遇到一些紧急情况。这时,我们通过拨打电话、向有关部门求助,所以我们应记住一些紧急求助的电话号码。其中火警,治安报警,交通事故,医疗急救的电话号码排序正确的是( )(1分)
A、119 122 110 120 B、122 110 120 119
C、119 ll0 122 120 D、119 110 120 122
二、基础知识。(29份)
1、按照汉语拼音字母表顺序,先将下列字母重新排列,再写出相应的大写字母。(3分)
e q I d r j l n
大写字母:
小写字母:
2、看拼音,在方格里写字,要注意把字写规范、匀称。(6分)
3、在括号里填上恰当的动词,不能重复。(3分)
(1)( )一趟 (2)( )一遍 (3)( )一把
(4)( )一眼 (5)( )一句 (6)( )一遭
4、先补充成语,再按要求分类。(10分)
神机( )算 自私自( ) 斗志( )扬
阴( )诡计 滔滔不( ) ( )头丧气
舍( )为人 口若( )河
(1)将上述成语按褒义和贬义分类。
①褒义词:
②贬义词:
(2)从上述成语中找出两对近义词写在下面。
( )——( ) ( )——( )
(3)从上述成语中找出两对反义词写在下面
( )——( ) ( )——( )
5、按要求写句子。(7分)
(1)写一个表现母爱的句子,用上“无微不至”。
(2)请以“日出” 为内容,写一个比喻句和拟人句。
比喻句:
拟人句:
6、按要求写句子(各一句)。
(1)表示学习方面的谚语:
(2)你最喜欢的一句歇后语:
(3)你最喜欢的一句名言警句:
(4)你最喜欢的一句古诗:
7、在括号里填上合适的字,从左到右组成四个词。(5分)
三、语言实践。(共10分)
1、相传蜀汉大将关羽写过《戒子书》,书中有这样一句话:“读书好,好读书,读好书。”想一想这句话中的三个分句各表达了什么意思。(3分)
(l)“读书好”的意思:
(2)“好读书”的意思:
(3)“读好书”的意思:
2、有些句子由于离开了一定的语言环境,或停顿的地方不同,可以表示不同的意思,请你写出下面这句话的三种不同意思。(3分)
A:
我扶你走吧。B:
C:
3、如果你或者朋友违约了,你会怎样向朋友说?或者听到朋友的解释你会怎么说?设计一段你和朋友针对“违约了”的对话,对话不少于五次。(4分)
四、阅读。(16分)
阅读短文完成下列各题。
探 望
我们班里的男同学很封建,一向认为“男女奶别”,老不愿意搭理我们女生,连那几个男同学干部见了我们也常常避得老远。我常想找个机会让我们的思想来个chè dǐ( )的转变。||
机会终于来了,有位“封建”的小队长生病了。这回我可要去破破他的规矩。
那天下午,我收拾起书包、拔腿就向医院跑去。可到病房前线我yóu yù( )了,一个女同学去探望男同学,真有些不好意呀!但是“要下决心改变男同学的思想”这个念头使我zēng tiān( )了力量,我迈上一大步,推开了房门。
他的神情真使我好笑:只见他抬起头看见了我,嘴巴张得老大老大的,眼睛瞪得滚圆滚圆的。我笑着上前,说:“怎么?为欢迎我来吗?”他半晌才醒悟过来,低着脑袋,像蚊子叫似的低声说:“啊,欢迎欢迎,请坐请坐。”
我笑着问了他的病情,告诉他学校里的一些情况,谈得还挺投机呢。最后对他说:“你一定感到奇怪,我怎么会来看你呢?我就是想破破你们不理女同学的规矩,今天我们的谈话不是很好吗?”
他摸了摸脑袋瓜,不好意思地笑了。||
第二天,老师用激动的语气向大家讲述了这件事,末了说:“沈敏这件事做得真有意义,你们说对不对?”
同学们的眼光向我射来,这眼光不再包含着嘲笑、惊异,而是包含着赞赏和钦佩。||
1、在文中拼音后面的括号里写上词语。(3分)
2、写出加点字(词)的同义字:(2.5分)
搭理( ) 半晌( ) 挺( ) 末了( ) 包含( )
3、按分好的段落,写出段落大意。(3分)
4、文中画“ ”的句子,在全文中的作用是 。(l分)
5、联系上下文体会表现“封建”小队长神情语句的含义。(2分)
(l)只见他抬头看见了我,嘴巴张得老大老大的,眼睛瞪得滚圆滚圆的。
(2)他半晌才醒悟过来,低着脑袋,像蚊子叫似的低声说:“啊,欢迎欢迎,请坐请坐。”
6、改变句子:
(1)今天我们的谈话不是很好吗?(不带问号的句子)。(2分)
(2)沈敏这件事做得真有意义。(有问句的句子)。(2分)
7、这篇文章主要写了 事,反映了 。(2.5分)
五、写作(共30分)
1、在原文中修改下面一段话中的错误。(5分)
一个冬天的傍晚,大雪刚停,孙康站在门口,觉得雪地亮堂堂的。他想,雪地里这样亮,也许可能看清书上的字呢?他拿出一本书,映着雪一看,居然看得清。他故不得天冷,就蹲在雪地上看起书来。
2、以《如果我有钱了》为题,联系生活实际或展开想象写一篇文章,体裁不限。
小学六年级毕业考试英语试题
一. 按字母表中的顺序写出24个小写字母.
a___________________________________z
二. 按顺序写出所缺的大小写字母。
f____ h o____ q k____ M V____ X
六年级数学试卷
一、 填空题
1、206510000用“万”作单位是( ),四舍五入到“亿”位是( )。
2、能同时被15和18整除的最小的数是( ),这个数称为这两个数的( )。
3、等底等高的三角形和平行四边形,三角形的面积为25平方米,则平行四边形的面积是( )。
4、甲数是乙数的25%,乙数是甲数的( )。
5、用三个“0”和三个“6”组成最大的六位数是( ),读作( ),
只读一个零的数是( )和( )。
6、一个分数,分子比分母少18,约分后是 ,原来这个分数是( )。
7、2008年第一季度共( )天,2100年共( )天。
8、0.875=( ):40= =21÷( )=( )%
9、三个连续偶数,中间这个数是m,则相邻两个数分别是( )和( )。
10、在一个比例中两个内项互为倒数,其中一个外项是最小质数,另一个外项是( )。
11、a×3=b× ,则a:b=( ):( ),如果4x=y,那么x和y成( )关系。
12、 , 33.3%, 0. , ,用“>”连接为( )。
二、判断题。
1、互质的两个数可以都不是质数。 ( )
2、两个数的最大约数一定小于其中的任何一个数。 ( )
3、a能被b整除,那么a是倍数,b是约数。 ( )
4、一件商品先升价20%,再降价20%,售价不变。 ( )
5、小于180o的角叫钝角.。 ( )
6、假分数大于1。 ( )
7、甲比乙多 ,则乙比甲少 。 ( )
8、圆的半径是直径的一半。 ( )
9、轴对称图形就是沿任一直线对折,两部分都能重合。 ( )
三、选择题
1、一个分数分子扩大6倍,分母( ),分数值会缩小 。
A、扩大8倍 B、缩小8倍 C、缩小 D、扩大
2、把50分解质因数可以写成( )
A、50=1×2×5×5 B、2×5×5=50 C、50=2×5×5 D、50=2×25
3、一个直径为48cm的齿轮带动一个直径为26cm的齿轮(相互咬合),如果大齿轮转12圈,则小齿轮转( )圈。
A、24 B、16 C、12 D、9、
4、分母是9的最简分数有( )个。
A、8 B、6 C、9
5、7.56÷0.85的商的最高位是( ).
A、个位 B、十倍 C、十分位 D、百分位
四、计算题
1、直接写得数
0.5÷0.01= 42×10%= 2.9+7.1=
0÷1 = × + = 1-0.025÷ =
1- -0.25= 1001×99-99= 1.25×1.5×8=
2、脱式计算,能简算的要简算。
×〔 ÷( - )〕 3 ×3 +3.4×6.625
1 ×7.3×5 +1 ×7.3×2 ( + )÷
2005× 2004 ÷4
3、求未知数x
= (4-x)×2=8
0.4x+3×0.4=30× : = :
4、列式计算
<1>120的 增加5比120的 多多少?
<2>一个数的 比最大的两位数小1,这个数是多少?
五、看统计表解答下面问题,下表是某校2007年各年级学生人数统计表。
年级 一年级 二年级 三年级 四年级 五年级 六年级
人数 200 205 245 160 174 178
<1>制作条形统计图
<2>五年级的人数占全校总人数的百分之几?
<3>人数最多的年级比人数最小的年级多百分之几?
<4>全校年级的平均数是多少?
<5>看图求∠1,∠2的度数。
1、一个圆和一个扇形的半径相等,已知圆的面积是30平方厘米,扇形的圆心角是36o。求扇形的面积。
2、一项工程,甲先做2天,乙再做3天,完成全工程的 ,甲再做3天,完成余下工程的 ,最后再由乙做,乙完成这件工作还需要几天?
3、某车队运送一批救灾物资,原计划每小时行40千米,7.5小时到达灾区。实际每小时多行10千米,这样到达灾区用了多少小时?
4、用铁皮制一个无盖的圆柱形水箱,底面直径是20厘米,高是24厘米,做这个水箱至少需要多少平方分米的铁皮?这个水箱的容积是多少升?
❺ 一到六年级数学重点知识有那些
一年级数学重点是20以的加减法,二年级数学重点急两位数的加减法,三回年级数学重点是答一位数乘法和除法,四年级重点是亿以内的读法和写法等等,五年级的数学重点小数的乘除法简易方程,图形转换,统计与概率。六年级数学重点数与计算,比和比例,几何的初步知识,统计的初步知识,实践活动。
❻ 六年级下册数学必考重点有哪些
一、负数
1、在熟悉的生活情境中初步认识负数,能正确的读.写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数.0和负数之间的大小。
二、圆柱和圆锥
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面.侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积.表面积的计算方法,以及圆柱.圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察,设计和制作圆柱,圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、比例
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育
四、统计
1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
五、数学广角
1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2、通过“抽屉原理”的灵活应用感受数学的魅力。
❼ 小学六年级数学毕业考必考的知识点是什么
小学数学总复习资料
【常用的数量关系】
1、每份数×份数=总数; 总数÷每份数=份数 ; 总数÷份数=每份数
2、1倍数×倍数=几倍数; 几倍数÷1倍数=倍数; 几倍数÷倍数=1倍数
3、速度×时间=路程 ; 路程÷速度=时间 ; 路程÷时间=速度
4、单价×数量=总价; 总价÷单价=数量 ; 总价÷数量=单价
5、工作效率×工作时间=工作总量; 工作总量÷工作效率=工作时间;
工作总量÷工作时间=工作效率;
6、加数+加数=和; 和-一个加数=另一个加数
7、被减数-减数=差; 被减数-差=减数; 差+减数=被减数
8、因数×因数=积; 积÷一个因数=另一个因数
9、被除数÷除数=商 ; 被除数÷商=除数; 商×除数=被除数
【小学数学图形计算公式】
1、正方形(C:周长, S:面积, a:边长)
周长=边长×4; C=4a
面积=边长×边长; S=a×a
2、正方体(V:体积, a:棱长)
表面积=棱长×棱长×6; S表=a×a×6
体积=棱长×棱长×棱长; V= a×a×a
3、长方形(C:周长, S:面积, a:边长, b:宽 )
周长=(长+宽)×2; C=2(a+b)
面积=长×宽 ; S=a×b
4、长方体(V:体积, S:面积, a:长, b:宽, h:高)
(1)表面积=(长×宽+长×高+宽×高)×2; S=2(ab+ah+bh)
(2)体积=长×宽×高; V=abh
5、三角形(S:面积, a:底, h:高)
面积=底×高÷2 ; S=ah÷2
三角形的高=面积×2÷底 三角形的底=面积×2÷高
6、平行四边形(S:面积, a:底, h:高)
面积=底×高; S=ah
7、梯形(S:面积, a:上底, b:下底, h:高)
面积=(上底+下底)×高÷2; S=(a+b)×h÷2
8、圆形(S:面积, C:周长,π:圆周率, d:直径, r:半径 )
(1)周长=π×直径π=2×π×半径; C=πd=2πr
(2)面积=π×半径×半径; S= πr2
9、圆柱体(V:体积, S:底面积, C:底面周长, h:高, r:底面半径 )
(1)侧面积=底面周长×高=Ch=πdh=2πrh
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
10、圆锥体(V:体积, S:底面积, h:高, r:底面半径 )
体积=底面积×高÷3
11、总数÷总份数=平均数
12、和差问题的公式:已知两数的和及它们的差,求这两个数各是多少的应用题,叫做和差应用题,简称和差问题。
(和+差)÷2=大数; (和-差)÷2=小数
13、和倍问题的公式:已知两个数的和与两个数的倍数关系,求两个数各是多少的应用题,我们通常叫做和倍问题。
和÷(倍数-1)= 小数; 小数×倍数=大数(或者:和-小数=大数)
14、差倍问题的公式:差倍问题即已知两数之差和两数之间的倍数关系,求出两数。
差÷(倍数-1)= 小数; 小数×倍数=大数(或者:小数+差=大数)
15、相遇问题: 相遇路程=速度和×相遇时间;
相遇时间=相遇路程速度和;
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量; 溶液的重量×浓度=溶质的重量;
溶质的重量÷溶液的重量×100%=浓度; 溶质的重量÷浓度=溶液的重量
17、利润与折扣问题: 利润=售出价-成本; 利润率=利润÷成本×100%;
利息=本金×利率×时间; 涨跌金额=本金×涨跌百分比;
税后利息=本金×利率×时间×(1-利息税)
【常用单位换算】
(一)长度单位换算
1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米
(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;
1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米
(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;
1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升
(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤
(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分
(六)时间单位换算: 1世纪=100年; 1年=12月;
【大月(31天)有:1、3、5、7、8、10、12月】; 【小月(30天)有:4、6、9、11月】
【平年:2月有28天;全年有365天】; 【闰年:2月有29天;全年有366天】
1日=24小时; 1时=60分=3600秒; 1分=60秒;