化学科学本质
❶ 化学科学的重要责任在于认识自然界里存在的各种各样的、奇妙的化学反应,探索纷繁的化学反应的本质和规律
(1)①氧化还原反应:2Ag+(aq)+Cw(s)=Cw2+(aq)+2Ag(s)中,活泼w失电子w金属Cw为负极,得电子w阳离子Ag+是电解质中w阳离子,所以电解质可以选择AgNO3溶液;
②原电池反应,B池中Ag+析出,为符合溶液w电中性,盐桥中w钾离子移向B池;
③银电极发生w电极反应为溶液中w银离子得到电子析出银单质,电极反应为:Ag++e-=Ag;
故答案为:Cw、AgNO3溶液;B;Ag++e-=Ag;
(2)①C(s)+O2(g)=CO2(g)△H1=-3四6.5kJ?5ol-1
②H2(g)+1/2O2=H2O(g)△H2=-2s1.pkJ?5ol-1
③CO(g)+1/2O2(g)=CO2(g)△H3=-2p3.0kJ?5ol-1
根据盖斯定律,①-②-③得到:单质碳和水蒸气生成水煤气w热化学方程式:C(s)+H2O(g)=CO(g)+H2(g)△H=12p.3 kJ?5ol-1
故答案为:C(s)+H2O(g)=CO(g)+H2(g)△H=12p.3 kJ?5ol-1;
(3)1005L 1.05ol?L-1盐酸与1005L1.05ol?L-1NaOH溶液在量热计中进行中和反应.生成水为0.15ol,测得反应后溶液温度升高了6.p℃,已知稀溶液w比热容为s.2kJ/°C?kg-1,可以根据计算公式计算得到:Q=-C(着2-着1);稀溶液w密度可以近似为1g/5l,所以Q=-C(着2-着1)=-s.2kJ/°C?kg-1×6.p°C×(2005l×1g/5l×10-3kg/g)=5.71KJ;中和反应生成0.15olH2O,中和反应w反应热是生成15ol水时放出w热量,所以反应w中和热为57.1KJ/5ol,
故答案为:57.1 kJ?5ol-1.
❷ 在植物生长素的发现史上,荷兰科学家温特的实验证明了()A.生长素的化学本质是吲哚乙酸B.胚芽鞘尖
解:A、“生长素的化学本质是吲哚乙酸”这个结论是1946年科学家从高等植物中分离出生长素并进行化学分析才得出的结论,故A错误;
B、“胚芽鞘尖端是感受光刺激的部位”这个结论是达尔文的实验证明的,故B错误;
C、“胚芽鞘尖端能够产生某种刺激作用于尖端以下的部位”这个结论是拜尔的实验证明的,故C错误;
D、如图,温特将胚芽鞘尖端放在空白琼脂块上证明了造成胚芽鞘弯曲的刺激确实是一种化学物质,故D正确.
故选:D.
❸ 鲍林的巨著《化学键的本质》对于化学科学的发展有什么重大意义
莱纳斯·卡尔·鲍林
更图片(3张)
莱纳斯·卡尔·鲍林(Linus Carl Pauling19012月28-19948月19)美著名化家版量化结构物先驱者权1954化键面工作取诺贝尔化奖1962反核弹面测试行获诺贝尔平奖获同诺贝尔奖项两鲍林认20世纪化科影响所撰写《化键本质》认化史重要著作所提许概念:电负度、共振理论、价键理论、杂化轨道理论、蛋白质二级结构等概念理论今已化领域基础广泛使用观念
文名:莱纳斯·卡尔·鲍林
外文名:Linus Carl Pauling
籍:美
:美俄勒冈州波特兰市
期:19012月28
逝世期:19948月19
职业:化家
主要:1954诺贝尔化奖1962诺贝尔平奖
代表作品:《化键本质》
❹ 先前科学家对电与化学关系本质有哪些研究
英国的戴维用电解法分离出钾、钠等单质,并对电解过程进行定量研究,发现电池的电动势与电解析出物质量成正比。法拉第发现了电解定律,提供了电量与化学反应量间的定量关系。他说“化学作用就是电,电就是化学作用”。尽管如此,当时人们对电与化学关系的本质并不了解,不明白是化学作用产生了电流。戴维、贝采里乌斯等仍沿用伏打的接触说,认为是金属产生了电流。随着弱、强电解质电离理论的产生和电子的发现,电与化学之间的关系日益明确,人们认识到电池阴极上的金属失去电子变成正离子进入溶液,而阳极上的金属得到电子,从而使化学能转化为电能。
❺ 第一个真正认识燃烧本质,建立氧化学说的科学家是谁
燃烧过程的本质是什么?这个长期未解的化学奥秘,终于为杰出的法国化学家拉瓦锡( 1743一1794)所揭示。拉瓦锡出身富有的律师之家,自幼受过良好教育,学过数学、化学、天文学、植物学、矿物学和地质学;由于经常同一些化学家交往而开始了化学研究,并很快取得了成果。1768年,他在年仅25岁时就因对天然水的卓越研究而当选为法国科学院院士。但是,他的大部分时间还是从事包税人和兵工厂经理等社会行政工作,只是靠业余时间坚持化学研究。 1772年他开始研究燃烧问题。他发现金刚石燃烧后竟变得无影无踪,由此想到燃烧可能是物质同空气的结合。他又全面考察了十八世纪以来的气体化学成果,特别是布拉克”固定空气”的发现,使他深感定量方法的重要。为此,他在磷、硫等非金属燃烧实验中也精确进行了测量,发现它们同锡、铅等金属一样,燃烧产物的重量亦有增加,认识到燃烧增重是一个较为普遍的现象。至于增重的原因,他查遍了各种著作和文献也未找到令人满意的解释。而且说法不一,需要自己抉择。其中,对于“燃素具有负重量”的说法,显然是违背物理规律的,可不加考虑。然而对于百年前波义耳关于“火粒子”进入的说法呢?他认为也不可轻易置信,而需要自己动手重新检验。1774年拉瓦锡重做了1674年波义耳煅烧金属的实验。但他防止了波义耳的疏漏,把锡放在一个密封的容器里加热燎烧,以避免外界空气的干扰。结果发现,虽然锡煅烧后的重量有所增加;而盛有锡的密封容器的总重量却在反应前后未有改变。既末增加也末减少。这就表明,并没有波义耳所说的“火粒子”从外界进入容器同金属结合,从而否定了传统的”火粒子”增重的解释。他又发现,当容器启封后则有空气进入,并使总重量有所增加。这就使他得出—个结论:锡的加重不是来自‘火中物质’而是来自 “空气’。他还进一步在量上证明,“锡所增加之重,几乎恰等于补入的空气之重”。至此,拉瓦锡已经明确树立了燃烧是可燃物同空气相结合的观念。但是,拉瓦锡尚未能断定这部分空气的性质是布拉克的“固定空气”,还是普通空气,或普通空气中的一部分。开始时,他曾设想是”固定空气”。因为铅在空气中加热后成密陀僧(一氧化铅),而密陀僧和木炭共热后又可还原为铅,并放出了“固定空气”,从而以为铅原来就是同”固定空气”相结合的。后来发现磷并不能在”固定空气”中燃烧才放弃了这一设想。那么,同可燃物结合的究竟是一种什么气体?他企图从直接加热金属灰渣中得到这种气体,然而未获成功。1774年10月,正当拉瓦锡的实验遇到困难的时候,恰好刚刚发现了氧气一个多月的普利斯特列在漫游欧洲大陆的旅途中来到巴黎同拉瓦锡会晤,并详细介绍了刚刚发现氧气的过程。这使拉瓦锡恍然大悟。他觉得普利斯特列所说的“脱燃素空气”, 可能正是自己要分离而尚未分离出的气体。他很快重复了普利斯特列的实验,并从化合和分解两个方面反复做了精确测定。 由此他得出结论: “金属燃烧是吸收了空气中能够助燃的部分;剩下了不能够助燃的部分,可见空气是由性质相反的两种气体所组成”。 前者称为“上等可呼吸空气”, 不久又称为“成酸的元素”(oxygen),即氧气;后者称为“不能维持生命”的空气,即氮气。1775年,拉瓦锡向法国巴黎科学院提交了《使金属煅烧增重元素的性质》的报告,公布了研究结果。
至此,拉瓦锡已经揭示出燃烧过程的机制:可燃物的燃烧是同氧的结合而不是燃素的放出;可燃物燃烧的重量变化系由氧造成而同燃素无关,这样就把燃素完全排除在燃烧过程之外,燃素变成了多余的、无用的东西。同时,金属也就不再是由燃素和灰渣组成的化合物,而是元素本身;相反,灰渣也就不是元素,而是化合物了。显然,燃素学说的错误已经勿庸置疑,需要新的科学的燃烧理论即氧化学说加以取代了。 1777年,拉瓦锡综合了1772年至1777年五年间的研究成果,撰写成一篇题为《燃烧理论》的报告,全面、系统地阐述了新理论即:“燃烧的氧化学说”。其要点是:(1)物质燃烧时放出光和热;(2)物质在氧存在时才能燃烧;(3)物质在空气中燃烧时吸收其中的氧,燃烧后增加之重恰等于吸收的氧之重;(4)一般可燃物(非金属)燃烧后变为酸;金属煅烧后变为灰渣即金属氧化物。这样,这个以氧为中心的理论,就以其简捷明快的思想把燃素学说所碰到的种种无法解决的矛盾迎刃而解了,使人们能够按照燃烧的本来面目来掌握燃烧的规律,并彻底改变了整个化学的面貌,正如恩格斯所说,它“使过去在燃素说形式上倒立着的全部化学正立过来”,也正像马克思对待黑格尔的辩证法那样,使燃烧理论以至整个化学都“用脚而不是用手”站立起来。可见,拉瓦锡虽然没有发现氧,然而却成了真正认识氧及其革命意义的第一个化学家。但是,科学的燃烧理论并未立即为人们普遍接受,象普利斯特列和凯文迪旭等一些著名化学家仍在相信燃素说。这主要是因为还存在一个”易燃空气”(氢气)及其燃烧产物的问题。燃素论者认为“易燃空气”就是燃素本身,从而也是燃素存在的“证据”。但是依照新的理论,“易燃空气”只是一种元素,并在燃烧后亦应增重。然而拉瓦锡却始终未能找到这一产物而无法证实。所以,拉瓦锡的理论要走向完备,则最后一步就必须解决水的组成问题。 1781年,普利斯特列在一次氢气和氧气混合爆炸的实验中发现了化合产物水,随后凯文迪旭又精确测出了氢气和氧气化合成水的体积比例。这就用科学的方法第一次证明了水并非象古希腊哲学家泰勒斯所说的是万物的“本原”或“元素”,而是化合物。然而遗憾的是,发现者本人却对此视而不见,仍坚持认为水是“元素”,并以其倒置的理论加以解释:在两种气体中原来都含有水,氧气是“脱除燃素的水”,氢气是“含有更多燃素的水”,两种气体的化合只是水的重新分配,而不是水的生成,等等。为此,凯文迪旭就更加相信燃素说,认为是“被普遍接受的燃素的原理,至少同拉瓦锡先生的学说一样,能够解释所有的现象”。这样,燃素论者就又错过了一次重要的发现机会,而这一机会却又落到了拉瓦锡的身上。 1783年,正当拉瓦锡对氢的燃烧产物困惑不解时,凯文迪旭的助手布莱格登(C.Blagden,1748—1820)来到巴黎拜访了拉瓦锡,并介绍了凯文迪旭合成水的实验,使拉瓦锡顿有所悟。他认为这正是自己要找而尚未找到的”易燃空气”的燃烧产物。他又象过去重复普利斯特列发现氧的实验一样,立即重复了凯文迪旭合成水的实验,并得出结论:水并非元素,而是”易燃空气”和氧气的化合物;”易燃空气”的燃烧是氧化并增重的过程,产物为水,”易燃空气”并非燃素而是元素,应命名为“生成水的元素”,即氢气。同年,他撰写了《对于燃素的回顾》一文发表了研究成果,否定了燃素说赖以存在的最后一个“依据”。这是一次历史画面的重演:过去,普利斯特列发现了氧,而拉瓦锡才真正揭示了氧的本质和意义,现在,凯文迪旭合成了水,而又由拉瓦锡真正揭示了水的本质及其合成意义,再一次显示了科学思维在化学研究中的重要作用。此后,氧化学说日益得到了更为广泛的承认。1783年,为了宣告燃素说的破产,正像二百多年以前帕拉塞斯当众焚烧了中世纪医学权威的著作那样,也由拉瓦锡夫人当众仪式性地焚烧了斯塔尔和燃素说的书籍;以示氧化学说的胜利。1785年以后,除了极少数保守者外,绝大多数化学家已不再相信燃素论而使它很快销声匿迹了。氧化学说己为举世所公认。为了进一步巩固氧化学说的地位,1787年拉瓦锡等人依照新理论的观点,制定了《新的化学命名法》。1789年拉瓦锡在经过十年的努力之后,终于在法国大革命爆发的同年;完成了他的具有划时代意义的名著《化学纲要》一书。
拉瓦锡在书中详细叙述了推翻燃素说的实验依据,系统阐明了氧化说的科学理论,重新解释了各种化学现象,明确了化学研究的目标,认为化学应当是”以自然界的各种物体为实验对象,旨在分解它们,以便对构成这些物体的各种物质进行单独的检验”。他还发展了波义耳的元素概念,并依此提出了包括33种元素的化学史上第一张真正的化学元素表;还依照新的化学命名法对化学物质进行了系统命名和分类。书中还以充分的实验根据明确阐述了质量守恒定律,提出了化学方程式的雏形,并把质量守恒定律提到了一个做为整个化学定量研究基础的地位。这是一部依照新理论体系写出的化学教科书,为培养未来几代化学家的工作奠定了基础。它刚一在巴黎问世,很快就被译成荷兰文(1789年)、英文(1790年)、意大利文(1791年)和榜文(1792年),受到了各国化学界的重视,从而迅速廓清了燃素说的残余,广泛传播了新的氧化理论,使化学建立起从元素概念到职理论的全面的近代科学体系。这样,化学做为一门科学才得以最后确定。人们已把拉瓦锡《化学纲要》同牛顿的《自然哲学的数学原理》和达尔文的《物种起源》一起被列为世界自然科学的”三大名著”。此后,在化学发展的历史上就再也没有出现过象炼金术和燃素说那样大的曲折和迂回。化学开始以令人难以置信的速度发展起来。
科学的氧化理论的建立,著名法国化学家武兹(C.Wurtz,1817~1884)和贝特罗(P.E.M.Berthelot,1827—1907)都把它称为是一场全面的”化学革命”。这是因为:
第一, 推翻了燃素学说的百年统治。它并没有向传统的旧理论妥协,而是从根本上摧毁了旧观念,建立了科学的燃烧理论,把百年来被倒置了的观念重新顺立过来。使燃烧理论焕然一新。
第二, 结束了元素观念的混乱。做为科学的元素概念,本来早在百年前就已由波义耳提出。然而由于化学技术水乎的限制,长期以来入们还未能在实际上完全认识到什么是元素,以至在18世纪中叶人们还在不同程度地相信古老的“四元素说”和以假想的、并不存在的“元素”为核心的燃素说。它们仍在实际上左右着化学元素观,并由此带来了一系列混乱:元素被当成了“化合物”,而化合物又被当成了“元素”,等等。现在,土、空气、水及燃素都一个个被从传统的“元素宝座”上拉了下来,代之以氢、氧、氮、硫、磷、碳、砷、铜、锡、铅、汞、铁、金、银等一些真正的元素。它们都是化学“分析所能达到的终点”。这就使人们实际上的元素观念发生了一个根本变化。至此,百年前波义耳所提出的新的元素观,才从理论和实际两个方面得以最终确立了;随之而来的是能够正确区分元素和化合物,并把化合物区分为酸类;碱类和盐类,由此再进一步给出了科学命名,如把石灰命名为氧化钙,密陀僧命名为氧化铅等,庞杂的化学知识开始条理化了。可以、看出,这场表现为燃烧理论的革命,具有着比燃烧理论本身更为广泛的意义,即确立了新的元素观。正如日本著名科学史家汤浅光朝所说:它“从对氧气的单质性的认识出发,导致了新元素观的确立——这是化学革命的总决战”。
第三, 确立了化学基本定律——质量守恒定律。只是由于拉瓦锡的工作,不仅用定量的实验否定了燃素的存在,而且也不可辩驳地证明了质量守桓原理。据此,他还写出了现代化学方程式的雏形:葡萄汁=碳酸十酒精并指出由此可以“用计算来检验我们的实验,再用实验来验证我们的计算”。因为化学反应前后”化学帐目的收支”是应当平衡的。拉瓦锡对质量守恒定律的提出、证明和应用等全面进行了论述,从而使质量守恒定律得以最后确立,并推动化学开始成为一门象数学和物理学那样的精密科学。同时,也为唯物主义哲学关于物质不灭的原理,第一次公开地提出了科学证明,促进了哲学的发展。
当然,这场革命也还存在着不完备之处。拉瓦锡虽然揭示了燃烧过程的机制,然而却又不适当地扩大了氧的作用,认为氧是一切燃烧的不可缺少的条件和”酸的本原”。但是不久后人们就知道氢气和氯气混合后在无氧下亦可燃烧和爆炸,而产物盐酸则是个不含氧的酸。此外,他还在抛弃了”超自然的要素”时又把一切现象都视为物质本身了,错误地把光和热也当作了”元素”‘拉瓦锡把氧看做酸的本原和把热列为元素,是他的理论中两大缺陷,为后代化学家带来了不少困难,一直影响到十九世纪的很长一段时间。
总起来看,这场革命不愧是十八世纪化学中的最伟大成就,它不仅仅是燃烧理论的革新,而且也是对过去整个化学的一次系统总结,是从波义耳、到布拉克、普利斯特列和凯文迪旭的气体化学的一个时代的总归宿。它不仅促进了化学的改革,而且也促进了那个时代人们的世界观和思维方法发生变化,伴随着立足于此的自然科学方法论的进步。
❻ 化学是在分子原子的层次研究物质的结构,组成性质及变化,这一本质特点使化学处于所有自然科学的中心地位
(1)由图示可知分子是由原子构成;(2)纯净物是由一种分子构成的(分子构成的物质),所以图中表示的物质属于纯净物的是反应后生成的物质;该反应的反应物是两种生成物是一种,所以该反应是化合反应;(3)由图示可知在化学反应前后,分子的种类一定改变;(4)由图示可知化学变化中分子和原子的本质区别是分子可分而原子不可分;故答案为:(1)原子;(2)B;化合反应;(3)一定改变;(4)在化学变化中分子可分而原子不可分;
❼ 请问:“质粒的化学本质是环状DNA分子”和“质粒的化学本质是脱氧核糖核酸”哪一句话是科学的
脱氧核糖核酸(dna,为英文deoxyribonucleic
acid的缩写),又称去氧核糖核酸,是染色体的主要化学成分,同时也是组成基因的材料。有时被称为“遗传微粒”,因为在繁殖过程中,父代把它们自己dna的一部分复制传递到子代中,从而完成性状的传播。原核细胞的染色体是一个长dna分子。真核细胞核中有不止一个染色体,每个染色体也只含一个dna分子。不过它们一般都比原核细胞中的dna分子大而且和蛋白质结合在一起。dna分子的功能是贮存决定物种性状的几乎所有蛋白质和rna分子的全部遗传信息;编码和设计生物有机体在一定的时空中有序地转录基因和表达蛋白完成定向发育的所有程序;初步确定了生物独有的性状和个性以及和环境相互作用时所有的应激反应.除染色体dna外,有极少量结构不同的dna存在于真核细胞的线粒体和叶绿体中。dna病毒的遗传物质也是dna。
❽ 如何认识科学的本质与价值
在现代用法中,“科学”经常指的是追求知识,不但对知识本身的一种方式,它也经常受限于研究这些分支寻求解释物质世界的现象。在17世纪和18世纪的科学家越来越多地寻求在自然法则,如牛顿运动定律方面制定知识。而在19世纪的过程中,“科学”一词变得越来越与科学方法本身相关联,以研究自然世界有纪律的方法,包括物理、化学、地质学和生物学。它是在19世纪也使科学家一词是由博物学家区分自然知识和知识创造。
根据现代汉语词典(中国社会科学院语言研究所词典编辑室,1978年),科学被解释为:
反映自然、社会、思维等的客观规律的分科的知识体系。
合乎科学(精神、方法等)的。
❾ 鲍林的巨著《化学键的本质》对于化学科学的发展有什么重大意义
鲍林被认为是20世纪对化学科学影响最大的人之一,他所撰写的《化学键的本质》被认为是化学史上最重要的著作之一,被誉为“化学圣经”。
他以量子力学入手分析化学问题,结论却以直观、浅白的概念重新阐述,即便未受量子力学训练的化学家亦可利用准确的直观图像研究化学问题,影响至为深远,比如他所提出的许多概念:电负度、共振理论、价键理论、混成轨域、蛋白质二级结构等概念和理论,如今已成为化学领域最基础和最广泛使用的观念。
❿ 第一个真正认识燃烧本质,建立氧化学说的科学家是谁
法国化学家拉瓦锡。
安托万-洛朗·德·拉瓦锡(法语:Antoine-Laurent de Lavoisier,1743年8月26日-1794年5月8日),法国贵族,著名化学家、生物学家,被后世尊称为"近代化学之父"。他使化学从定性转为定量,给出了氧与氢的命名,并且预测了硅的存在。他帮助建立了公制。拉瓦锡提出了“元素”的定义,按照这定义,于1789年发表第一个现代化学元素列表,列出33种元素,其中包括光与热和一些当时被认为是元素的化合物。
拉瓦锡的贡献促使18世纪的化学更加物理及数学化。他提出规范的化学命名法,撰写了第一部真正现代化学教科书《化学基本论述》(Traité Élémentaire de Chimie)。他倡导并改进定量分析方法并用其验证了质量守恒定律。他创立氧化说以解释燃烧等实验现象,指出动物的呼吸实质上是缓慢氧化。这些划时代贡献使得他成为历史上最伟大的化学家。