當前位置:首頁 » 語數英語 » 名人數學小故事

名人數學小故事

發布時間: 2021-07-31 23:09:14

數學名人的小故事有哪些

  • 更早些時候,法國有兩個大數學家,一個叫做巴斯卡爾,一個叫做費馬。 巴斯卡爾認識兩個賭徒,這兩個賭徒向他提出了一個問題。他們說,他倆下賭金之後,約定誰先贏滿5局,誰就獲得全部賭金。賭了半天, A贏了4局, B贏了3局,時間很晚了,他們都不想再賭下去了。那麼,這個錢應該怎麼分?

  • 是不是把錢分成7份,贏了4局的就拿4份,贏了3局的就拿3份呢?或者,因為最早說的是滿5局,而誰也沒達到,所以就一人分一半呢?

  • 這兩種分法都不對。正確的答案是:贏了4局的拿這個錢的3/4,贏了3局的拿這個錢的1/4。

  • 什麼呢?假定他們倆再賭一局,或者 A贏,或者 B贏。若是 A贏滿了5局,錢應該全歸他; A如果輸了,即 A、 B各贏4局,這個錢應該對半分。現在, A贏、輸的可能性都是1/2,所以,他拿的錢應該是1/2×1+1/2×1/2=3/4,當然, B就應該得1/4。

㈡ 五個名人數學小故事

1、
高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是:
1+2+3+ ..... +97+98+99+100 = ?
老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算出來了,小朋友你可知道他是如何算的嗎?
高斯告訴大家他是如何算出的:把 1加 至 100 與 100 加至 1 排成兩排相加,也就是說:
1+2+3+4+ ..... +96+97+98+99+100
100+99+98+97+96+ ..... +4+3+2+1
=101+101+101+ ..... +101+101+101+101
共有一百個101相加,但算式重復了兩次,所以把10100 除以 2便得到答案等於 <5050>

2、
蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成,組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料,蜂房的巢壁厚0.073毫米,誤差極少。

3、「0」的故事
羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。在這種數字的運用里,不需要「0」這個數字當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,還把印度人使用「0」的方法向大家做了介紹。這件事被當時的羅馬教皇知道了。教皇非常惱怒,他斥責說,神聖的數是上帝創造的,在上帝創造的數里沒有「0」這個怪物,於是下令,把這位學者抓了起來,用夾子把他的十個手指頭緊緊夾住,使他兩手殘廢,讓他再也不能握筆寫字。就這樣,「0」被那個愚昧、殘忍的羅馬教皇明令禁止了。但是,雖然「0」被禁止使用,然而羅馬的數學家們還是不管禁令,在數學的研究中仍然秘密地使用「0」,仍然用「0」做出了很多數學上的貢獻。後來「0」終於在歐洲被廣泛使用,而羅馬數字卻逐漸被淘汰了。

4、測量金字塔的高度
有一天,泰勒斯看到人們都在看告示,他也上去看。原來告示上寫著法老要找世界上最聰明的人來測量金字塔的高度。泰勒斯就到找法老了。法老問泰勒斯用什麼工具來量金字塔。泰勒斯說只用一根木棍和一把尺子,大家都覺得很奇怪。他把木棍插在金字塔旁邊,等木棍的影子和木棍一樣長的時候,就去量金字塔。他量了金字塔影子的長度和金字塔底面邊長的一半。把這兩個長度加起來就是金字塔的高度了。泰勒斯真是世界上最聰明的人,他不用爬到金字塔的頂上就方便量出了金字塔的高度。

5、蜂窩猜想
蜂窩是一座十分精密的建築工程。蜜蜂建巢時,青壯年工蜂負責分泌片狀新鮮蜂蠟,每片只有針頭大小而另一些工蜂則負責將這些蜂蠟仔細擺放到一定的位置,以形成豎直六面柱體。每一面蜂蠟隔牆厚度及誤差都非常小。6面隔牆寬度完全相同,牆之間的角度正好120度,形成一個完美的幾何圖形。人們一直疑問,蜜蜂為什麼不讓其巢室呈三角形、正方形或其他形狀呢?隔牆為什麼呈平面,而不是呈曲面呢?雖然蜂窩是一個三維體建築,但每一個蜂巢都是六面柱體,而蜂蠟牆的總面積僅與蜂巢的截面有關。由此引出一個數學問題,即尋找面積最大、周長最小的平面圖形。

我們也要做這個,但我們老師並不要求一定要名人故事
我作業本上是這樣寫的,希望能夠幫到你
給點分吧 (*^__^*)

㈢ 數學名人的一些小故事,50字!急需!

(1)高斯念小學的時候,有一次在老師教完加法後,出了一道題目要同學們算算看,題目是:1+2+3+ .+97+98+99+100 = 老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被高斯叫住了!原來高斯已經算 出來了,高斯告訴大家他算出的答案:5050,從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為數學天才!
(2)陳景潤.他在一間破舊的小屋裡,用掉幾麻袋的草稿紙,證明了離哥達巴赫猜想(1+1)最接近的(1+2).
高斯在上小學時,小學老師對學生很不負責任.這天,老師讓大家做從一加到一百的計算題,不一會兒,高斯做完了,老師拿來一看,便對他刮目相看:上面歪歪扭扭地寫著5050四個字.老師也算過,答案也是5050.高斯說:「其實很簡單,100加1是101,99加2也是101,一共有50對,只要101乘以50就可以了.
華羅庚因病左腿殘疾後,走路要左腿先畫一個大圓圈,右腿再邁上一小步.對於這種奇特而費力的步履,他曾幽默地戲稱為「圓與切線的運動」.在逆境中,他頑強地與命運抗爭,誓言是:「我要用健全的頭腦,代替不健全的雙腿!」
(3)16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上.瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」.這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語
(4)古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。 德國數學家高斯在他研究發現了正十七邊形的尺規作法後,便放棄原來立志學文的打算而獻身於數學,以至在數學上作出許多重大貢獻。甚至他在遺囑中曾建議為他建造正十七邊形的稜柱為底座的墓碑。
(5)祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
你好,希望這些能幫到你,望採納~~~

㈣ 數學名人小故事

1.古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手(死前他還在主:「不要弄壞我的圓」。)後,人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。
2.伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。
3.阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。
4.
16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯 道夫數,他死後別人便把這個數刻到他的墓碑上。 瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語
5.20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.
6.祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在7.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
8.塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。
9.高斯,德國著名數學家,並有「數學王子」的美譽。小時候高斯家裡很窮,且他父親不認為學問有何用,但高斯依舊喜歡看書,話說在小時候,冬天吃完飯後他父親就會要他上床睡覺,以節省燃油,但當他上床睡覺時,他會將蕪菁的內部挖空,裡面塞入棉布卷,當成燈來使用,以繼續讀書,高斯有一個很出名的故事:用很短的時間計算出了小學老師布置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。
10.天才由於積累,聰明在於勤奮。 —————華羅庚
華羅庚的故事
1930 年的一天,清華大學數學系主任熊慶來,坐在辦公室里看一本《科學》雜志。看著看著,不禁拍案叫絕:「這個華羅庚是哪國留學生?」 「他是在哪個大學教書的?」最後還是一位江蘇籍的教員慢吞吞地說:「我弟弟有個同鄉叫華羅庚,他只念過初中。熊慶來驚奇不已,將華羅庚請到清華大學來。
從此,華羅庚就成為清華大學數學系助理員。 第二年,他的論文開始在國外著名的數學雜志陸續發表 。幾年之後,華羅庚被保送到英國劍橋大學留學。他提出的理論被數學界命名為「華氏定理」。

㈤ 特別有名的數學名人(有趣的小故事)

祖沖之的故事
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人。他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家。
祖沖之在數學上的傑出成就,是關於圓周率的計算。秦漢以前,人們以「徑一周三」做為圓周率,這就是「古率」。後來發現古率誤差太大,圓周率應是「圓徑一而周三有餘」,不過究竟余多少,意見不一。直到三國時期,劉徽提出了計算圓周率的科學方法——「割圓術」,用圓內接正多邊形的周長來逼近圓周長。劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確。祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間。並得出了π分數形式的近似值,取為約率,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數。祖沖之究竟用什麼方法得出這一結果,現在無從考查。若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的。祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了。為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做「祖率」。
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元。
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算。他們當時採用的一條原理是:「冪勢既同,則積不容異。」意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等。這一原理,在西文被稱為卡瓦列利原理,但這是在祖氏以後一千多年才由卡氏發現的。為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為「祖暅原理」。

自學成才的數學家- 華羅庚的故事
數學家華羅庚少年時失學在家,幫爸爸經營小棉花店。空閑時,他常常用包棉花的紙解答數學題。
一天,爸爸讓他去內屋打掃,打掃完畢,回到櫃台一看,哭了:「我的算術草稿紙呢?」爸爸左找右找,忽然,他指著遠處一個人的背影說:「我把棉花包賣給他了」。華羅庚追上他,敬了個禮,掏出筆,把題抄道手背上。過路人說:「這真是個怪孩子。」有時顧客來買東西,人家問東他答西,耽誤了生意。晚上,店關門了,他就自學到深夜。父親眼見他不把心思化在買賣上,一氣之下奪過他手中的書,要仍進火爐,幸虧母親搶了下來,才沒把書燒掉。
一次,華羅庚看雜志,發現一篇數學論文有錯誤,在老師的鼓勵下,他寫出批評論文,寄給了上海《科學》雜志,不久登了出來。這篇文章改變了他的道路,使他邁向數學殿堂。

娃娃博士-秦元勛的故事
我國當代著名數學家秦元勛從小勤奮上進。13歲那年,他報考當時很有名氣的上海中學,發榜了,秦元勛被錄取了,可是他回到家裡,卻悶悶不樂。母親不理解,問他:「你考上了怎麼不高興?」「我的數學只考了70多分。」秦元勛說完便哭了起來。「你的其他幾門課都考了90多分,數學分數低一點,可幾門課平均起來,分數不低呀」。「數學是數學,怎麼能那樣平均。」他對母親的安慰並不滿意。晚上,秦元勛躺在床上,翻來覆去睡不著:「我不相信數學深奧得學不好,我一定要學好它」。
從此,他決心打個數學翻身仗。他常常為解出一道數學難題,很晚才睡覺。有時,已經睡下了,想到了解題的思路,他一骨碌坐了起來,把解題方法記下來。白天,在學校里,一旦遇到疑難問題,他便急急忙忙地找老師,與老師一起討論。秦元勛為數學付出了艱辛的勞動,他的數學成績上去了,而且名列前茅。
秦元勛24歲就獲得了美國哈佛大學博士學位,同學門都親切地稱他為「娃娃博士」。

㈥ 名人數學小故事

找了下,還是比較多的

可以參考:http://..com/question/31942517.html?fr=qrl3

㈦ 數學名人小故事 數學典故

高斯念小學的時候,有一次在老師教完加法後,出了一道題目要同學們算算看,題目是:1+2+3+ .+97+98+99+100 = 老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被高斯叫住了!原來高斯已經算 出來了,高斯告訴大家他算出的答案:5050,從此以後高斯小學的學習過程早已經超越了其它的同學,也因此奠定了他以後的數學基礎,更讓他成為數學天才!
由於研究無窮時往往推出一些合乎邏輯的但又荒謬的結果(稱為「悖論」),許多大數學家唯恐陷進去而採取退避三舍的態度。在1874—1876年期間,不到30歲的年輕德國數學家康托爾向神秘的無窮宣戰。他靠著辛勤的汗水,成功地證明了一條直線上的點能夠和一個平面上的點一一對應,也能和空間中的點一一對應。這樣看起來,1厘米長的線段內的點與太平洋面上的點,以及整個地球內部的點都「一樣多」,後來幾年,康托爾對這類「無窮集合」問題發表了一系列文章,通過嚴格證明得出了許多驚人的結論。康托爾的創造性工作與傳統的數學觀念發生了尖銳沖突,遭到一些人的反對、攻擊甚至謾罵。有人說,康托爾的集合論是一種「疾病」,康托爾的概念是「霧中之霧」,甚至說康托爾是「瘋子」。來自數學權威們的巨大精神壓力終於摧垮了康托爾,使他心力交瘁,患了精神分裂症,被送進精神病醫院。
真金不怕火煉,康托爾的思想終於大放光彩。1897年舉行的第一次國際數學家會議上,他的成就得到承認,偉大的哲學家、數學家羅素稱贊康托爾的工作「可能是這個時代所能誇耀的最巨大的工作。」可是這時康托爾仍然神志恍惚,不能從人們的崇敬中得到安慰和喜悅。1918年1月6日,康托爾在一家精神病院去世。

八歲的高斯發現了數學定理
德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。
長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。
他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。
這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。
「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。
教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。
還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」
老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。
可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」
數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?
高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。

熱點內容
如何去痘坑 發布:2025-07-28 16:00:56 瀏覽:102
海峰教育 發布:2025-07-28 15:38:20 瀏覽:540
湘君文言文 發布:2025-07-28 13:53:17 瀏覽:32
清華數學系 發布:2025-07-28 12:09:19 瀏覽:628
九年級語文期中 發布:2025-07-28 11:01:39 瀏覽:995
小學義務教育教科書 發布:2025-07-28 11:01:03 瀏覽:202
地理學博士點 發布:2025-07-28 04:05:20 瀏覽:110
什麼是網路地址 發布:2025-07-28 02:48:59 瀏覽:217
a了什麼意思 發布:2025-07-28 02:40:42 瀏覽:398
2012考研數學二答案 發布:2025-07-27 23:12:08 瀏覽:651