七年级上册数学试卷
『壹』 初一数学上册期末试卷及答案
一、选择题(每小题1分,共10分)
1. 下列关于单项式 的说法正确的是( )
A. 系数是3,次数是2 B. 系数是 次数是2
C. 系数是 ,次数是3 D. 系数是- ,次数是3
2. 下列事件中,不确定事件的个数为 ( )
①若x是有理数,则
②丹丹每小时可以走20千米
③从一副扑克牌中任意抽取一张,这张扑克牌是大王。
④从装有9个红球和1个白球的口袋中任意摸出一个球,这个球是红球
A. 1个 B. 2个 C. 3个 D. 4个
3. 要把人类送上火星,还有许多航天技术问题需要解决,如:已知一个成年人平均每年呼吸氧气6.57× 升,而目前飞船飞往火星来回一趟需2年时间,如果飞船上有3名宇航员,那么来回一趟理论上需要氧气( )克,(氧气是1.43克/升,结果用科学记数法表示,保留三位有效数字)
A. B. C. D.
4. 钝角三角形的三条高所在直线的交点在( )
A. 三角形内 B. 三角形外 C. 三角形边上 D. 不能确定
5. 下列不能用平方差公式计算的是( )
A. B.
C. D.
6. 在西部山区有位希望中学的学生站在镜子面前,那么他的校徽在镜子里的成像是( )
7. 小马虎在下面的计算中,只做对了一道题,他做对的题目是( )
A. B.
C. D.
8. 在△ABC中,∠ABC与∠ACB的平分线交于点I,∠ABC+∠ACB=100°,则∠BIC的度数为( )
A. 80° B. 50° C. 100° D. 130°
9. 如下的四个图中,∠1与∠2是同位角的有( )
① ② ③ ④
A. ②③ B. ①②③ C. ①②④ D. ①
10. 一根蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(小时)的关系用图像表示为( )
二、填空题(每小题2分,共20分)
1. 多项式 有( )项,次数为( )次.
2. 下列数据是近似数的有( )。(填序号)
①小红班上有15个男生:
②珠穆朗玛峰高出海平面8844.43米。
③联合国2001年2月27日曾发表了一项人口报告,说今后5年内全球预计有1550万人死于艾滋病,现在看来不止这个数目。
④玲玲的身高为1.60米。
3. 观察下面的平面图形,其中是轴对称图形的是( )。(填序号)
4. 一个均匀小立方体的6个面上分别标有数字1,2,3,4,5,6,任意掷出这个小立方体,则掷出数字是3的倍数的概率是( )。
5. 如图,扇形OAB的半径为10,当扇形圆心角的度数变化时,扇形的面积也随之变化,在这个变化过程中,自变量是( ),因变量是( )。
6. 一个圆的半径为r,另一个圆的半径是这个圆的半径的5倍,这两个圆的周长之和是( )。
7. 有长度为2厘米,6厘米,8厘米,9厘米的四条线段,选择其中三条组成三角形,有( )种组成方法。
8. 如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,如果∠EOF= ∠AOD,
则∠EOF=( )度。
9. 如图,△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=70°,∠C=40°,则
∠DAE=( )度,∠AEC=( )度.
10. 如图是小明用火柴搭的1条、2条、3条“金鱼” ,按此规律,则搭第n条“金鱼”时需要火柴( )根。(第一条鱼用了8根火柴)。
三、(每题7分,共14分)
1. 计算:
2. 先化简,在求值:
,其中
四、(第1题6分,第2题8分,共14分)
1. 如图,在由小正方形组成的L形图形中,请你用三种不同方法分别在下面图形中添画一个小正方形使它成为轴对称图形。
2. 如图,是经专家论证得出来的某市新开发的海港2007-2011年的港口吞吐量规划统计图。
(1)(4分)看图,简述该港五年规划的特征:(写出两点即可)
(2)(4分)海港开发将有力拉动该市的经济发展,如果每万吨吞吐量能给该市带来10万元的收入,按规划五年内海港共给该市财政增加多少亿元的收入?
五、(第1题7分,第2题8分,共15分)
1. 小东找来一张挂历画包数学课本。已知课本长a厘米,宽b厘米,厚c厘米,小东想在包课本的封面与封底时,书皮每一边都折进去m厘米,问小东应在挂历画上裁下一块多大面积的长方形?
2. 下图是某厂一年的收入变化图,根据图像回答,在这一年中:
①(4分)什么时候收入最高?什么时候收入最低?最高收入和最低收入各是多少?
②(1分)6月份的收入是多少?
③(1分)哪个月的收入为400万元?
④(1分)哪段时间收入不断增加?
⑤(1分)哪段时间收入不断减少?
六、(8分)如图,已知∠1+∠2=180°,∠A=∠C,试说明AF‖CE
七、(8分)甲、乙两人想利用转盘游戏来决定谁在今天值日。如图是一个可以自由转动的转盘,转动转盘,当转盘停止转动时,若指针指向红色区域,则甲值日,否则,乙值日。此游戏对甲乙双方公平吗?为什么?
八、(11分)如图1,2,四边形ABCD是正方形(AD=AB,∠A=90°,∠ABC=∠CBM=90°)M是AB延长线上的一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
(1)(9分)当点E在AB边的中点位置如图1时,连接点E与AD边的中点N,试说明NE=BF;
(2)(2分)当点E在AB边的任意位置如图2时,N在线段AD的什么位置时,NE=BF?不必说明理由。
图1 图2
【试题答案】
一、选择题
1. D 2 . B 3. C 4. B 5. C 6. B 7. D 8. D 9. C 10. B
二、填空题
1. 4 4 2. ②③④ 3. ①②③
4. 5. 扇形圆心角的度数 扇形的面积
6. 7. 2 8. 30°
9. 15 105 10. 8+6(n-1)
三、
1. -1
2. 原式= ,当a=-1,b=-2时,原式= -16
四、
1.
2. (1)吞吐量逐年增加,起始三年增长速度慢,后两年增长速度较快,2011年吞吐量是2007年的3倍。
(2)16亿元。
五、
1.
2. (1)12月份最高,收入500万元,8月份收入最低,收入100万元。
(2)200万元
(3)1月份
(4)8月——12月
(5)1月——8月。
六、因为 ∠1+∠2=180°
所以DC‖AB
所以∠A=∠FDC
又因为∠A=∠C
所以∠FDC=∠C
所以AF‖CE
七、公平。 ,
八、(1)因为∠NDE+∠AED=90°, ∠BEF+∠AED=90°
所以∠NDE=∠BEF
因为BF平分∠CBM
所以∠EBF=90°+45°=135°,
因为AN=AE
所以∠ANE=∠AEN=45°
∠DNE=180°-∠ANE=135°
所以∠EBF=∠DNE
又DN=EB
所以△DNE≌△EBF
所以NE=BF
(2)当DN=EB时。
『贰』 初一上册数学期中考试卷带答案
初一数学期中考试试题
姓名: 班级:
一、 选择题(每题3分,共30分)
1、若规定向东走为正,那么-8米表示( )
A、向东走8米 B、向南走8米 C、向西走8米 D、向北走8米
2、代数式(a-b)2/c的意义是( )
A、a与b的差的平方除c B、a与b的平方的差除c
C、a与b的差的平方除以c D、a与b 的平方的差除以c
3、零是( )
A、正数 B、奇数 C、负数 D、偶数
4、在一个数的前面加上一个“—”号,就可以得到一个( )
A、负数 B、一个任何数 C、原数的相反数 D、非正数
5、如果ab=0,那么一定有( )
A、a=b=0 B a=0
C a,b至少有一个为0 D a,b至少有一个为0
6、在下列各数中是负数的是( )
A、-(-1/2) B -|-1/3|
C –[+(-1/5)] D |-1/6|
7、下面说法中正确是的有( )
(1)一个数与它的绝对值的和一定不是负数。(2)一个数减去它的相反数,它们的差是原数的2倍(3)零减去一个数一定是负数。(4)正数减负数一定是负数。(5)有理数相加减,结果一定还是有理数。
A、2个 B、3个 C、4个 D、5个
8、下列各数成立的是( )
A、—(-0.2)=+(+1/5) B、(-3)+(+3)=6
C、+(-1)= —(-1) D、-[+(-7)]=+[-(+7)]
9、下列说法中,正确的是( )
A、存在最小的有理数 B、存在最大负整数
C、存在最大的负整数 D、存在最小的整数
10、如果一个数a的绝对值除a的商是-1,那么a一定是( )
A、-1 B、1或-1 C、负数 D、正数
二、 填空题。(每题3分,共30分)
11、教室里有学生a人,走了b 人,又进来了C人,此时教室进而有学生( )人。
12、已知两数的积为36,若其中一个数为m,则这两个数的和为( )
13、当x=( )时,代数式(x-4)/3的值等于0。
14、气温从a。C下降t.C后是( )
15、设甲数为x,乙数为 y,则“甲乙两数的积减去甲乙两数的差”可以表示为( )
16、如果a>0,那么| a |= ( )
17、1293400000用科学记数法表示为( ),89765的有效数字是( ),如果把它保留到两个有效数字是( )。
18、比-3小5的数是( )
三、 计算题。(每题4 分,共计16分)
(19) {0.85-[12+4(3-10)]}/5 (20)[(-3)3-(-5)3]/[(-3)-(-5)]
(21)(-2)3*5-(-0.28)/(-2)2 (22)(1/4+1/6-1/2)*48
四、解答题。(每题6分,共24分)
23、已知| a |=5,|b| =3,且a,b异号,求代数式(a+b)(a-b)的值。
24、在数轴上表示绝对值不大于5的所有整数。
25、现在5袋小麦重依次为183千克,176千克,185千克,178千克,181千克为准。超过的斤数记为正数,不足的斤数记为负数,那么这5袋小麦与标准重量相比,超出或不足千克数依次为多少?这5袋小麦总重量为多少克?
26、学校利用假期组织学生参加一段时间的勤工俭学活动,每个学生得到15元补助,在活动期间有的同学买了份饭,饭费应从15元内扣除,饭费与同学实际领到的钱数如下表:
(1) 写出用n表示c的公式(n小于或等于25的自然数)
(2) 计算当n=6时, c是多少?
饭费的数量n 饭费如下(元 领钱数c(元
1 0.60元 15-0.60=14.4
2 1.20元 15-1.20=13.80
3 1.80元 15-1.80=13.20
4 2.40元 15-2.40=12.60
……… ……… ………
四、 附加题。(20分)
1、a.b互为相反数,c ,d互为倒数,且|m|=3,求:m+cd-(a+b)/(a+b+c)的值。
『叁』 七年级上册数学试题
七年级下数学期末测试题
一、选择题:(每小题3分,共30分)
1.化简 的结果是( ).
A.0 B. C. D.
2.如果实数x,y,满足 ,那么 的值等于( ).
A. B. C.-4 D.4
3.以下语句是命题的是( ).
A.以C点作AB的平行线
B.连结AB
C.如果一个数能被3整除,那么它的末位数一定是3
D.直线上两点和它们之间的部分叫线段吗?
4.如图1,射线OA表示的方向为( ).
图1
A.北偏东30° B.北偏西30°
C.西偏北30° D.东偏北30°
5.如果两条平行线和第三条直线相交,那么一组同旁内角的平分线互相( ).
A.垂直 B.平行
C.重合 D.相交但不垂直
6.下列运算结果为负数的是( ).
A. B.
C. D.
7.用科学记数法表示0.00032,正确的是( ).
A. B.
C. D.
8. 是一个完全平方式,则m的值等于( ).
A.36 B.12 C.-12 D.12或-12
9.如图2所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有( ).
图2
A.2个 B.3个 C.4个 D.1个
10.若 ,且p>0,q<0,那么a、b必须满足的条件是( ).
A.a、b都是正数 B.a、b异号,且正数的绝对值较大
C.a、b都是负数 D.a、b异号,且负数的绝对值较大
二、判断题:(每小题2分,共10分)
1. ; ( )
2.相等的角是对顶角; ( )
3. ; ( )
4. ; ( )
5.若 , ,则 . ( )
三、填空题:(每小题2分,共14分)
1. ________;
2.已知被除式是 ,商式是 ,余式是-1,则除式为________;
3.不等式 的解集为________;
4.一个角的补角比这个角的余角大________;
5.如图3,直线a、b被直线AB所截,∠1=∠2,且a‖b,若∠ABC=60°,则∠1=________;
6.①89°48′36〃=________°; ②127°20′÷5=________;
7.若线段AB长为a cm,延长AB到C,使BC=2AB,D为线段AC的中点,则线段CD长为________.
四、解答题:
1.计算:(每小题4分,共12分)
(1) ;
(2) ;
(3) .
2.解方程:(4分)
.
3.解方程组:(4分)
4.求不等式(2x-3)(2x+3)>4(x-2)(x+3)的正整数解.(5分)
5.求不等式组的解集,并在数轴上表示解集.(5分)
6.有一批零件共420个,甲先做2天,乙加入合作,再作2天完成;若乙先做2天,甲加入合作,再做3天完成,求甲、乙二人每天各做多少个零件.
7.已知:线段a、b,如图4,用直尺,圆规画一线段,使它等于2a-b.
图4
8.已知角 与角 互补,并且 的 比 小于20°,求 、 的大小.
9.已知:如图5,∠1=∠2,∠3=∠4.
求证:AC平分∠BAD.
图5
参考答案
一、1.B 2.B 3.C 4.B 5.A 6.D 7.A 8.D 9.B 10.B
二、1.√ 2.× 3.√ 4.× 5.×
三、1. 2. 3. 4.90° 5.60°
6.①89.81 ②25°28′ 7.
四、1.(1)4 (2) (3)
2.x=-1 3. 4.x=1、2、3 5.-7≤x<2
6.甲做90个,乙做30个 7.略 8.120°,60°
9.证CD‖AB,∴ ∠3=∠BAC,又∵ ∠3=∠4,∴ ∠4=∠BAC,∴ AC平分∠BAD
『肆』 七年级上册数学试卷及答案(人教版)!!!急!!!!!
应用题
1. 一所学校组织学生秋游,如果租用45座的客车若干辆,就有15个空坐位;如果租用50座的客车,则可少租一辆车,且刚好坐满。已知租用45座车每车的日租金为250元,50座车每车的日租金为300元,要保证每人都有作为,怎样租合算?
2.某市出租车5㎞内起步价为8元,以后每增加1㎞加价1元,请写出乘坐出租车路程x㎞与收费y元的函数关系,并画出图象,小明乘了10㎞付了多少钱,如果小亮付了15元钱乘了几千米?
3.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是400元/台、800元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台。求:
(1)写出总运输费用与北京运往重庆x台之间的函数关系;
(2)若总运费为8400元,上海运往汉口应是多少台?
4.某鱼场的甲仓库存鱼30吨,乙仓库存鱼40吨,现要再往这两个仓库运
送80吨鱼,使甲仓库的存鱼量为乙仓库存鱼量的1.5倍。应往甲仓库和乙仓库分
别运送多少吨鱼?
5.北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。如果从北京运往汉口、重庆的运费分别是400元/台、800元/台,从上海运往汉口、重庆的运费分别是300元/台、500元/台。求:
(1)写出总运输费用与北京运往重庆x台之间的函数关系;
(2)若总运费为8400元,上海运往汉口应是多少台?
6.网络时代的到来,很多家庭都拉入了网络,电信局规定了拨号入网两种收费方式,用户可以任选其一:A:计时制0.05元/分;B:全月制:54元/月(限一部分人住宅电话入网)此个B种上网方式要加收通信费0.02元/分。
[1]某用户月上网的时间为x小时,两种收费方式的费用分别为y1(元)y2(元),写出y1 、y2与x之间的函数关系式;
[2](1) 在上网时间相同的条件下,请你帮该用户选择哪一种方式上网更省钱?
2.填空题
一、填空:(30分)
1、已知矩形的周长为24,设它的一边长为x,那么它的面积y与x之间的函数关系式为________________.__________是常量,变量有__________________。
2、计划花500元购买篮球,所能购买的总数n(个)与单价a(元)的函数关系式为__________________,其中____________是自变量,__________是因变量.
3、函数 中,自变量x的取值范围是__________________.函数y=15-x中自变量x的取值范围是
4、以下函数:①y=2x2+x+1 ②y=2πr ③y= ④y=( -1)x
⑤y=-(a+x)(a是常数)是一次函数的有________________.
5、直线y=3-9x与x轴的交点坐标为__________,与y轴的交点坐标为________.
6、若直线y=kx+b平行直线y=3x+4,且过点(1,-2),则k= .
7、已知一次函数y =(m + 4)x + m + 2(m为整数)的图象不经过第二象限,则m = ;
8、一次函数y = kx + b的图象经过点A(0,2),B(-1,0)若将该图象沿着y轴向上平移2个单位,则新图象所对应的函数解析式是 ;
9、弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有下列关系:
x 0 1 2 3 4 5 6 7 8
y 12 12.5 13 13.5 14 14.5 15 15.5 16
那么弹簧的总长y(cm)与所挂物体的质量x(kg)之间的函数关系式为 ;
二、选择(30分)
1、在同一直角坐标系中,对于函数:① y = – x – 1;② y = x + 1;③ y = – x +1;④y = – 2(x + 1)的图象,下列说法正确的是( )
A、通过点(– 1,0)的是①和③ B、交点在y轴上的是②和④
C、相互平行的是①和③ D、关于x轴对称的是②和③
2、已知函数y= ,当x=a时的函数值为1,则a的值为( )
A.3 B.-1 C.-3 D.1
3、函数y=kx的图象经过点P(3,-1),则k的值为( )
A.3 B.-3 C. D.-
4、下列函数中,图象经过原点的为( )
A.y=5x+1 B.y=-5x-1 C.y=- D.y=
5、点A(– 5,y1)和B(– 2,y2)都在直线y = – 12 x上,则y1与y2的关系是( )
A、y1≤y2 B、y1=y2 C、y1<y2 D、y1>y2
6、函数y = k(x – k)(k<0=的图象不经过( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
7、要从y= x的图像得到直线y= ,就要把直线y= x( )
(A)向上平移 个单位 (B)向下平移 个单位
(C)向上平移2个单位 (D)向下平移2个单位
8、一水池蓄水20 m3,打开阀门后每小时流出5 m3,放水后池内剩下的水的立方数Q (m3)与放水时间t(时)的函数关系用图表示为( )
9、已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )
(A) (B) (C) (D)
10.星期天晚饭后,小红从家里出发去散步,图描述了她散步过程中离家s(米)与散步所用的时间t(分)之间的函数关系.依据图象,下面描述符合小红散步情景的是( )
(A) 从家出发,到了一个公共阅报栏,看了一会报后,就回家了.
(B)从家出发,一直散步(没有停留),然后回家了.
(C)从家出发,到了一个公共阅报栏,看了一会报后,
继续向前走了一会,然后回家了.
(D)从家出发,散了一会步,就找同学去了,18分钟后
才开始返回.
3.计算题
1、│-7│= .
2、 的倒数是 .
3、0.519精确到百分位的近似值数为 .
4、计算:(-1)2006 = .
5、(-7.5)+6.9 = .
6、-5的相反数是 .
7、用科学计数法表示:457100 = .
8、在数轴上到表示1的点的距离等于3的点所表示的数是 .
9、已知m<0,则 .
10、如果x 2 = 4,那么x = .
11、比较大小:-3 -2.
12、若x = 4是方程ax-2x = 4的解,则a = .
13、已知: ,则 .
打这些好累 所以 把分给我吧
『伍』 初一上学期期中数学试卷
一、填空题(每小题3分,共36分)
1、x=5 方程 =2x-7的解。(填“是”或“不是”)
2、解方程 去分母后方程变形为 。
D
C
B
A
3、某厂预计今年比去年增产15%,年产量达到60万吨,设去年该厂产量为x万吨,则可列方程 。
4、如图在Rt△ABC中,∠ACB=90º,
CD⊥AB于D,若∠B=32º,则∠ACD= º
5、如果|x-3|=2,那么x= 或
6、如果x=1是方程 的解,那么K= 。
7、把方程3x+7y=9化成用含y的代数式表示x= 。
8、方程2x+3y=12的正整数解有 。
9、正十二边形的每个内角等于 度。
10、用加减法解方程组 消去未知数y后得到的一元一次方程
是
11、在△ABC中,AC=13cm,AB=8cm,那么BC的长度应大于 厘米且小于 厘米。
12、为绿化家乡,我校45名优秀团员去郊外植树,女同学每人植6棵,男同学每人植树8棵,劳动结束后共植树320棵。设优秀团员中有x名男同学,y名女同学,依据题意可列方程组为 。
二、选择题(每小题3分,共24分)
1、若三角形三个内角之比为2:3:5,则这个三角形是( )
A、锐角三角形 B、直角三角形 C、钝角三角形 D、无法判断
2、不能组成三角形的一组线段是( )
A、15cm,10cm,7cm B、4cm,5cm,10cm
C、8cm,8cm,2cm D、2cm,3cm,4cm
3、解方程变形正确的一项是( )
A、由2(x-3)-3(x+1)=2,得2x-3-3x+3=2
B、由-6x=-5,得x=-
C、由 ,得4(x+2)+3(2x-1)=4
D、由1- ,得1-
4、只用一种多边形铺地面是,不能铺满地面的是( )
A、三角形 B、四边形 C、正五边形 D、正六边形
5、若多边形的内角和与外角和之比为7:2,那么这个多边形的边数是( )
A、7 B、8 C、9 D、10
B
A
C
D
E
6、 是方程组 的解,那么a+b的值是( )
A、1 B、2 C、3 D、4
7、如图五角星,∠A+∠B+∠C+∠D+∠E的和是( )
A、180° B、360° C、540° D、不能确定
8、为培养市民节约用水习惯,某市水厂规定:用水不超过10吨,每吨按0.8元收费,超过10吨的部分,按每吨1.5元收费。小华家三月份平均水费为每吨1元,那么小华家三月份用水 吨。
A、12 B、14 C、16 D、20
三、解方程(组)(1、2题各5分,3题10分,共20分)
1、4(x+1)=1-2(x-3) 2、
3、 (要求用两种解法分别完成)
四、解答题(每小题8分,共24分)
1、已知: 与 都满足等式y=Kx+b
(1) 求K与b的值
(2) x为何值时,y=3
2、如图所示△ABC中,AD平分∠BAC,∠B=42°,∠C=54°,求∠ADC的度数。
A
B
C
D
3、如图∠A=120°,∠B=100°,∠C=140°,试判断AE和CD是否平行,并说明理由。
A
E
D
C
B
五、实践探索题(每小题8分,共16分)
1、小明的爸爸三年前为小明存一份3000元的教育储蓄,今年到期时的本息和为3243元。请你帮小明算一算这种储蓄的利率。
2、动物园的门票价格如下表规定。某校初一(1)、(2)两班去游动物园,其中(1)班人数不到50人,(2)班有50多人。如果两班都以班为单位分别购票,则一共应付1207元;如果两班联合起来,作为一个团体购票,则只需付909元。
购票人数
1—50人
51—100人
100人以上
每人门票价
13元
11元
9元
(1) 你如何判断两个班的总人数是否超过100人,说说你的理解。
(2) 列方程或方程组求两班学生人数。
(3) 如果两班不联合买票,是不是初一(1)班学生非要买13元的票呢?你有什么省钱的办法来帮他们买票?说说你的理由。
(4) 你认为是否存在这样可能:51—100人之间买票的钱数与100人以上的钱数相等?如果有,请写出这种可能情况。
『陆』 七年级上册数学期末考试卷及答案
- 1 -
最新---七年级数学(上)知识点
人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步
四个章节的内容 .
第一章 有理数
一. 知识框架
二.知识概念
1.有理数:
(1)凡能写成 ) 0 p q , p (
p
q
为整数且 形式的数,都是有理数 .正整数、0、负整数统称整数;正
分数、负分数统称分数;整数和分数统称有理数 .注意:0即不是正数,也不是负数; -a不
一定是负数, +a也不一定是正数; 不是有理数;
(2)有理数的分类 : ①
负分数
负整数
负有理数
零
正分数
正整数
正有理数
有理数 ②
负分数
正分数
分数
负整数
零
正整数
整数
有理数
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线 .
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数; 0的相反数还是 0;
(2)相反数的和为 0 a+b=0 a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身, 0的绝对值是 0,负数的绝对值是它的相反数; 注意:绝对值的
意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:
) 0 a ( a
) 0 a ( 0
) 0 a ( a
a 或
) 0 a ( a
) 0 a ( a
a ;绝对值的问题经常分类讨论;
- 2 -
5.有理数比大小:(1)正数的绝对值越大,这个数越大; (2)正数永远比 0大,负数永远
比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小; (5)数轴上
的两个数,右边的数总比左边的数大; (6)大数-小数 >0,小数-大数 <0.
6.互为倒数:乘积为1的两个数互为倒数; 注意:0没有倒数;若a≠0,那么 a 的倒数是
a
1
;
若ab=1 a、b互为倒数;若 ab=-1 a、b互为负倒数.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与 0相加,仍得这个数 .
8.有理数加法的运算律:
(1)加法的交换律: a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b).
10 有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个
数决定.
11 有理数乘法的运算律:
(1)乘法的交换律: ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律: a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,
无意义 即
0
a
.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n为正奇数时: (-a) n =-a
n
或(a
-b)
n =-(b-a) n , 当n为正偶数时: (-a) n =a n
或(a-b)
n =(b-a) n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于 10的数记成 a×10
n
的形式,其中a是整数数位只有一位的数,
这种记数法叫科学记数法 .
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位 .
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似
数的有效数字 .
18.混合运算法则:先乘方,后乘除,最后加减 .
本章内容要求学生正确认识有理数的概念, 在实际生活和学习数轴的基础上, 理解正
- 3 -
负数、相反数、绝对值的意义所在。重点利用有理数的运算法则解决实际问题 .
体验数学发展的一个重要原因是生活实际的需要 .激发学生学习数学的兴趣,教师培养学生
的观察、归纳与概括的能力,使学生建立正确的数感和解决实际问题的能力。教师在讲授
本章内容时,应该多创设情境,充分体现学生学习的主体性地位。
第二章 整式的加减
一.知识框架
二.知识概念
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中
不含字母的一类代数式叫单项式 .
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式
的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数 .
3.多项式:几个单项式的和叫多项式 .
4.多项式的项数与次数: 多项式中所含单项式的个数就是多项式的项数,每个单项式叫多
项式的项;多项式里,次数最高项的次数叫多项式的次数。
通过本章学习,应使学生达到以下学习目标:
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进
行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、
去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
在本章学习中,教师可以通过让学生小组讨论、合作学习等方式, 经历概念的形成过
程,初步培养学生观察、分析、抽象、概括等思维能力和应用意识。
第二章 一元一次方程
一. 知识框架
- 4 -
二.知识概念
1.一元一次方程:只含有一个未知数,并且未知数的次数是 1,并且含未知数项的系数不
是零的整式方程是一元一次方程 .
2.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且 a≠0).
3.一元一次方程解法的一般步骤: 整理方程 ,, 去分母 ,, 去括号 ,, 移项 ,,
合并同类项 ,, 系数化为 1 ,, (检验方程的解) .
4.列一元一次方程解应用题:
(1)读题分析法:,,,, 多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如: “大,小,多,少,是,共,合,为,完成,
增加,减少,配套 -----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利
用题目中的量与量的关系填入代数式,得到方程 .
(2)画图分析法: ,,,, 多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图
形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布
列方程的依据, 最后利用量与量之间的关系(可把未知数看做已知量) ,填入有关的代数式
是获得方程的基础 .
11.列方程解应用题的常用公式:
(1)行程问题: 距离=速度·时间
时间
距离
速度
速度
距离
时间 ;
(2)工程问题: 工作量=工效·工时
工时
工作量
工效
工效
工作量
工时 ;
(3)比率问题: 部分=全体·比率
全体
部分
比率
比率
部分
全体 ;
(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度 =静水速度-水流速度;
(5)商品价格问题: 售价=定价·折·
10
1
,利润=售价-成本,
- 5 -
% 100
成本
成本 售价
利润率 ;
(6)周长、面积、体积问题:C 圆 =2πR,S 圆 =πR
2 ,C
长方形 =2(a+b),S 长方形 =ab,C 正方形 =4a,
S 正方形 =a
2 ,S
环形 =π(R
2 -r 2 ),V
长方体 =abc ,V 正方体 =a 3 ,V 圆柱 =πR 2 h ,V 圆锥 =
3
1
πR 2 h.
本章内容是代数学的核心, 也是所有代数方程的基础。 丰富多彩的问题情境和解决问题
的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有
效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,
体会数学思想方法。
第三章 图形的认识初步
知识框架
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认
识从感性逐步上升到抽象的几何图形 .通过从不同方向看立体图形和展开立体图形,初步认
识立体图形与平面图形的联系 .在此基础上,认识一些简单的平面图形——直线、射线、线
段和角. 本章书涉及的数学思想:
1.分类讨论思想。在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形
时,应注意图形的各种可能性。
2.方程思想。在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。
3.图形变换思想。在研究角的概念时,要充分体会对射线旋转的认识。在处理图形时应注
意转化思想的应用,如立体图形与平面图形的互相转化。
4.化归思想。在进行直线、线段、角以及相关图形的计数时,总要划归到公式 n(n-1)/2的具
体运用上来。
- 6 -
七年级数学(下)知识点
人教版七年级数学下册主要包括相交线与平行线、平面直角坐标系、三角形、二元一
次方程组、不等式与不等式组和数据的收集、整理与表述六章内容。
第五章 相交线与平行线
一、知识框架
二、知识概念
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补
角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶
角。
3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠ 2与∠5像这样的一对角叫做同旁内角。
6.命题:判断一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种
移动叫做平移平移变换,简称平移。
8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样
的两个点叫做对应点。
9.定理与性质
对顶角的性质:对顶角相等。
- 7 -
10垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
12.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系 ,研究了两条直
线相交时的形成的角的特征 ,两条直线互相垂直所具有的特性 ,两条直线平行的长期共存条
件和它所有的特征以及有关图形平移变换的性质 ,利用平移设计一些优美的图案 . 重点:垂线
和它的性质,平行线的判定方法和它的性质 ,平移和它的性质 ,以及这些的组织运用 . 难点:探
索平行线的条件和特征 ,平行线条件与特征的区别 ,运用平移性质探索图形之间的平移关系 ,
以及进行图案设计。
第六章 平面直角坐标系
一.知识框架
二.知识概念
1.有序数对:有顺序的两个数 a与b组成的数对叫做有序数对,记做( a,b)
2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3.横轴、纵轴、原点:水平的数轴称为 x轴或横轴;竖直的数轴称为 y轴或纵轴;两坐标
轴的交点为平面直角坐标系的原点。
4.坐标:对于平面内任一点 P,过P分别向x轴,y轴作垂线,垂足分别在 x轴,y轴上,
对应的数 a,b分别叫点 P的横坐标和纵坐标。
- 8 -
5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第
二象限、第三象限、第四象限。坐标轴上的点不在任何一个象限内。
平面直角坐标系是数轴由一维到二维的过渡, 同时它又是学习函数的基础, 起到承上启
下的作用。另外,平面直角坐标系将平面内的点与数结合起来,体现了数形结合的思想。
掌握本节内容对以后学习和生活有着积极的意义。教师在讲授本章内容时应多从实际情形
出发,通过对平面上的点的位置确定发展学生创新能力和应用意识。
第七章 三角形
一.知识框架
二.知识概念
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形
的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间
的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平
- 9 -
面。
12.公式与性质
三角形的内角和:三角形的内角和为 180°
三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式: n边形的内角和等于( n-2)·180°
多边形的外角和:多边形的内角和为 360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引( n-3)条对角线,把多边形分
词(n-2)个三角形。
(2)n边形共有
2
3) - n(n
条对角线。
三角形是初中数学中几何部分的基础图形,在学习过程中,教师应该多鼓励学生动脑
动手,发现和探索其中的知识奥秘。注重培养学生正确的数学情操和几何思维能力。
第八章 二元一次方程组
一.知识结构图
二、知识概念
1.二元一次方程:含有两个未知数,并且未知数的指数都是 1,像这样的方程叫做二元一次。
方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次
方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程
- 10 -
组。
5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实
现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相
加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
本章通过实例引入二元一次方程 ,二元一次方程组以及二元一次方程组的概念 ,培养学生
对概念的理解和完整性和深刻性 ,使学生掌握好二元一次方程组的两种解法 . 重点:二元一次
方程组的解法 ,列二元一次方程组解决实际问题 . 难点:二元一次方程组解决实际问题
第九章 不等式与不等式组
一.知识框架
二、知识概念
1.用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高
次数是1,像这样的不等式,叫做一元一次不等式。
5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
6.了一个一元一次不等式组。
7.定理与性质
不等式的性质:
不等式的基本性质 1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方
向不变。
不等式的基本性质 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
- 11 -
不等式的基本性质 3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题
的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析
问题、解决问题的能力,增强创新精神和应用数学的意识。
第十章 数据的收集、整理与描述
一.知识框架
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为
组数,每一组两个端点的差叫做组距。
本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感
受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调
查研究的良好习惯和科学态度。
全面调查
抽样调查
收
集
数
据
描
述
数
据
整
理
数
据
分
析
数
据
得
出
结
论
『柒』 人教版初一上册数学试题
2007年七年级数学期中试卷
(本卷满分100分 ,完卷时间90分钟)
姓名: 成绩:
一、 填空(本大题共有15题,每题2分,满分30分)
1、如图:在数轴上与A点的距离等于5的数为 。
2、用四舍五入法把3.1415926精确到千分位是 ,用科学记数法表示302400,应记为 ,近似数3.0× 精确到 位。
3、已知圆的周长为50,用含π的代数式表示圆的半径,应是 。
4、铅笔每支m元,小明用10元钱买了n支铅笔后,还剩下 元。
5、当a=-2时,代数式 的值等于 。
6、代数式2x3y2+3x2y-1是 次 项式。
7、如果4amb2与 abn是同类项,那么m+n= 。
8、把多项式3x3y- xy3+x2y2+y4按字母x的升幂排列是 。
9、如果∣x-2∣=1,那么∣x-1∣= 。
10、计算:(a-1)-(3a2-2a+1) = 。
11、用计算器计算(保留3个有效数字): = 。
12、“24点游戏”:用下面这组数凑成24点(每个数只能用一次)。
2,6,7,8.算式 。
13、计算:(-2a)3 = 。
14、计算:(x2+ x-1)•(-2x)= 。
15、观察规律并计算:(2+1)(22+1)(24+1)(28+1)= 。(不能用计算器,结果中保留幂的形式)
二、选择(本大题共有4题,每题2分,满分8分)
16、下列说法正确的是…………………………( )
(A)2不是代数式 (B) 是单项式
(C) 的一次项系数是1 (D)1是单项式
17、下列合并同类项正确的是…………………( )
(A)2a+3a=5 (B)2a-3a=-a (C)2a+3b=5ab (D)3a-2b=ab
18、下面一组按规律排列的数:1,2,4,8,16,……,第2002个数应是( )
A、 B、 -1 C、 D、以上答案不对
19、如果知道a与b互为相反数,且x与y互为倒数,那么代数式
|a + b| - 2xy的值为( )
A. 0 B.-2 C.-1 D.无法确定
三、解答题:(本大题共有4题,每题6分,满分24分)
20、计算:x+ +5
21、求值:(x+2)(x-2)(x2+4)-(x2-2)2 ,其中x=-
22、已知a是最小的正整数,试求下列代数式的值:(每小题4分,共12分)
(1)
(2) ;
(3)由(1)、(2)你有什么发现或想法?
23、已知:A=2x2-x+1,A-2B = x-1,求B
四、应用题(本大题共有5题,24、25每题7分,26、27、28每题8分,满分38分)
24、已知(如图):正方形ABCD的边长为b,正方形DEFG的边长为a
求:(1)梯形ADGF的面积
(2)三角形AEF的面积
(3)三角形AFC的面积
25、已知(如图):用四块底为b、高为a、斜边为c的直角三角形
拼成一个正方形,求图形中央的小正方形的面积,你不难找到
解法(1)小正方形的面积=
解法(2)小正方形的面积=
由解法(1)、(2),可以得到a、b、c的关系为:
26、已知:我市出租车收费标准如下:乘车里程不超过五公里的一律收费5元;乘车里程超过5公里的,除了收费5元外超过部分按每公里1.2元计费.
(1)如果有人乘计程车行驶了x公里(x>5),那么他应付多少车费?(列代数式)(4分)
(2)某游客乘出租车从兴化到沙沟,付了车费41元,试估算从兴化到沙沟大约有多少公里?(4分)
27、第一小队与第二小队队员搞联欢活动,第一小队有m人,第二小队比第一小队多2人。如果两个小队中的每个队员分别向对方小队的每个人赠送一件礼物。
求:(1)所有队员赠送的礼物总数。(用m的代数式表示)
(2)当m=10时,赠送礼物的总数为多少件?
28、某商品1998年比1997年涨价5%,1999年又比1998年涨价10%,2000年比1999年降价12%。那么2000年与1997年相比是涨价还是降价?涨价或降价的百分比是多少?
2006年第一学期初一年级期中考试
数学试卷答案
一、1、 2、10-mn 3、-5 4、-1,2 5、五,三 6、3
7、3x3y+x2y2- xy3 +y4 8、0,2 9、-3a2+3a-2 10、-a6
11、-x8 12、-8a3 13、-2x3-x2+2x 14、4b2-a2 15、216-1
二、16、D 17、B 18、B 19、D
三、20、原式= x+ +5 (1’)
= x+ +5 (1’)
= x+ +5 (1’)
= x+4x-3y+5 (1’)
= 5x-3y+5 (2’)
21、原式=(x2-4)(x2+4)-(x4-4x2+4) (1’)
= x4-16-x4+4x2-4 (1’)
= 4x2-20 (1’)
当x = 时,原式的值= 4×( )2-20 (1’)
= 4× -20 (1’)
=-19 (1’)
22、解:原式=x2-2x+1+x2-9+x2-4x+3 (1’)
=3x2-6x-5 (1’)
=3(x2-2x)-5 (2’) (或者由x2-2x=2得3x2-6x=6代入也可)
=3×2-5 (1’)
=1 (1’)
23、解: A-2B = x-1
2B = A-(x-1) (1’)
2B = 2x2-x+1-(x-1) (1’)
2B = 2x2-x+1-x+1 (1’)
2B = 2x2-2x+2 (1’)
B = x2-x+1 (2’)
24、解:(1) (2’)
(2) (2’)
(3) + - - = (3’)
25、解:(1)C2 = C 2-2ab (3’)
(2)(b-a)2或者b 2-2ab+a 2 (3’)
(3)C 2= a 2+b 2 (1’)
26、解:(25)2 = a2 (1’)
a = 32 (1’)
210 = 22b (1’)
b = 5 (1’)
原式=( a)2- ( b) 2-( a2+ ab+ b2) (1’)
= a2- b2- a2- ab- b2 (1’)
=- ab- b2 (1’)
当a = 32,b = 5时,原式的值= - ×32×5- ×52 = -18 (1’)
若直接代入:(8+1)(8-1)-(8+1)2 = -18也可以。
27、解(1):第一小队送给第二小队共(m+2)•m件 (2’)
第二小队送给第一小队共m•(m+2)件 (2’)
两队共赠送2m•(m+2)件 (2’)
(2):当m = 2×102+4×10=240 件 (2’)
28、设:1997年商品价格为x元 (1’)
1998年商品价格为(1+5%)x元 (1’)
1999年商品价格为(1+5%)(1+10%)x元 (1’)
2000年商品价格为(1+5%)(1+10%)(1-12%)x元=1.0164x元 (2’)
=0.0164=1.64% (2’)
答:2000年比1997年涨价1.64%。 (1’)