初一数学竞赛题
㈠ 七年级数学竞赛试题及答案
http://hi..com/531085328/blog/item/1318662e14d3e9584ec226d9.html
这是六年级希望杯数学竞赛的题和答案,不过水平跟七年级差不多,你版去看看吧,希望能帮你。权
㈡ 100道数学竞赛题,只要应用题,初一的。
1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完
2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米
3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个
4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米
5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分
6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒
7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人
8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克
9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵
10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米
11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米
12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁
13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间
14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7
15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点
16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5
17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米
18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同。节能灯售价高,但是较省电;白灯售价低,但是用电多。如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理?
参考资料:
(1) 1千瓦=1000瓦
(2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)
(3) 1度电=1千瓦连续使用1小时
假设目前电价为1度电要3.5元
如果每只电灯泡功率为21瓦,每小时用电则为0.021度。
每小时电费= 3.5元 X 0.021 =0.0735元
每天电费=0.0735 X 24小时 =1.764元
每月电费=1.764 X 30天 =52.92元
这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策。
解答过程:
设使用时间为A小时,
1*0.011*A+60=1*0.06*A+3
这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的。解方程。
A=1163.265小时
也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的。
那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济。
为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?
设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140
1)某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?
设送货人员有X人,则销售人员为8X人。
(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154
X=14
8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员
现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?
设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%
甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/
设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙
甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。
设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的
甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)
设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288
1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2。4
即停电了2。4小时。
1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
2.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
注意:说明理由!!!
列一元一次方程解!!!
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X
180*2=60[X-(30-X)]
X=18
即甲车的速度是18米/秒,乙车的速度是:12米/秒
补充回答:
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]
X=2。4
即停电了2。4小时。
1.再一次数学测验中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的,老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:
(1)一名同学得了90分,这位同学答对了几道题?
(2)一名同学得了60分,这位同学答对了几道题?
2.光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可少租一辆,且余15个座位。
(1)求参加春游的师生总人数
(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单
租哪种客车省钱?
(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案。
3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张。
解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把握什么?
(2)解一元一次方程步骤有那些?
4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)
5.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?
答案:
1.(1)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=90
4*X-25+X=90
5*X=115
X=23
(2)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=60
4*X-25+X=60
5*X=85
X=17
2.根据题意设租45座客车为X辆可坐满,则需X-1辆60座的可余15空座.
45*X=60*(X-1)-15
45*X=60*X-60-15
15*X=75
X=5
(1)参加春游的总人数为45人*5辆=225人.
(2)45座的每天需要钱为250元*5辆=1250元,60座的每天需要钱为300元*(5-1)辆=1200元,所以租60座的较省钱.
(3)租3辆60座的1辆45座最划算,3*300+1*250=1150
㈢ 初一数学竞赛题要答案
初一数学竞赛题(含答案)
一、选择题(本题共8小题,每小题6分,满分48分):下面各题给出的选项中,只有一项是正确的,请将正确选项的代号填在题后的括号内.
1.已知函数y = x2 + 1– x ,点P(x,y)在该函数的图象上. 那么,点P(x,y)应在直角坐标平面的 ( )
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
2.一只盒子中有红球m个,白球10个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m与n的关系是 ( )
(A) m + n = 10 (B) m + n = 5 (C) m = n = 10 (D) m = 2,n = 3
3.我省规定:每年11月的最后一个星期日举行初中数学竞赛,明年举行初中数学竞赛的日期是 ( )
(A)11月26日 (B)11月27日 (C)11月29日 (D)11月30日
4.在平面直角坐标系中有两点A(–2,2),B(3,2),C是坐标轴上的一点,若△ABC是直角三角形,则满足条件的点C有 ( )
(A)1个 (B)2个 (C)4个 (D)6个
5.如图,在正三角形ABC的边BC,CA上分别有点E、F,且满足
BE = CF = a,EC = FA = b (a > b ). 当BF平分AE时,则 ab 的值为 ( )
(A) 5 – 12 (B) 5 – 22 (C) 5 + 12 (D) 5 + 22
6.某单位在一快餐店订了22盒盒饭,共花费140元,盒饭共有甲、乙、丙三种,它们的单价 分别为8元、5元、3元.那么可能的不同订餐方案有 ( )
(A)1个 (B)2个 (C)3个 (D)4个
7.已知a > 0,b > 0且a (a + 4b ) = 3b (a + 2b ). 则 a + 6ab – 8b2a – 3ab + 2b 的值为 ( )
(A)1 (B)2 (C) 1911 (D) 2
8.如图,在梯形ABCD中,∠D = 90°,M是AB的中点,若
CM = 6.5,BC + CD + DA = 17,则梯形ABCD的面积为 ( )
(A)20 (B)30 (C)40 (D)50
二、填空题(本题共4小题,每小题8分,满分32分):将答案
直接填写在对应题目中的横线上.
9.如图,在菱形ABCD中,∠A = 100°,M,N分别是AB和BC
的中点,MP⊥CD于P,则∠NPC的度数为 .
10.若实数a 满足a3 + a2 – 3a + 2 = 3a – 1a2 – 1a3 ,
则 a + 1a = .
11.如图,在△ABC中∠BAC = 45°,AD⊥BC于D,若BD = 3,CD
= 2,则S⊿ABC = .
12.一次函数 y = – 3 3 x + 1 与 x 轴,y轴分别交于
点A,B.以线段AB为边在第一象限内作正方形ABCD (如
图).在第二象限内有一点P(a,12 ),满足S△ABP = S正方形ABCD ,
则a = .
三,解答题(本题共3小题,每小题20分,满分60分)
13,如图,点Al,Bl,C1分别在△ABC的边AB,BC,CA上,
且AA1AB = BB1BC = CC1CA = k ( k < 12 ).若△ABC的周长为p,△A1B1C1
的周长为p1,求证:p1 < (1 – k)p.
14.某校一间宿舍里住有若干位学生,其中一人担任舍长.元旦时,该宿舍里的每位学生互赠一张贺卡,并且每人又赠给宿舍楼的每位管理员一张贺卡,每位宿舍管理员也回赠舍长一张贺卡,这样共用去了51张贺卡.问这间宿舍里住有多少位学生.
15.若a1,a2,…,an均为正整数,且a1 < a2< … < an≤ 2007.为保证这些整数中总存在四个互不相同的数ai,aj,ak,al,使得ai + aj = ak + al = an,那么n的最小值是多少?并说明理由.
参考答案:
一. BADDC CBB 二. 9. 50° 10. 2或– 3 11. 15 12. 3 2 – 8.
三.13. 略 14. 6位学生 15. 略.
㈣ 初一数学竞赛题!
1.对
2.整式与整式的和是整式,单项式与单项式的不一定是单项式(x+x^2),多项式和多项式的和不一定是多项式((x+y)+(x-y))
3.最大的负整数为-1
4.a+b的值大于a-b的值,两边同加b-a,得2b大于0,所以b>0。
5.没有大于-(圆周率的值)并且不是自然数的整数,因为大于-(圆周率的值)就是大于3.14。
6.A对,比如1。B对,比如1。C错,负数的平方为非负数。D对,比如-2,-1。
7.a不一定大于-a,应该讨论a的正负
8.都可以
9.减少
10题以后我下午再答~
㈤ 初中数学竞赛题库
由图结合等式关系x^2+y^2+z^2=2xyz得知:x、y与z有关系x^2+y^2=xyz
z^2=xyz,故x^2+y^2=z^2。正整数解为x=1,y=1,z=1。
㈥ 初一数学竞赛题目
甲中纯酒精重量是:v1*m1/(m1+n1)
乙中纯酒精重量是:v2*m2/(m2+n2)
甲中水的重量是:v1*n1/(m1+n1)
乙中水的重量是:v2*n2/(m2+n2)
总共纯酒精重量为:v1*m1/(m1+n1)+v2*m2/(m2+n2)
=(v1m1m2+v1m1n2+v2m1m2+v2m2n1)/(m1+n1)(m2+n2)
总共水的重量为:v1*n1/(m1+n1)+v2*n2/(m2+n2)
=(v1n1m2+v1n1n2+v2m1n2+v2n1n2)/(m1+n1)(m2+n2)
所得液体中纯酒精与水之比是:
(v1m1m2+v1m1n2+v2m1m2+v2m2n1)/(v1n1m2+v1n1n2+v2m1n2+v2n1n2)
㈦ 初一数学竞赛题 帮帮忙啊
验算不对,
按一楼方法
x-45=a^2
x+44=b^2
89=1*89
b^2-a^2=89=1*89
b+a=89
b-a=1
b=45,a=44
X=45^2-44=1981
㈧ 初一数学奥林匹克竞赛题
①某商店买一物复品,进货时价格比原来制降低了6.4% ,利润率增加了8% ,原来的利润率是多少?
②某工厂职工外出旅游,每辆车做22人,则余下一人,如果去掉一辆车,人平均分开无剩余,原来有多少名员工,多少辆车?
③S=1÷1/1980+1/1981+1/1982+……+1/2000+1/2011
则S的整数部分为多少?
④(2x+1)⁴﹢¹=ax⁴﹢¹+bχ⁴﹢cχ³﹢dχ²﹢eχ+f a+b=?
这是我刚考过的奥林匹克试题 我有些没做出来 挺难的
㈨ 七年级数学竞赛题
25.男、女各8人跳集体舞.
(1)如果男女分站两列;
(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.
问各有多少种不同情况?
26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?
27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.
28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?
29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.
30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?
31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?
32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?
33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?
34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?
35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.
(1)试用新合金中第一种合金的重量表示第二种合金的重量;
(2)求新合金中含第二种合金的重量范围;
(3)求新合金中含锰的重量范围
25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有
8×7×6×5×4×3×2×1=40320
种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.
(2)逐个考虑结对问题.
与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有
2×8×7×6×5×4×3×2×1=80640
种不同情况.
26.万位是5的有
4×3×2×1=24(个).
万位是4的有
4×3×2×1=24(个).
万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:
34215,34251,34512,34521.
所以,总共有
24+24+6+4=58
个数大于34152.
27.两车错过所走过的距离为两车长之总和,即
92+84=176(米).
设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有
解之得
解之得x=9(天),x+3=12(天).
解之得x=16(海里/小时).
经检验,x=16海里/小时为所求之原速.
30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得
解之得
故甲车间超额完成税利
乙车间超额完成税利
所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).
31.设甲乙两种商品的原单价分别为x元和y元,依题意可得
由②有
0.9x+1.2y=148.5, ③
由①得x=150-y,代入③有
0. 9(150-y)+1.2y=148. 5,
解之得y=45(元),因而,x=105(元).
32.设去年每把牙刷x元,依题意得
2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,
即
2×1.68+2×1.3+2×1.3x=5x+2.6,
即 2.4x=2×1.68,
所以 x=1.4(元).
若y为去年每支牙膏价格,则y=1.4+1=2.4(元).
33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则
y=(4-x)(400+200x)
=200(4-x)(2+x)
=200(8+2x-x2)
=-200(x2-2x+1)+200+1600
=-200(x-1)2+1800.
所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.
34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以
0.4(25+x)=0.6x,
解之得x=50分钟.于是
左边=0.4(25+50)=30(千米),
右边= 0.6×50=30(千米),
即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.
35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有
(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.
(3)新合金中,含锰重量为:
x·40%+y·10%+z·50%=400-0.3x,
而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.