当前位置:首页 » 语数英语 » 初一上册数学题

初一上册数学题

发布时间: 2020-11-19 04:53:21

『壹』 求初一上册数学应用题50道、、要答案啊(过程要全)

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米

18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
18小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同。节能灯售价高,但是较省电;白灯售价低,但是用电多。如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理?
参考资料:
(1) 1千瓦=1000瓦
(2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)
(3) 1度电=1千瓦连续使用1小时
假设目前电价为1度电要3.5元
如果每只电灯泡功率为21瓦,每小时用电则为0.021度。
每小时电费= 3.5元 X 0.021 =0.0735元
每天电费=0.0735 X 24小时 =1.764元
每月电费=1.764 X 30天 =52.92元

这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策。

解答过程:
设使用时间为A小时,
1*0.011*A+60=1*0.06*A+3
这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的。解方程。
A=1163.265小时
也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的。
那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济。
19为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
19某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?

设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154

X=14

8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员

20现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%

21甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙

22甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的

23甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288

24甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

25两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。
26.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。

27.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
注意:说明理由!!!
列一元一次方程解!!!

二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

补充回答:
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。
28已知某服装厂现在有A布料70M,B布料52M,现计划用这两种布料生产M.N的服装80套.已知做一套M服装用A料0.6M,B料0.9M,做一套N服装工用A料1.1M,B 料0.4M
1)设生产M服装X件,写出关于X的不等式组
2)有哪几种符合题意的生产方案?
3)若做一套M服装可获利45元,N服装获利50元,问:那种射击方案可使厂获利最大?利润是多少?

1).解:设生产M服装X件
0.6x+1.1(80-x)≤70 ①
0.9x+0.4(80-x)≤52 ②
解得①x≥36
②x≤40 即36≤x≤40
2).方案一:M服装36套 N服装44套
方案二:M服装37套 N服装43套
方案三:M服装38套 N服装42套
方案四:M服装39套 N服装41套
方案五:M服装40套 N服装40套
3).方案一:45×36+50×44=3820(元)
方案二:45×37+50×43=3815(元)
方案三:45×38+50×42=3810(元)
方案四:45×39+50×41=3805(元)
方案五:45×40+50×40=3800(元)

29小王家里装修,他去商店买灯,商店柜台里现有功率为100瓦的白炽灯和40瓦的节能灯,它们的单价分别为二元和三十二元,经了解,这两种灯的照明效果和使用寿命都一样。已知小王所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算? 《用电量(度)=功率(千瓦)x时间

解:

设时间为x小时时小王选择节能灯才合算:
0.5*100/1000x+2>0.5*40/1000x+32
0.5*0.1x+2>0.5*0.04x+32
0.05x+2>0.02x+32
0.05x-0.02x>32-2
0.03x>30
x>1000

答:当这两种灯的使用寿命超过1000个小时时,小王选择节能灯才合算。
1.有一根铁丝,第一次用去了他的一半少1米,第二次用去了剩余铁丝的一半还多1米,结果这根铁丝还剩余2.5米,问这根铁丝原来长多少米?

2.将内径为200mm的圆柱形水桶中的满桶水倒入一个内部长\宽\高分别为300mm.300mm.80mm的长方形铁盒中,正好倒满,求圆柱形水桶中的水高?

3.列车在中途受阻,耽误了6分钟,然后将时速由原来的每小时40千米提高到每小时50千米,问这样走多少千米,就可以将耽误的时间补上?

4.某学校七年级(1)班组织课外活动,准备举行一次羽毛球比赛,去商店购买羽毛球拍和羽毛球,每副球拍25元,每只球2元,甲商店说:"羽毛球及球拍都打9折优惠",乙商店说"买一副球拍赠送2只羽毛球,(1)学校准备花90元钱全部用于买2副羽毛球拍及羽毛球若干只,问到哪家商店购买更合算?(2)若必须买2副羽毛球拍,则应当买多少只羽毛球时到两家商店才一样合算?

5.甲\乙\丙三位同学向贫困地区的少年儿童捐赠图书,已知这三位同学捐赠图书的册数的比是5:6:9 ,如果甲\丙两位同学捐书册数的和是乙捐书册数的2倍还多12册,那么他们各捐书多少册?

参考答案:
1.解设:这根铁丝原来长X米。
X-[1/2(1/2X-1)+1]=2.5
X=4
2.解设:高为Xmm
100·100·Л·X=300·300·80
X=720Л
3.解设:走X千米
X/50=[X-(40·6/60)]/40
X=4
4.甲:打9折后球拍为:22.5元/只 球为1.8元/只
球拍22.5·2=45元 球:(90-45)÷1.8=25(只)
乙: 25·2=50(元){送两只球}
需要买的球:(90-50)÷2=20(只)
一共的球:20+2=22(只)
甲那里可以买25只,而乙只能买22只.
所以,甲比较合算.
5.解设:每份为X
甲:5X 乙:6X 丙:9X
5X+9X=6X·2+12
X=6
所以:甲:5·6=30(本)
乙:6·6=36(本)
丙:9·6=54(本)
1.巡逻车每天行驶200千米,每辆巡逻车可以装载供行驶14天的汽油。现有5辆巡逻车,同时从A地出发,为了让其中三辆车尽可能向更远的地方巡逻(然后一起返回),甲乙两车行至B处后,仅留足自己返回基地的汽油,将多余的汽油供给其他车使用,问其他三辆车最远行驶距离是多少?
甲乙跑4天。留下返回用的4天的油,其余的12天的油给另外3辆车,这样另外3辆车还可以跑5天,于是最远可跑
200千米乘以9等于1800千米哦
2.甲、乙两人今年年龄之和为63,当甲的年龄是乙现在年龄的一半时,乙恰是甲现在的年龄,甲、乙两人今年各是多少岁?一:解:设甲今年的年龄是x岁,乙今年的年龄是y岁,依题意,得
x + y = 63

y-(x-1/2 y)= x
解之,得
x = 27

y = 36

答:甲今年的年龄是27岁,乙今年的年龄是36岁
二:解:设甲今年的年龄是x岁,乙今年的年龄是y岁,经过m年甲年龄是乙今年年龄的一半,依题意,得
x + y = 63
x + m = 1/2 y
y + m = x
解之,得
x = 27
y = 36
答:甲今年的年龄是27岁,乙今年的年龄是36岁
三:解:设乙今年的年龄是x岁,所以甲今年的年龄是(63-x)岁,依题意,得
1/2 x-(63-x)= 63-2x
解之,得 x = 36
所以 63-x = 63-36 = 27
答:甲今年的年龄是27岁,乙今年的年龄是36岁
学生四:解:依题意,得乙今年的年龄是:
63 ÷( 1/2 ÷ 2 + 1/2 + 1) = 36 (岁)
所以甲今年的年龄是 63-36 = 27(岁)
答:甲今年的年龄是27岁,乙今年的年龄是36岁
3..国家某部委有A,B,C三个机关,这三个机关的公务员依次为88人,52人,60人.在今年机构改革中,要求三个机关按相同比例裁员,使三个机关共留下公务员150人,那么C机关流下的人数是多少人?
解法一:x+52x/60+88x/60=150 则x=45
解法二:x+52x/60+88x/60=(88+52+60)-150 则x=15
4.抄写一份材料,如果每分钟抄30个字 ,则若干小时可抄完,当抄写到2\5的时候,由于改变方法,将工作效率提高40%,结果提前半小时抄完,问这份材料共有多少字?
设这份材料共有x字,则:x/30-30=(x/30)*(2/5)+(x*3/5)/(30*140%)
解得:x=5250
5..现有含盐15%的盐水400g,张老师要求盐水浓度变为12%,某同学通过计算后加进了110g水,请你通过列方程求解验证该同学加进的水量是否正确
设需加水x克,则:(400+x)*12%=400*15% 解得x=100
一片牧场,草每天均匀生长,若其放牧36只羊,8天吃完牧草,若其放牧30只羊,10天吃完牧草,若其放牧6头牛,多少天可以吃完牧草?(已知3只羊吃1天的牧草正好是1头牛吃1天的牧草)
已知3只羊吃1天的牧草正好是1头牛吃1天的牧草,所以我们可以用条件来替换一下,把:36只羊,8天吃完牧草改成12头牛,8天吃完牧草,因为已知条件告诉了3只羊吃1天的牧草正好是1头牛吃1天的牧草,所以我们就把36除以3,得到12.问题是6头牛,和我们刚刚算出的结果有关系,所以我们把条件同时除以2,得到6头牛,4天吃完牧草.
小李从家里到学校上学,他以75M/分的速度走了3分钟时发觉按这个速度走要迟到2分钟,于是他改变速度为90M/分,结果提前4分钟到达。他在上课前多少分从家出发?
小李从家里到学校上学,他以75M/分的速度走了3分钟时发觉按这个速度走要迟到2分钟,于是他改变速度为90M/分,结果提前4分钟到达。他在上课前多少分从家出发?

设他上课前X分出发,那么距离是:75*(X+2)

75(X+2)=75*3+90*(X-3-4)

X=37

答:他应在上课前37分出发。
一辆慢车以每小时48千米的速度从甲站开出,过了45分钟,一辆快车以每小时60千米的速度也从甲站出发,走与慢车相同的路线,快车经过几小时可以追上慢车?
一辆慢车以每小时48千米的速度从甲站开出,过了45分钟,一辆快车以每小时60千米的速度也从甲站出发,走与慢车相同的路线,快车经过几小时可以追上慢车?

设经过X小时追上

X[60-48]=48*45/60

X=3

即3小时后追上
一个两位数,十位上的数字是个位上的数字的2倍,如果把十位上的数与个位上的数对调,那么得到的数就比原来的数小36,求原来的两位数
一个两位数,十位上的数字是个位上的数字的2倍,如果把十位上的数与个位上的数对调,那么得到的数就比原来的数小36,求原来的两位数

设十位上是X,个位上是Y

X=2Y

(10X+Y)-36=10Y+X

化简:9X-9Y=36

X-Y=4

解得:X=8;Y=4

答:二位数是:84

『贰』 初一数学上册奥数题及答案(50道以上)

我能帮你,抖抖抖体
啊·

『叁』 人教版初一上册数学试题

2007年七年级数学期中试卷
(本卷满分100分 ,完卷时间90分钟)
姓名: 成绩:
一、 填空(本大题共有15题,每题2分,满分30分)
1、如图:在数轴上与A点的距离等于5的数为 。

2、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0× 精确到 位。
3、已知圆的周长为50,用含π的代数式表示圆的半径,应是 。
4、铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下 元。
5、当a=-2时,代数式 的值等于 。
6、代数式2x3y2+3x2y-1是 次 项式。
7、如果4amb2与 abn是同类项,那么m+n= 。
8、把多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是 。
9、如果∣x-2∣=1,那么∣x-1∣= 。
10、计算:(a-1)-(3a2-2a+1) = 。
11、用计算器计算(保留3个有效数字): = 。
12、“24点游戏”:用下面这组数凑成24点(每个数只能用一次)。
2,6,7,8.算式 。
13、计算:(-2a)3 = 。
14、计算:(x2+ x-1)•(-2x)= 。
15、观察规律并计算:(2+1)(22+1)(24+1)(28+1)= 。(不能用计算器,结果中保留幂的形式)
二、选择(本大题共有4题,每题2分,满分8分)
16、下列说法正确的是…………………………( )
(A)2不是代数式 (B) 是单项式
(C) 的一次项系数是1 (D)1是单项式
17、下列合并同类项正确的是…………………( )
(A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab
18、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( )
A、 B、 -1 C、 D、以上答案不对
19、如果知道a与b互为相反数,且x与y互为倒数,那么代数式
|a + b| - 2xy的值为( )
A. 0 B.-2 C.-1 D.无法确定
三、解答题:(本大题共有4题,每题6分,满分24分)
20、计算:x+ +5

21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=-

22、已知a是最小的正整数,试求下列代数式的值:(每小题4分,共12分)
(1)
(2) ;
(3)由(1)、(2)你有什么发现或想法?

23、已知:A=2x2-x+1,A-2B = x-1,求B

四、应用题(本大题共有5题,24、25每题7分,26、27、28每题8分,满分38分)
24、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a
求:(1)梯形ADGF的面积
(2)三角形AEF的面积
(3)三角形AFC的面积

25、已知(如图):用四块底为b、高为a、斜边为c的直角三角形
拼成一个正方形,求图形中央的小正方形的面积,你不难找到
解法(1)小正方形的面积=
解法(2)小正方形的面积=
由解法(1)、(2),可以得到a、b、c的关系为:

26、已知:我市出租车收费标准如下:乘车里程不超过五公里的一律收费5元;乘车里程超过5公里的,除了收费5元外超过部分按每公里1.2元计费.
(1)如果有人乘计程车行驶了x公里(x>5),那么他应付多少车费?(列代数式)(4分)
(2)某游客乘出租车从兴化到沙沟,付了车费41元,试估算从兴化到沙沟大约有多少公里?(4分)

27、第一小队与第二小队队员搞联欢活动,第一小队有m人,第二小队比第一小队多2人。如果两个小队中的每个队员分别向对方小队的每个人赠送一件礼物。
求:(1)所有队员赠送的礼物总数。(用m的代数式表示)
(2)当m=10时,赠送礼物的总数为多少件?

28、某商品1998年比1997年涨价5%,1999年又比1998年涨价10%,2000年比1999年降价12%。那么2000年与1997年相比是涨价还是降价?涨价或降价的百分比是多少?

2006年第一学期初一年级期中考试
数学试卷答案
一、1、 2、10-mn 3、-5 4、-1,2 5、五,三 6、3
7、3x3y+x2y2- xy3 +y4 8、0,2 9、-3a2+3a-2 10、-a6
11、-x8 12、-8a3 13、-2x3-x2+2x 14、4b2-a2 15、216-1
二、16、D 17、B 18、B 19、D
三、20、原式= x+ +5 (1’)
= x+ +5 (1’)
= x+ +5 (1’)
= x+4x-3y+5 (1’)
= 5x-3y+5 (2’)

21、原式=(x2-4)(x2+4)-(x4-4x2+4) (1’)
= x4-16-x4+4x2-4 (1’)
= 4x2-20 (1’)
当x = 时,原式的值= 4×( )2-20 (1’)
= 4× -20 (1’)
=-19 (1’)

22、解:原式=x2-2x+1+x2-9+x2-4x+3 (1’)
=3x2-6x-5 (1’)
=3(x2-2x)-5 (2’) (或者由x2-2x=2得3x2-6x=6代入也可)
=3×2-5 (1’)
=1 (1’)

23、解: A-2B = x-1
2B = A-(x-1) (1’)
2B = 2x2-x+1-(x-1) (1’)
2B = 2x2-x+1-x+1 (1’)
2B = 2x2-2x+2 (1’)
B = x2-x+1 (2’)

24、解:(1) (2’)
(2) (2’)
(3) + - - = (3’)

25、解:(1)C2 = C 2-2ab (3’)
(2)(b-a)2或者b 2-2ab+a 2 (3’)
(3)C 2= a 2+b 2 (1’)

26、解:(25)2 = a2 (1’)
a = 32 (1’)
210 = 22b (1’)
b = 5 (1’)
原式=( a)2- ( b) 2-( a2+ ab+ b2) (1’)
= a2- b2- a2- ab- b2 (1’)
=- ab- b2 (1’)
当a = 32,b = 5时,原式的值= - ×32×5- ×52 = -18 (1’)
若直接代入:(8+1)(8-1)-(8+1)2 = -18也可以。

27、解(1):第一小队送给第二小队共(m+2)•m件 (2’)
第二小队送给第一小队共m•(m+2)件 (2’)
两队共赠送2m•(m+2)件 (2’)
(2):当m = 2×102+4×10=240 件 (2’)

28、设:1997年商品价格为x元 (1’)
1998年商品价格为(1+5%)x元 (1’)
1999年商品价格为(1+5%)(1+10%)x元 (1’)
2000年商品价格为(1+5%)(1+10%)(1-12%)x元=1.0164x元 (2’)
=0.0164=1.64% (2’)
答:2000年比1997年涨价1.64%。 (1’)

『肆』 初一上册数学难题带答案30道,急需++

1、有两根不均匀分布的香,香烧完的时间是一个小时,你能用什么方法来确定一段15分钟的时间?

2、一个经理有三个女儿,三个女儿的年龄加起来等于13,三个女儿的年龄乘起来等于经理自己的年龄,有一个下属已知道经理的年龄,但仍不能确定经理三个女儿的年龄,这时经理说只有一个女儿的头发是黑的,然后这个下属就知道了经理三个女儿的年龄。请问三个女儿的年龄分别是多少?为什么?

3、有三个人去住旅馆,住三间房,每一间房10元,于是他们一共付给老板30元,第二天,老板觉得三间房只需要25元就够了于是叫小弟退回5元给三位客人,谁知小弟贪心,只退回每人1元,自己偷偷拿了2元,这样一来便等于那三位客人每人各花了9元,于是三个人一共花了27元,再加上小弟独吞了不2元,总共是29元。可是当初他们三个人一共付出30元,那么还有1元在哪里呢?

4、有两位盲人,他们都各自买了两对黑袜和两对白袜,八对袜了的布质、大小完全相同,而每对袜了都有一张商标纸连着。两位盲人不小心将八对袜了混在一起。他们每人怎样才能取回黑袜和白袜各两对呢?

5、有一辆火车以每小时15公里的速度离开洛杉矶直奔纽约,另一辆火车以每小时20公里的速度从纽约开往洛杉矶。如果有一只鸟,以30公里每小时的速度和两辆火车同时启动,从洛杉矶出发,碰到另一辆车后返回,依次在两辆火车来回飞行,直到两辆火车相遇,请问,这只小鸟飞行了多长距离?

6、你有四个装药丸的罐子,每个药丸都有一定的重量,被污染的药丸是没被污染的重量+1.只称量一次,如何判断哪个罐子的药被污染了?

7、你有一桶果冻,其中有黄色,绿色,红色三种,闭上眼睛,抓取两个同种颜色的果冻。抓取多少个就可以确定你肯定有两个同一颜色的果冻?

8、对一批编号为1~100,全部开关朝上(开)的灯进行以下操作:凡是1的倍数反方向拨一次开关;2的倍数反方向又拨一次开关;3的倍数反方向又拨一次开关……问:最后为关熄状态的灯的编号。

9、想象你在镜子前,请问,为什么镜子中的影像可以颠倒左右,却不能颠倒上下?

10、一群人开舞会,每人头上都戴着一顶帽子。帽子只有黑白两种,黑的至少有一顶。每个人都能看到其它人帽子的颜色,却看不到自己的。主持人先让大家看看别人头上戴的是什幺帽子,然后关灯,如果有人认为自己戴的是黑帽子,就打自己一个耳光。第一次关灯,没有声音。于是再开灯,大家再看一遍,关灯时仍然鸦雀无声。一直到第三次关灯,才有劈劈啪啪打耳光的声音响起。问有多少人戴着黑帽子?

11、两个圆环,半径分别是1和2,小圆在大圆内部绕大圆圆周一周,问小圆自身转了几周?如果在大圆的外部,小圆自身转几周呢?

12、1元钱一瓶汽水,喝完后两个空瓶换一瓶汽水,问:你有20元钱,最多可以喝到几瓶汽水?

我跟你一样是初一的,我很想喜欢数学,上面这些题是我偶然发现的,感觉做起来很有挑战性,所以发上来与君共勉,采纳我吧!(注:这些题目蛮出名的,答案上网查就有好多)希望能帮助到你,加油!

『伍』 七年级上册数学难题100题,要有答案的

1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?

2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?

3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米, ≈3.14).

4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.

5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?

6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.

7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?应交电费是多少元?

8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?

答案
1.解:设甲、乙一起做还需x小时才能完成工作.
根据题意,得 × +( + )x=1
解这个方程,得x=
=2小时12分
答:甲、乙一起做还需2小时12分才能完成工作.
2.解:设x年后,兄的年龄是弟的年龄的2倍,
则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x
18+2x=15+x,2x-x=15-18
∴x=-3
答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
·( )2x=300×300×80
x≈229.3
答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,过完第一铁桥所需的时间为 分.
过完第二铁桥所需的时间为 分.
依题意,可列出方程
+ =
解方程x+50=2x-50
得x=100
∴2x-50=2×100-50=150
答:第一铁桥长100米,第二铁桥长150米.
5.解:设这种三色冰淇淋中咖啡色配料为2x克,
那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50
解这个方程,得x=5
于是2x=10,3x=15,5x=25
答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克.
6.解:设这一天有x名工人加工甲种零件,
则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×5x+24×4(16-x)=1440
解得x=6
答:这一天有6名工人加工甲种零件.
7.解:(1)由题意,得
0.4a+(84-a)×0.40×70%=30.72
解得a=60
(2)设九月份共用电x千瓦时,则
0.40×60+(x-60)×0.40×70%=0.36x
解得x=90
所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,
设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程
1500x+2100(50-x)=90000
即5x+7(50-x)=300
2x=50
x=25
50-x=25
②当选购A,C两种电视机时,C种电视机购(50-x)台,
可得方程1500x+2500(50-x)=90000
3x+5(50-x)=1800
x=35
50-x=15
③当购B,C两种电视机时,C种电视机为(50-y)台.
可得方程2100y+2500(50-y)=90000
21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利
150×25+250×15=8750(元)
若选择(1)中的方案②,可获利
150×35+250×15=9000(元)
9000>8750 故为了获利最多,选择第二种方案.

『陆』 初一数学上册计算题1000道

[-18]+29+[-52]+60= 19

[-3]+[-2]+[-1]+0+1+2= -3

[-301]+125+301+[-75]= 50

[-1]+[-1/2]+3/4+[-1/4]= -1

[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25

[-26.54]+[-6.14]+18.54+6.14= -8

1.125+[-17/5]+[-1/8]+[-0.6]= -3

[-98+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y 1、我国研制的“曙光3000超级服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学计数法可表示为 ( )
A. 4032×108 B. 403.2×109 C. 4.032×1011 D. 0.4032×1012
2、下面四个图形每个都由六个相同的小正方形组成,折叠后能围成正方体的是 ( )

3、下列各组数中,相等的一组是 ( )
A.-1和- 4+(-3) B. |-3|和-(-3) C. 3x2-2x=x D. 2x+3x=5x2
4.巴黎与北京的时差是-7(正数表示同一时刻比北京早的时数),若北京时间是7月2日14:00
时整,则巴黎时间是 ( )
A.7月2日21时 B.7月2日7时 C.7月1日7时 D.7月2日5时
5、国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,今小
磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为 A. 1000元 B. 900元 C. 800元 D. 700元 ( )
6、某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台售价为 ( )
A. 0.7a 元 B. 0.3a元 C. 元 D. 元
7、两条相交直线所成的角中 ( )
A.必有一个钝角 B.必有一个锐角 C.必有一个不是钝角 D.必有两个锐角
8、为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33 25 28 26 25 31.如果该班有45名学生,根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为 ( )
A.900个 B.1080个 C.1260个 D.1800个
9、若关于x的方程3x+5=m与x-2m=5有相同的解,则x的值是 ( )
A. 3 B. –3 C. –4 D. 4
10、已知:│m + 3│+3(n-2)2=0,则m n值是 ( )
A. –6 B.8 C. –9 D. 9
11. 下面说法正确的是 ( )
A. 过直线外一点可作无数条直线与已知直线平行 B. 过一点可作无数条直线与已知直线垂直
C. 过两点有且只有二条直线 D. 两点之间,线段最短.
12、正方体的截面中,边数最多的多边形是 ( )
A.四边形 B.五边形 C.六边形 D. 七边形
二、 填空题
13、用计算器求4×(0.2-3)+(-2)4时,按键的顺序是
14、计算51°36ˊ=________°
15、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯的卖报收入是___________.
16、 已知:如图,线段AB=3.8㎝,AC=1.4㎝,D为CB的中点,
A C D B 则DB= ㎝
17、设长方体的面数为f, 棱数为v,顶点数为e,则f + v + e =___________.
18.用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若干个图案:
则第(4)个图案中有白色地面砖________块;第n
(1) (2) (3) 个图案中有白色地面砖_________块.
19. 一个袋中有白球5个,黄球4个,红球1个(每个球除颜色外其余都相同),摸到__________球的机会最小
20、一次买10斤鸡蛋打八折比打九折少花2元钱,则这10斤鸡蛋的原价是________元.
21、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:

……

第一次捏合后 第二次捏合后 第三次捏合后
这样捏合到第 次后可拉出128根细面条。
22、若x=1时,代数式ax3+bx+1的值为5,则x=- 1时,代数式ax3+bx+1的值等于
三、 解答题
23.计算① 36×( - )2 ②∣ (-2)3×0.5∣-(-1.6)2÷(-2)2

③ 14(abc-2a)+3(6a-2abc) ④ 9x+6x2-3(x- x2),其中x=-2

24.解方程① - = 1 ② (x+1)=2- (x+2)

③ { [ ( x+5)-4]+3}=2 ④ - =-1.6

25. 在左下图的9个方格中分别填入-6,-5,-4,-1,0,1,4,5,6使得每行、每列、斜对角的三个数的和均相等.

26. 在一直线上有A、B、C三点, AB=4cm,BC=0.5AB,点O是线段AC的中点,求线段OB的长度.

27某校学生列队以8千米/ 时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度是12千米/时,从队尾出发赶到排头又回队尾共用了3.6分钟,求学生队伍的长.

28某班全体同学在“献爱心”活动中都捐了图书,捐书情况如下表:
每人捐书的册数 5 10 15 20
相应的捐书人数 17 22 4 2
根据题目中所给的条件回答下列问题:
(1)该班的学生共 多少名; (2)全班一共捐了 册图书;
(3)将上面的数据成制作适当的统计图。

29.星星果汁店中的A种果汁比B种果汁贵1元,小彬和同学要了3 杯B种果汁、2杯A种果汁,一共花了16元。A种果汁、B种果汁的单价分别是多少元?

30.“中商”近日推出“买200元送80元”的酬宾活动,现有一顾客购买了200元的服装,得到80元的购物赠券(可在商场通用,但不能换钱),当这名顾客在购买这套服装时,一售货员对顾客说:“酬宾活动中购买商品比较便宜,相当于打6折,即 100%=60%.”他的说法对吗?

31.某材料供应商对顾客实行如下优惠办法:一次购买金额不超过1万元,不予优惠;一次购买超
过1万元,但不超过3万元,给予9折优惠;一次购买超过3万元的,其中3万元9折优惠,超
过3万元的部分8折优惠。某厂因库容原因,第一次在该供应商处购买材料付款7800元,第二次
购买付款26100元,如果他是一次购买同样数量的材料,可少付金额多少元?

一、填空题(每小题3分,共24分)
1.(-1)2002-(-1)2003=_________________.
答案:2
2.已知某数的 比它大 ,若设某数为x,则可列方程_______________.
答案: x=x+
3.如图1,点A、B、C、D在直线l上.则BC=_________-CD,AB+________+CD=AD;若AB=BC=CD,则AB=________BD.

图1
答案:BD,BC,
4.若∠α=41°32′,则它的余角是____________,它的补角是__________.
答案:48°28′,138°28′
5.如图2,求下列各角:∠1=___________,∠2=___________,∠3=___________.

图2
答案:62.5°,25°,130°
6.两条直线相交,有_____________个交点;三条直线两两相交最多有_____________个交点,最少有_____________个交点.
答案:且只有一,三,一
7.38°12′=_____________°,67.5°=__________°___________′.
答案:38.2,67,30
8.如果 x2-3x=1是关于x的一元一次方程,则a=_________________.
答案:
二、选择题:(每小题3分,共24分)
9.下列说法中,正确的是
A.|a|不是负数 B.-a是负数
C.-(-a)一定是正数 D. 不是整数
答案:A.
10.平面上有任意三点,经过其中两点画一条直线,共可以画
A.一条直线 B.二条直线 C.三条直线 D.一条或三条直线
答案:D.
11.下列画图语句中,正确的是
A.画射线OP=3 cm B.连结A、B两点
C.画出A、B两点的中点 D.画出A、B两点的距离
答案:B.
12.下列图形中能折成正方体的有

图3
A.1个 B.2个 C.3个 D.4个
答案:D.
13.下列图形是,是左边图形绕直线l旋转一周后得到的是

图4
答案:D.
14.图5是某村农作物统计图,其中水稻所占的比例是

图5
A.40% B.72% C.48% D.52%
答案:C.
15.下列说法,正确的是
①所有的直角都相等 ②所有的余角都相等 ③等角的补角相等 ④相等的角是直角.其中正确的是
A.①② B.①③ C.②③ D.③④
答案:B.
16.若|x- |+(2y+1)2=0,则x2+ y2的值是
A. B.
C.- D.-
答案:B.
三、解答下列各题
17.计算题(每小题3分,共12分)
(1)(- )×(-1 )÷(-1 ) (2)32÷(-2)3+(-2)3×(- )-22
(3)( - )÷( - )2÷(-6)2-(- )2
(4)1 ×〔3×(- )2-1〕- 〔(-2)2-(4.5)÷3〕
答案:(1)-1 (2)-2 (3)- (4)-
18.解方程:(每小题5分,共10分)
(1) 〔 ( x- )-8〕= x+1
(2) - - =0
答案:(1)x=- (2)x=-
19.(6分)如图6,已知AOB为直线,OC平分∠AOD,∠BOD=50°,求∠AOC的度数.

图6
答案:65°
20.(6分)一个角的余角的3倍比这个角的补角大18°,求这个角的度数.
答案:36°
21.(6分)制作适当的统计图表示下表数据:
1949年以后我国历次人口普查情况
年份 1953 1964 1982 1990 2000
人口(亿) 5.94 6.95 10.08 11.34 12.95
答案:可制作条形统计图 (略).
22.(12分)一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过18 s,已知客车与货车的速度之比是5∶3,问两车每秒各行驶多少米?
解:设客车的速度是5x,则货车速度为3x.根据题意,得
18(5x+3x)=200+280.
解得x= ,即客车的速度是 m/s.货车的速度是10 m/s75÷〔138÷(100-54)〕 85×(95-1440÷24)
80400-(4300+870÷15) 240×78÷(154-115)
1437×27+27×563 〔75-(12+18)〕÷15
2160÷〔(83-79)×18〕 280+840÷24×5
325÷13×(266-250) 85×(95-1440÷24)
58870÷(105+20×2) 1437×27+27×563
81432÷(13×52+78) [37.85-(7.85+6.4)] ×30
156×[(17.7-7.2)÷3] (947-599)+76×64
36×(913-276÷23) [192-(54+38)]×67
[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)
5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2]
(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)
812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6
85+14×(14+208÷26) 120-36×4÷18+35
(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7

4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10
12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6
85+14×(14+208÷26) (58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)
0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6
120-36×4÷18+35 10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52
32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)
[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6
5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6
3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6
5.8×(3.87-0.13)+4.2×3.74
33.02-(148.4-90.85)÷2.5
1)23+(-73)
(2)(-84)+(-49)
(3)7+(-2.04)
(4)4.23+(-7.57)
(5)(-7/3)+(-7/6)
(6)9/4+(-3/2)
(7)3.75+(2.25)+5/4
(8)-3.75+(+5/4)+(-1.5)
(9)(-17/4)+(-10/3)+(+13/3)+(11/3)
(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(11)(+1.3)-(+17/7)
(12)(-2)-(+2/3)
(13)|(-7.2)-(-6.3)+(1.1)|
(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(15)(-2/199)*(-7/6-3/2+8/3)
(16)4a)*(-3b)*(5c)*1/6
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50
52.-7*2-57/(3
53.(-7)*2/(1/3)+79/(3+6/4)
54.123+456+789+98/(-4)
55.369/33-(-54-31/15.5)
56.39+{3x[42/2x(3x8)]}
57.9x8x7/5x(4+6)
58.11x22/(4+12/2)
59.94+(-60)/10

1.
a^3-2b^3+ab(2a-b)
=a^3+2a^2b-2b^3-ab^2
=a^2(a+2b)-b^2(2b+a)
=(a+2b)(a^2-b^2)
=(a+2b)(a+b)(a-b)

2.
(x^2+y^2)^2-4y(x^2+y^2)+4y^2
=(x^2+y^2-2y)^2

3.
(x^2+2x)^2+3(x^2+2x)+x^2+2x+3
=(x^2+2x)^2+4(x^2+2x)+3
=(x^2+2x+3)(x^2+2x+1)
=(x^2+2x+3)(x+1)^2

4.
(a+1)(a+2)+(2a+1)(a-2)-12
=a^2+3a+2+2a^2-3a-2-12
=3a^2-12
=3(a+2)(a-2)

5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=[x(y+z)-y(x-z)]^2
=(xz+yz)^2
=z^2(x+y)^2

6.
3(a+2)^2+28(a+2)-20
=[3(a+2)-2][(a+2)+10]
=(3a+4)(a+12)

7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)

8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50
52.-7*2-57/(3
53.(-7)*2/(1/3)+79/(3+6/4)
54.123+456+789+98/(-4)
55.369/33-(-54-31/15.5)
56.39+{3x[42/2x(3x8)]}
57.9x8x7/5x(4+6)
58.11x22/(4+12/2)
59.94+(-60)/10

1.
a^3-2b^3+ab(2a-b)
=a^3+2a^2b-2b^3-ab^2
=a^2(a+2b)-b^2(2b+a)
=(a+2b)(a^2-b^2)
=(a+2b)(a+b)(a-b)

2.
(x^2+y^2)^2-4y(x^2+y^2)+4y^2
=(x^2+y^2-2y)^2

3.
(x^2+2x)^2+3(x^2+2x)+x^2+2x+3
=(x^2+2x)^2+4(x^2+2x)+3
=(x^2+2x+3)(x^2+2x+1)
=(x^2+2x+3)(x+1)^2

4.
(a+1)(a+2)+(2a+1)(a-2)-12
=a^2+3a+2+2a^2-3a-2-12
=3a^2-12
=3(a+2)(a-2)

5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=[x(y+z)-y(x-z)]^2
=(xz+yz)^2
=z^2(x+y)^2

6.
3(a+2)^2+28(a+2)-20
=[3(a+2)-2][(a+2)+10]
=(3a+4)(a+12)

7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)

8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1) 1、奥运会会场里5排2号可以用(5,2)表示,则(7,4)表示 。毛

2、81的算术平方根是______,=________.

3、不等式-4x≥-12的正整数解为 .

4、要使有意义,则x的取值范围是_______________。

5、在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.

6、等腰三角形一边等于5,另一边等于8,则周长是_________ .

7、如图所示,请你添加一个条件使得AD‖BC, 。

8、若一个数的立方根就是它本身,则这个数是 。

9、点P(-2,1)向上平移2个单位后的点的坐标为 。

10.观察下列等式, =2,=3, =4,请你写出含有n(n>2的自然数)的等式表示上述各式规律的一般化公式: .

二.同学们我是福娃晶晶上面欢欢的题答的怎么样了?我可遇到难题了,老师给我出了一些选择题,我没达到老师的要求,没能收集到会标,全靠你们了(共20枚每题两枚)。

11、奥运会需要一种多边形形状的瓷砖用来铺设无缝地板,购买的瓷砖形状不可能是( )

A、等边三角形; B、正方形; C、正八边形; D、正六边形

12、有下列说法:

(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;

(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。其中正确的说法的个数是( )

A.1 B.2 C.3 D.4

13、在,,-,,3.14,2+,- ,0,,1.262662666…中,属于无理数的个数是( )

A.3个 B. 4个 C. 5个 D.6个

14.已知a<b,则下列式子正确的是( )

A.a+5>b+5­ B.3a>3b; C.-5a>-5b­ D.>

15. 设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图2所示,那么●、▲、■这三种物体按质量从大到小的顺序排列为( )

A. ■●▲ B. ■▲● C. ▲●■ D. ▲■●

16、若不等式组的解集为-1≤x≤3,则图中表示正确的是( )

17、已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=( )

A.1 B.2 C.3 D.O

18、北京将举办一次奥运会纪念集邮展览,展出的邮票若每人3张,则多24张,若每人4张,则少26张,则展出邮票张数是:( )

A、174 B、178 C、168 D、164

19、为迎接奥运保护生态环境,我省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()

A B C D

20、一次奥运知识竞赛中,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.福娃晶晶有两道题未答.至少答对几道题,总分才不会低于60分.则晶晶至少答对的题数是( )

A.7道 B.8题 C.9题 D.10题

三、福娃贝贝气喘嘘嘘得跑过来对大家说:“快点,奥委会招记分员和算分员呢,我们去看看吧。”到那一看原来他们是有条件的,得答对下面的题,你能行吗?(共20枚,每题5枚)

(21)

(22)解不等式2x-1<4x+13,将解集在数轴上表示:

(23)

(24).

25、迎迎拿来奥运场馆建设中的一张图纸,已知:在△ABC中,AD,AE分别是 △ABC的高和角平分线,若∠B=30°, ∠C=50°.你能帮助工人师傅解决下面的问题吗?

(1) 求∠DAE的度数。(5枚)

(2) 试写出 ∠DAE与∠C-∠B有何关系?(不必证明)(3枚)

26、福娃迎迎准备买一只小猫和一只小狗玩具,商店老板没有告诉迎迎玩具的价格,而是给了她下面的信息,来和迎迎一起算算每只小猫和小狗的价格吧!(8枚)

一共要70元;

一共要50元。

27、北京奥组委准备从甲、乙两家公司中选择一家公司,制作一批奥运纪念册,甲公司提出:收设计费与加工费共1500元,另外每册收取材料费5元:乙公司提出:每册收取材料费与加工费共8元,不收设计费.设制作纪念册的册数为x,甲公司的收费(元),乙公司的收费(元)。

(1)请你写出用制作纪念册的册数x表示甲公司的收费(元)的关系式;(3枚)

(2)请你写出用制作纪念册的册数x表示乙公司的收费(元)的关系式;(3枚)

(3)如果你去甲、乙两公司订做纪念册,你认为选择哪家公司价格优惠? 请写出分析理由.(6枚)

28、最后由五个福娃带我们去参观国家体育馆“鸟巢”,贵宾门票是每位30元,20人以上(含20人)的团体票8折优惠,我们一行共有18人(包括福娃),当领队欢欢准备好零钱到售票处买18张票时,爱动脑筋的晶晶喊住了欢欢,提议买20张票,欢欢不明白,明明我们只有18人,买20张票岂不是“浪费”吗?

(1)请你算算,晶晶的提议对不对?是不是真的“浪费”呢?(4枚)

(2)当人数少于20人时,至少要有多少人去“鸟巢”,买20张票反而合算呢?(8枚)

『柒』 七年级上册数学试题

七年级下数学期末测试题

一、选择题:(每小题3分,共30分)
1.化简 的结果是( ).
A.0 B. C. D.
2.如果实数x,y,满足 ,那么 的值等于( ).
A. B. C.-4 D.4
3.以下语句是命题的是( ).
A.以C点作AB的平行线
B.连结AB
C.如果一个数能被3整除,那么它的末位数一定是3
D.直线上两点和它们之间的部分叫线段吗?
4.如图1,射线OA表示的方向为( ).

图1
A.北偏东30° B.北偏西30°
C.西偏北30° D.东偏北30°
5.如果两条平行线和第三条直线相交,那么一组同旁内角的平分线互相( ).
A.垂直 B.平行
C.重合 D.相交但不垂直
6.下列运算结果为负数的是( ).
A. B.
C. D.
7.用科学记数法表示0.00032,正确的是( ).
A. B.
C. D.
8. 是一个完全平方式,则m的值等于( ).
A.36 B.12 C.-12 D.12或-12
9.如图2所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有( ).

图2
A.2个 B.3个 C.4个 D.1个
10.若 ,且p>0,q<0,那么a、b必须满足的条件是( ).
A.a、b都是正数 B.a、b异号,且正数的绝对值较大
C.a、b都是负数 D.a、b异号,且负数的绝对值较大

二、判断题:(每小题2分,共10分)
1. ; ( )
2.相等的角是对顶角; ( )
3. ; ( )
4. ; ( )
5.若 , ,则 . ( )

三、填空题:(每小题2分,共14分)
1. ________;
2.已知被除式是 ,商式是 ,余式是-1,则除式为________;
3.不等式 的解集为________;
4.一个角的补角比这个角的余角大________;
5.如图3,直线a、b被直线AB所截,∠1=∠2,且a‖b,若∠ABC=60°,则∠1=________;
6.①89°48′36〃=________°; ②127°20′÷5=________;
7.若线段AB长为a cm,延长AB到C,使BC=2AB,D为线段AC的中点,则线段CD长为________.

四、解答题:
1.计算:(每小题4分,共12分)
(1) ;
(2) ;
(3) .
2.解方程:(4分)

3.解方程组:(4分)

4.求不等式(2x-3)(2x+3)>4(x-2)(x+3)的正整数解.(5分)
5.求不等式组的解集,并在数轴上表示解集.(5分)

6.有一批零件共420个,甲先做2天,乙加入合作,再作2天完成;若乙先做2天,甲加入合作,再做3天完成,求甲、乙二人每天各做多少个零件.
7.已知:线段a、b,如图4,用直尺,圆规画一线段,使它等于2a-b.

图4
8.已知角 与角 互补,并且 的 比 小于20°,求 、 的大小.
9.已知:如图5,∠1=∠2,∠3=∠4.
求证:AC平分∠BAD.

图5

参考答案
一、1.B 2.B 3.C 4.B 5.A 6.D 7.A 8.D 9.B 10.B
二、1.√ 2.× 3.√ 4.× 5.×
三、1. 2. 3. 4.90° 5.60°
6.①89.81 ②25°28′ 7.
四、1.(1)4 (2) (3)
2.x=-1 3. 4.x=1、2、3 5.-7≤x<2
6.甲做90个,乙做30个 7.略 8.120°,60°
9.证CD‖AB,∴ ∠3=∠BAC,又∵ ∠3=∠4,∴ ∠4=∠BAC,∴ AC平分∠BAD

『捌』 初一上册数学练习题

1、+2的相反数是_____,—2的绝对值是______,—0.5的倒数是______。
2、图1所示的几何体是由____个面组成的,面与面相交的线有____条,有____个顶点。
3、加拿大数学家约翰 菲尔兹正在看一本数学书,他从第a页看起,一直看到第n页(a<n),他看了_________页书。
4、据新华社北京10月6日电:国家林业局最新统计显示,我国的自然保护区总数已达1757个,覆盖国土总面积的13.2%,其中国家级自然保护区188个,总面积达到16.35亿亩。请你用科学记数法表示16.35亿亩=__________________亩。
5、从标有 、 、 、 的4张同样大小的卡片中,任意抽出两张,“抽出的两张是同类项”是_____________事件。
6、图2是某城市一月份1到10日的最低气温随时间变化的折线图,请根据图2提供的信息,在图3中补全条形统计图。

7、据美国科学家最新研究表明,吸烟能导致人的寿命减少,按天计算,平均每天吸一包烟可导致寿命减少2小时20分。如果一个人从n岁开始吸烟,每天一包,按平均寿命70岁来算(n<70),那么这个人的寿命将会减少___________(用含n的代数式表示)天。
8、如图4,两个长方形的一部分重叠在一起 (重叠部分也是一个长方形),则阴影部分的周长为(并化简结果)___________________ 。
9、如图5,七巧板中共有_______组平行线,点H到BD的距离是线段_______的长,用适当的方法表示图中的一个1350角是______。
10、开封十四中为了庆祝元旦,在学校大门上布置了一串小彩灯,彩灯按以下顺序不断闪动(如图6),其中数字表示小彩灯排列序号,英文字母R、G、B分别表示该灯为红、绿、蓝色,那么第426号到428号小彩灯的排列与色彩模式为(在右下方指定的框内画出)
二、用心选一选:
11、李阿姨买了25 000元某公司1年期的债券,1年后扣除20%的利息税之后得到本息和为26000元,这种债券的年利率是( )
A、4% B、5% C、6% D、8%
12、下列对0的说法中不正确的有( )个。
①0是最小的有理数 ②0的相反数是0 ③0是最小的正数
④0的绝对值是0 ⑤0是最小的正整数 ⑥0没有倒数
⑦0是最小的自然数 ⑧0不是代数式 ⑨0乘以任何数都等于0
⑩0既不是正数,也不是负数
A、3 B、4 C、5 D、6
13、如图7,∠AOC和∠BOD都是直角,如果∠AOB=1400,则∠DOC的度数是( )
A、300 B、400 C、500 D、600
14、有一种细菌,经过1分钟分裂成2个,再过1分钟,又发生了分裂,变成4个。把这样一个细菌放在瓶子里繁殖,直至瓶子被细菌充满为止,用了1小时,如果开始时,就在瓶子里放入这样的细菌2个,那么细菌充满瓶子所需要的时间为( )
A、半小时 B、45分钟 C、59分钟 D、1小时
15、把方程 去分母后,正确的结果是( )
A、 B、
C、 D、
16、有理数a、b在数轴上的对应点的位置如图8所示,则a、b、—a、 的大小关系正确的是( )
A、 B、
C、 D、
17、用小正方体搭一个几何体,使它的主视图和俯视图如图9所示,这样的几何体最少需要正方体( )个。
A、5 B、6 C、7 D、8
18、某粮店出售的三种品牌的面粉袋上分别标有质量为 、 、 的字样,从中任意拿出两袋,它们的质量最多相差( )kg
A、0.8 B、0.6 C、0.5 D、0.4
19、一只袋中有红球m个,白球7个,黑球n个,每个球除颜色外都相同,从中任取一个,取得白球的可能性与不是白球的可能性相同,那么m与n的关系是( )
A、 B、 C、 D、
表1
颜色 红 黄 蓝 白 紫 绿
花的朵数 1 2 3 4 5 6
20、把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况如表:
现将上述大小相同,颜色、花朵分布完全一样的正方体拼成一个并排放置的长方体如图10,则长方体下底面共有花( )朵。
A、18 B、17 C、14 D、10

三、细心算一算:
21、计算下列各题:

22、解下列方程:
⑴ ⑵
23、先化简,后求值: ,其中x在数轴上的对应点到原点的距离为 个单位长度。
四、 耐心想一想:
日期 1号 2号 3号 4号 5号 6号 7号 8号
电表的示数 21 24 28 33 39 42 46 49
24、杨辉家喜迁新居并添置了一批新家用电器,为了了解用电量的大小,
表2
杨辉8月初连续每天早上查看电表的示数,并记录如表2。若每度电0.53元,请你估计杨辉家4月份的电费是多少元?

25、在图11的集合圈里,有6个有理数,请计算其中的正数的和与负数的积的差。

26、请你认真观察两架平衡的天平(如图12),并用所学过的数学知识求出梨和苹果的质量名是多少?

27、表3是12个“黄金周”国内旅游人数和实现旅游收入统计表。
时间 1999年“十一” 2000年“春节” 2000年“五一” 2000年“十一” 2001年“春节” 2001年“五一” 2001年“十一” 2002年“春节” 2002年“五一” 2002年“十一” 2003年“春节” 2003年“十一”
A 2800 2000 4600 5980 4496 7376 6397 5158 8710 8071 5947 8999
B 141 163 181 230 198 288 250 228 331 306 257 346
表3(其中A:国内旅游人数,单位为万人次;B:实现旅游收入,单位为亿元人民币)
⑴请画出国内旅游人数折线统计图;⑵12个黄金周国内旅游人数累计多少亿人次?⑶估计2003年“五一”黄金周的国内旅游人数和旅游收入(因受非典影响,2003年“五一”黄金周被迫取消),并说明理由。

五、决心试一试:
110米长的队伍,以每秒1.5米的速度行进,一队员以4米/秒的速度从队尾到队首,然后立即按原速返回到队尾,问队员从离开队尾到又返回队尾时,队伍行进了多少米?试将上述问题改编成一个求队伍长度的问题,并做解答。

『玖』 初一上册经典数学题

解:设X人做甲种零件,(27-X)人做乙种零件,
依据题意得:12X/3=(27-X)16/2
24X=48(27-X)
X=54-2X
3X=54
X=18
则,18人做甲种零件,9人做乙种零件
答:18人做甲种零件,9人做乙种零件。

热点内容
2017高考数学文 发布:2025-05-15 15:11:48 浏览:817
怎么喝水 发布:2025-05-15 14:52:53 浏览:829
雅本化学公司 发布:2025-05-15 13:44:02 浏览:940
师生问候英文 发布:2025-05-15 12:33:11 浏览:332
教师三年个人发展规划 发布:2025-05-15 08:59:20 浏览:116
校长师德师风情况总结 发布:2025-05-15 07:26:18 浏览:72
科高教育 发布:2025-05-15 04:51:38 浏览:764
人教版二年级语文试卷 发布:2025-05-15 03:39:22 浏览:833
叶开语文 发布:2025-05-15 03:38:08 浏览:879
北京假体隆鼻多少钱 发布:2025-05-15 02:49:41 浏览:117