高中数学不等式复习
❶ 求解高中数学基本不等式怎么学!现在高三了,基本不等式的一轮复习这两天上了两节课就算过了。老师讲了
~~基本不等式
❷ 高中数学不等式的难点重点与技巧
首先拿到一个不等式你要先看看其形式 常见的有完全不等式 对勾不等式等等 但是要先判断使用条件 ( 1正 2定 3相等 )这是重中之重!!! 都符合才能用公式计算 所以啊 拿到不等式要先观察其形式 然后再做 不要着急!!!!!!!!!
❸ 高中数学不等式选讲的知识点总结
柯西不等式可以简单地记做:平方和的积
≥
积的和的平方。它是对两列数不等式。取等号的条件是两列数对应成比例。
如:两列数
0,1
和
2,3
有
(0^2
+
1^2)
*
(2^2
+
3^2)
=
26
≥
(0*2
+
1*3)^2
=
9.
形式比较简单的证明方法就是构造一个辅助函数,这个辅助函数是二次函数,于是用二次函数取值条件就得到cauchy不等式。
还有一种形式比较麻烦的,但确实很容易想到的证法,就是完全把cauchy不等式右边-左边的式子展开,化成一组平方和的形式。
我这里只给出前一种证法。
cauchy不等式的形式化写法就是:记两列数分别是ai,
bi,则有
(∑ai^2)
*
(∑bi^2)
≥
(∑ai
*
bi)^2.
我们令
f(x)
=
∑(ai
+
x
*
bi)^2
=
(∑bi^2)
*
x^2
+
2
*
(∑ai
*
bi)
*
x
+
(∑ai^2)
则我们知道恒有
f(x)
≥
0.
用二次函数无实根或只有一个实根的条件,就有
δ
=
4
*
(∑ai
*
bi)^2
-
4
*
(∑ai^2)
*
(∑bi^2)
≤
0.
于是移项得到结论。
学了更多的数学以后就知道,这个不等式可以推广到一般的内积空间中,那时证明的书写会更简洁一些。我们现在的证明只是其中的一个特例罢了。
其实,高中只要记住二维的就够了。
❹ 高中数学不等式公式总结,要很全的,最好有例题谢谢
4.公式:
3.解不等式
(1)一元一次不等式
(2)一元二次不等式:
判别式
△=b2- 4ac
△>0
△=0
△<0
y=ax2+bx+c
的图象
(a>0)
ax2+bx+c=0
(a>0)的根
有两相异实根
x1, x2 (x1<x2)
有两相等实根
x1=x2=
没有实根
ax2+bx+c>0
(y>0)的解集
{x|x<x1,或 x>x2}
{x|x≠ }
R
ax2+bx+c<0
(y<0)的解集
{x|x1< x <x2 }
Φ
Φ
一元二次不等式的求 解流程:
一化:化二次项前的系数为正数.
二判:判断对应方程的根.
三求:求对应方程的根.
四画:画出对应函数的图象.
五解集:根据图象写出不等式的解集.
(3)解分式不等式:
高次不等式:
(4)解含参数的不等式:(1) (x – 2)(ax – 2)>0
(2)x2 – (a+a2)x+a3>0;
(3)2x2 +ax +2 > 0;
注:解形如ax2+bx+c>0的不等式时分类讨 论的标准有:
1、讨论a 与0的大小;2、讨论⊿与0的大小;3、讨论两根的大小;
二、运用的数学思想:
1、分类讨论的思想;2、数形结合的思想;3、等与不等的化归思想
(4)含参不等式恒成立的问题:
例1.已知关于x的不等式
在(–2,0)上恒成立,求实数a的取值范围.
例2.关于x的不等式
对所有实数x∈R都成立,求a的取值范围.
(5)一元二次方程根的分布问题:
方法:依据二次函数的图像特征从:开口方向、判别式、对称轴、
函数值三个角度列出不等式组,总之都是转化为一元二次不等式组求解.
二次方程根的分布问题的讨论:
4. k1 < x1 < x2 < k2 5. x1 < k1 < k2 < x2
6. k1 <x1 < k2 < x2< k3
4解线性规划问题的一般步骤:
第一步:在平面直角坐标系中作出可行域;
第二步:在可行域内找到最优解所对应的点;
第三步:解方程的最优解,从而求出目标函数的最大值或最小值。
练习:1.求满足 | x | + | y | ≤4 的整点(横、纵坐标为整数)的个数。
4.求函数 的最小值.
5.已知两个正数 满足 求使
恒成立的 的取值范围.
❺ 高中数学不等式怎么学
网络的,希望有用
1,基本不等式及应用是高中阶段一个重要的知识点;其方法版灵活,应用广范。在学习过权程中要求学生对公式的条件、形式、结论等要熟练掌握,才能灵活运用。
2,基本不等式解决问题并不是万能的。学习过程中,要深刻理解基本不等式的内在实质,搞清其条件、公式、结论之间的辩证关系是关键。特别对于第二个基本不等式,我们常说“一正、二定、三等号”,其意义就在于此。3,不懂就问,学会总结,循序渐进
❻ 高中数学不等式解题技巧主要有什么急!!!
高中数学不等式一般常考的主要有两个:基本不等式和绝对值不等式。尤其是基本不等式:几何平均值<=算术平均值。注意到“一正”,“二定”,“三相等”,一般用采用拼凑法或待定系数法来构造满足条件的两项或三项,使其乘积为一定值。一般在各个省市的高考中都会或多或少的考到,比较容易以一道选择题或填空题出现,以及大题中的应用题中求极值会频繁用到基本不等式(一般这种求极值的问题,通过求导也能得到相同答案,但利用基本不等式会使计算更简单)。