当前位置:首页 » 语数英语 » 代数学

代数学

发布时间: 2020-11-19 05:27:53

Ⅰ 代数有叫什么

代数 不是一种 数
数学里,代数有两种意思。
第一种是 代数 其实是 代数学 的简称, 是数学的一个分支。研究的是各种各样的代数结构即其表示理论。楼上说的研究实数、复数、实/复系数多项式的代数运算理论与方法确实是代数学的一部分,但是现在的代数学不仅仅局限于此(那是古典的方法)。现代代数学已经上升到更加抽象的级别并被发现威力巨大能应用于很多很多其他领域。
初等代数指的是古典的只用初等方法来研究代数问题的一个分支,小学到中学的很多多项式求根、加减乘除的运算性质、有理函数之类的包含在内。
而现在代数学主要内容是 抽象代数的理论。把古典问题推广到更一般更抽象的情况从更本质的角度去分析代数结构,并且很多结论被应用于解决很多古典未解决的问题,包括费马大定理的证明,也与代数几何有所关联。

代数 在数学里还有另一种意思。
第二种意思 代数 是一种代数结构的名字。同群、环、域、模等都是 一个集合定义某些抽象的运算而构成的代数结构。不是数学专业的可能很难理解,不过这些内容确实是应用于很多学科,是数学的基础领域之一。如果你想深入了解可以追问。

其实还有一种,代数也会被作为形容词,说一个元素a是关于F“代数的”,其实是指这个存在F系数的多项式f(x)满足f(a)=0. 这里的F是域,是数域的推广。
有一个特例,就是如果F是有理数域Q,那么a也可以叫做 代数数。a是某个有理数系数多项式的根跟a是某个整系数多项式的根 是等价的。所以有些地方也会用整系数多项式的根的方式来定义代数数。本质上是一样的。

Ⅱ 阿拉伯中世纪最伟大的数学家 ,具有“代数学之父”的称号的是

阿拉伯人对数学的贡献:阿拉伯大数学家花拉子密把代数学发展成一门独立的数学分内支,他写的《还原与对容象的科学》成为数学历史上的名著,他本人也被称为代数之父,他的著作到16世纪的时候还是欧洲个主要大学的教科书。其他的阿拉伯数学家在三角几何等方面都有重大成就,他们把三角学发展成一门独立的学科,并把圆周率算到17位数值,打破了中国数学家祖冲之保持了一千年的记录。在几何学方面,他们把图形和代数方程式联系起来,成为解析几何的先驱,后来的笛卡儿的解析几何也是在阿拉伯人的基础上实现的。 阿拉伯人对科学的最大贡献是以阿拉伯数字为工具,结合古希腊的逻辑学发展出完善的代数学,今天的“代数(ALGEBRA)”一词即来自阿拉伯语(AL-JABR)。

Ⅲ 是谁他翻译了《代数学》,《几何原本》

代数学的西文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要著作的名称。该著作名为“ilm al-jabr wa'1 muqabalah”,原意是“还原与对消的科学”。这本书传到欧洲后,简译为algebra。清初曾传入中国两卷无作者的代数学书,被译为《阿尔热巴拉新法》,后改译为《代数学》(李善兰译,1853)。

《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学成果和精神于一书。既是数学巨著,也是哲学巨著,并且第一次完成了人类对空间的认识。该身自问世之日起,在长达2000多年的时间里它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有1000多种不同的版本。除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比。汉语的最早译本是由意大利传教士利玛窦和明代科学家徐光启于1607年合作完成的,但他们只译出了前6卷。正是这个残本奠定了中国现代数学的基本术语,诸如三角形、角、直角等等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无福一睹它的全貌,纳入家庭藏书更是妄想。

Ⅳ “代数学”是怎样产生的

小学数学课本中的用字母表示数及方程等内容都属于代数学的范畴。“代数学”一词专来自拉丁文algebra,而拉属丁文又是从阿拉伯文来的。

公元825年左右,阿拉伯数学家阿勒·花剌子模写了一本书,名为《代数学》或《方程的科学》。作者认为他在这本小小的著作里所选的材料是数学中最容易和最有用处的,同时也是人们在处理日常事情时经常需要的。这本书的阿拉伯文版已经失传,但12世纪的一册拉丁文译本却流传至今。在这个译本中,把“代数学”译成拉丁语Algebra,并作为一门学科。后来英语中也用Algebra。

“代数学”这个名称,在我国是1859年才正式使用的。这一年,我国清代数学家李善兰和英国人伟烈亚力合作翻译英国数学家棣么甘所著的《Elements of Algebra》,正式定名为《代数学》。后来清代学者华蘅芳和英国人傅兰雅合译英国学者瓦里斯的《代数术》,卷首有:“代数之法,无论何数,皆可以任何记号代之。”说明了所谓代数,就是用符号来代表数字的一种方法。

Ⅳ 完整的代数学是谁创造的

线性代数不是由一个人发明的,而是几代数学家研究的结果。
发展过程:由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。
线性代数简介:
线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数
非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。
线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段线性代数,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。
现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如(中国、美国、英国、法国、德国、西班牙、印度、澳大利亚),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。
作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。线性代数也在数学分析中扮演重要角色,特别在 向量分析中描述高阶导数,研究张量积和可交换映射等领域。
向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。在实践中与非线性问题的差异是很重要的。
线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。

Ⅵ 什么是代数

代数是研究数、数量、关系、结构与代数方程(组)的通用解法及其性质的数学分支。

初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。

代数的研究对象不仅是数字,而是各种抽象化的结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。

(6)代数学扩展阅读

一、代数学的起源

代数学英文名称algebra来源于9世纪阿拉伯数学家花拉子米的重要著作的名称。该著作名为“ilm al-jabr wa'1 muqabalah”,原意是“还原与对消的科学”。

这本书传到欧洲后,简译为algebra。清初曾传入中国两卷无作者的代数学书,被译为《阿尔热巴拉新法》,后改译为《代数学》。

二、代数的介绍

在古代,当算术里积累了大量的,关于各种数量问题的解法后,为了寻求有系统的、更普遍的方法,以解决各种数量关系的问题,就产生了以解代数方程的原理为中心问题的初等代数。

代数(algebra)是由算术(arithmetic)演变来的,这是毫无疑问的。至于什么年代产生的代数学这门学科,就很不容易说清楚了。

比如,如果你认为“代数学”是指解bx+k=0这类用符号表示的代数方程的技巧。这种“代数学”是在十六世纪才发展起来的。

参考资料来源:网络-代数

Ⅶ 代数学和高等代数有什么区别

代数学:是研究数、数量、关系与结构的数学分支。代数学从高等代专数总的问题出发,又属发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等。
高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初步,多项式代数。代数在讨论任意多个未知数的一次方程组,也叫线性方程组的同时还研究次数更高的一元方程组。发展到这个阶段的代数,就叫做高等代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。

Ⅷ 为什么我代数学得非常好,几何学得非常差呢

这涉及到空间思维能力。

空间思维最显著的体现——数学学习。

研究表明,空间思维的发展和数感联系紧密,改善空间思维可以迅速提高孩子的数学技能,早期的空间思维能力甚至可以预测孩子长大后在数学方面的表现。

具有良好空间思维的孩子,能根据抽象的几何图形想象出实际物体,也能根据实际物体特征抽象出几何图形,能很好地把握空间物体之间的位置关系,将观察、想象、比较、分析等综合起来,由此不断提升由低到高,向前发展的认识客观事物的能力。

举个例子,下面这两个立体方块是完全一样的吗?

这是一个经典的心理旋转测试,用以测量空间智力的度量之一。对于空间思维好的孩子,一看到图就在脑海里面想象,各种翻转,折叠,组装,根本不需要计算和画图,在脑海里直接得出结论。

Ⅸ 数学分为代数学,几何学还有什么

数学分类
1.离散数学
2.模糊数学
3.经典数学
4.近代数学
5.计算机数学
6.随机数学
7.经济数学
8.算术
9.初等代数
10.高等代数
11.数论
12.欧几里得几何
13.非欧几里得几何
14.解析几何
15.微分几何
16.代数几何
17.射影几何学
18.几何拓扑学
19.拓扑学
20.分形几何
21.微积分学
22.实变函数论
23.概率和统计学
24.复变函数论
25.泛函分析
26.偏微分方程
27.常微分方程
28.数理逻辑
29.运筹学
30.计算数学
31.突变理论
32.数学物理学
33.类函数
34.会计总汇类

Ⅹ 代数学的介绍

代数是研究数、数量、关系与结构的数学分支。初等代数一般在中学时讲授,介绍代数的基本思想:研究当我们对数字作加法或乘法时会发生什么,以及了解变量的概念和如何建立多项式并找出它们的根。代数的研究对象不仅是数字,而是各种抽象化的结构。例如整数集作为一个带有加法、乘法和序关系的集合就是一个代数结构。在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。常见的代数结构类型有群、环、域、模、线性空间等。代数学是数学中最重要的、基础的分支之一。代数学的历史悠久,它随着人类生活的提高,生产技术的进步,科学和数学本身的需要而产生和发展。在这个过程中,代数学的研究对象和研究方法发生了重大的变化。代数学可分为初等代数学和抽象代数学两部分。初等代数学是更古老的算术的推广和发展,而抽象代数学则是在初等代数学的基础上产生和发展起来的。初等代数学是指19世纪上半叶以前的方程理论,主要研究某一方程(组)是否可解,怎样求出方程所有的根(包括近似根)以及方程的根所具有的各种性质等。

热点内容
教师三年个人发展规划 发布:2025-05-15 08:59:20 浏览:116
校长师德师风情况总结 发布:2025-05-15 07:26:18 浏览:72
科高教育 发布:2025-05-15 04:51:38 浏览:764
人教版二年级语文试卷 发布:2025-05-15 03:39:22 浏览:833
叶开语文 发布:2025-05-15 03:38:08 浏览:879
北京假体隆鼻多少钱 发布:2025-05-15 02:49:41 浏览:117
年度师德师风自查报告 发布:2025-05-15 02:16:35 浏览:334
是在下输了是什么梗 发布:2025-05-15 01:59:54 浏览:289
教育课 发布:2025-05-15 00:39:16 浏览:887
笔画视频教学 发布:2025-05-15 00:06:14 浏览:99