当前位置:首页 » 语数英语 » 高一数学教学总结

高一数学教学总结

发布时间: 2020-11-21 00:34:20

A. 学习高中数学怎么归纳和总结

首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必 的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以 略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。 有了学习数学的兴趣和积极性,要学好数学,还要注意学习方法并养成良好的学习习惯。 知识是能力的基础,要切实抓好基础知识的学习。数学基础知识学习包括概念学习,定理公式学习以及解题学习三个方面。学习数学概念,要善于抓住它的本质属性,也就是区别于这个概念和其他概念的属性;学习定理公式,要紧紧抓住定理方向的内在联系,抓住定理公式适用的范围及题型,做到得心应手地应用这些定理公式,数学解题实№上是在熟练掌握概念与定理公式的基础上解决矛盾,完成从“未知”向“已知”的转化。要著重学习各种转化方式,培养转化的能力。总而言之,在学习数学基础知识中,要注意把握知识的整体精髓, 悟其中的规律和实质,形成一个紧密联系的整体认识体系,以促进各种形式间的相互迁移和转化。同时,还要注意知识形成过程无处不隐含著人们在教学活动中解决问题的途径、手段和策略,无处不以数学思想、方法为指南,而这也是我们学习知识时最希望要学到的东西。 数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。 在数学学习中,要特别重视运用数学知识解决实№问题能力的培养。数学社会化的趋势,使得“大众数学”的口号席卷整个世界,有人认为未来的工作岗位是为已作好数学准备的人才提供的,这里所说的“已作好了数学准备”并不仅指懂得了数学理论,更重要的是学会了数学思想,学会了将数学知识灵活运用于解决现实问题中。培养数学应用能力,首先要养成将实№问题数学化的习惯;其次,要掌握将实№问题数学化的一般方法,即建立数学模型的方法,同时,还要加强数学与其他学科的联系,除与传统学科如物理化学联系外,可适当了解数学在经济学、管理学、工业等方面的应用。 如果我们在数学学习中,既扎扎实实地学好了数学知识和技能,又牢固地掌握了数学思想和方法,而且能灵活应用数学知识和技能解决实№问题,那么,我们就走在了一条数学学习成功的大道上。 如何学好数学1 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

B. 高中数学教学工作总结

呵呵这类问题真的很奇怪哦
不过可以到这里来找到你要的文字哦
www.fanwen8.com

C. 高一学数学心得

高一(1)班曾佳妮

开学这么长时间以来,第一次像这样对自己的学习做大型总结,经过第一次月考和刚结束不久的期中考试,我对自己的成绩有了一定的了解,更深深体会了高中学习生活的不易,从中我也总结了一些学习方法,也希望我的成绩能进一步提高,
2014届高一数学学习心得


数学被称为科学的皇后,从小学开始,数学就是我的强项,但这次的考试成绩却让我大失所望,我总结出了下列几点问题:

1. 概念及做题方法不清,看似学会了,其实只是表面的东西,没有深入,更没有体会其中的内涵。

2. 反应能力、逻辑思维和做题速度还需提高,要保证做对,尤其是基础题,会做的一定要做对,不要钟爱于难题,基础题占大分。

3. 粗心大意是一个致命的毛病,要在平常的学习生活中慢慢纠正,养成良好的学习习惯,注重细节。

说的全是空话,要行动起来才有意义。

对于学好数学第一点就是要有兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”没有兴趣就要培养兴趣,而学生大多对数学没兴趣是因为成绩不好,成绩越不好,就越没有兴趣,老师的责骂也打击着学生的自尊心,这便形成了一个恶性循环。老师对学生的态度和教育方法严重影响着学生的学习成绩。我认为老师的鼓励和发自内心的温暖的话语会使学生有很大的改变,这个年龄段的学生不善于表达感情,也许经常会说到那个老师怎么怎么不好,但心里却是充满感激,也希望老师能从一个正面的角度评价学生。

学好数学第二点就是要有好的学习方法。著名社会活动家,联合国教科文组织总干事埃德加·富尔在其所著《学 class="channel_keylink" href="http://xuehuishengcun.unjs.com/">生存》一书中指出:未来的文盲不单是指那些不识字的人,而是更广泛地指那些不会学习的人,微软公司总裁比尔·盖茨也说:在未来的世界,财富将首先依赖于人们的学习与创新能力,……对于那些拥有学习与创新能力的人来说,新时代是一个充满机遇与希望的世界,这两位著名人物的话告诉我们,随著二十一世纪信息时代的降临,学习与创新能力将成为人们赖以生存和发展的最重要条件,现在的中学生,将要在二十一世纪大显身手,为了迎接二十一世纪的挑战,我们既要不断提高自己的科学知识水平,又要逐步学会学习和研究的方法,提高学习和创新的能力,
心得体会
《2014届高一数学学习心得》(http://www.unjs.com)。预习和复习是最重要的学习方法,每天晚上预习第二天的内容,有助于上课时能进一步理解学习内容,不会存在听不懂的现象,更好地跟着老师的思维走,更深一步的探究,你会发现数学的奥秘。但有很多同学不会预习,不知道从哪里入手,只知道把书看一遍,把黑体句子记住,根本没有深入思考,更不用说自主探究、提出有价值的问题了,所以才害怕老师问的深层次的问题,哪怕只是基础,同学们都很难表述清楚,这是应该改进的问题。复习是为了巩固当天学习的内容,不至于刚学就忘记,预习时可根据复习内容把知识点结合在一起,有利于记忆。上课听讲也是非常重要的环节,要把上课的45分钟充分利用,尽可能地吸收老师传授的知识,思想要跟着老师走,只要把握好了这45分钟,就不怕学不会,课间最好不要继续研究数学,应该适当地放松,劳逸结合,而且课间教学楼声音嘈杂,容易使思维中断,不利于思考。作业也是对每天学习内容的一个检测,最好是先把课本复习一遍,把知识点掌握好,做起作业来会更顺畅,更有利于记忆知识点。现在许多同学是为了完成作业而写作业,这样没有任何意义。除了作业还应做适当的课外练习,增加做题量,多见题型,来提高做题效率,不能只顾课本和作业。我们还要准备一个纠错本,把考试失误的题和易错的题记录下来,作为复习的最好资料,也防止以后会错同样的题

第三点就是学习态度。许多同学没有摆正学习态度,感觉总是为了别人而学习,有了好的学习方法后就要养成习惯,要有毅力去坚持把它做好,要有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。毅力是第一重要的,学习方法是第二重要的。在现实生活中,全中国仍有70%以上的占第一的学生虽然占了第一,但他们并不是毅力最强的,或者说学习方法生活方式不是最好的。爱迪生不是说过“天才是百分之九十九的汗水加上百分之一的灵感”吗?

实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。数学思想方法是知识、技能转化为能力的桥粱,是数学结构中强有力的支柱,在中学数学课本里渗透了函数的思想,方程的思想,数形结合的思想,逻辑划分的思想,等价转化的思想,类比归纳的思想,介绍了配方法、消元法、换元法、待定系数法、反证法、数学归纳法等,在学好数学知识的同时,要下大力气理解这些思想和方法的原理和依据,并通过大量的练习,掌握运用这些思想和方法解决数学问题的步骤和技巧。知识是能力的基础,要切实抓好基础知识的学习让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。 我希望能够通过我和老师的共同努力,更进一步的深入数学,了解数学,提高数学成绩,为未来打好基础。






〔2014届高一数学学习心得〕随文赠言:【古来一切有成就的人,都很严肃地对待自己的生命,当他活着一天,总要尽量多劳动,多工作,多学习,不肯虚度年华,不让时间白白地浪费掉。邓拓】

D. 高一数学课代表学科期末总结

范例
亲爱的同学们,敬爱的老师、家长,你们好。首先欢迎你们前来参加XXX班的期末家长会。我是代数课代表XXX,下面由我来为大家总结这一学期的化学学习总结。

代数是一门好的学科,这也是一个新的开始,想要同学们对化学感兴趣,首先就是激发同学们的好奇心,提出生活中常见的现象,让同学们思考,老师用将要学习的化学知识解释,师生在互动之中不仅增进了情感,而且在潜移默化中产生了兴趣。

代数上的知识并不需要死记硬背,只要注意知识点的记忆和知识点的贯通、融合、运用,就一定可以学好数学。
学生上课时候:
1:活跃课堂气氛,提高兴趣力。
在课堂上,以花样吸引同学,在快乐的学习中记住知识。
2:精简课下作业,提高凝聚力。
在课下,不要留大片大片的作业,同学们不想做,也不愿意认真做的话,效率就会很低。我们找出与知识点紧密相连又与生活实际相结合的典型例题留成作业,让同学们没有负担地把知识点凝聚起来,做到一点就通。
3:核对作业答案,提高正确率。
课下的作业不能只做不对,否则同学们记住了错误的答案,那便与我们的本意背道而驰了,答案一定要清晰明确,而且不能认准死答案。
4:敢于提出疑问,发展思维力。
要记住,学数学不是死学,所有的教科书不一定都是对的,因为教科书是从老的教科书那里抄来的,老的教科书是从更老的那里抄来的……要敢于发现问题,提出问题,不要把疑惑藏在心里。

以上是我们的这个学期的代数总结。我们下个学期还会继续努力,将方针制定得更完善,力学笃行,让同学们的化学成绩更上一层楼!

谢谢大家。

E. 高一数学教学总结怎么写

一本励志书上曾经这样说过,一个人的成功与否,不在于他的年龄大小,而在于他的意志力、经历和心智.回顾我的20XX,如果真的要来一个总结的话,自己真的是感同身受.总觉内心深处时时充盈着感动。是领导的关怀,同事间的互助,师生间的灵犀,让我感到了生活的意义,感到了生命的美好,也给了我在单调机械的工作中坚持下去的理由和信念。我感动着这一切,所以我也努力工作着,回报着。

转眼间,一年过去了,在这一年的工作有成功与失败、有欢笑与泪水。这一年是我人生中最亮丽的一年,是几年教学中收获最多的一年,虽然这一年的工作还有缺憾、还有不足,但绝对是我成长最快的一年,是我经验积累最多的一年。现就这一年的工作总结如下:

一、师德方面:加强修养,塑造师德

我始终认为作为一名教师应把“师德”放在一个重要的位置上,因为这是教师的立身之本。“学高为师,身正为范”,这个道理古今皆然。从踏上讲台的第一天,我就时刻严格要求自己,力争做一个有崇高师德的人。我始终坚持给学生一个好的师范,希望从我这走出去的都是合格的学生,都是一个个大写的“人”。为了给自己的学生一个好的表率,同时也是使自己陶冶情操,加强修养,课余时间我阅读了大量的书籍,不断提高自己水平。今后我将继续加强师德方面的修养,力争在这一方面有更大的提高。

二、教学方面:虚心求教,强化自我

担任两个班的数学教学的工作任务是艰巨的,在实际工作中,那就得实干加巧干。对于一名数学教师来说,加强自身业务水平,提高教学质量无疑是至关重要的。随着岁月的流逝,伴着我教学天数的增加,我越来越感到我知识的匮乏,经验的缺少。面对讲台下那一双双渴望的眼睛,每次上课我都感到自己责任之重大。为了尽快充实自己,使自己教学水平有一个质的飞跃,我从以下几个方面对自身进行了强化。

首先是从教学理论和教学知识上。我不但自己订阅了三四种教学杂志进行教学参考,而且还借阅大量有关教学理论和教学方法的书籍,对于里面各种教学理论和教学方法尽量做到博采众家之长为己所用。在让先进的理论指导自己的教学实践的同时,我也在一次次的教学实践中来验证和发展这种理论。

其次是从教学经验上。由于自己教学经验有限,有时还会在教学过程中碰到这样或那样的问题而不知如何处理。因而我虚心向老教师学习,力争从他们那里尽快增加一些宝贵的教学经验。我个人应付和处理课堂各式各样问题的能力大大增强。

最后我做到“不耻下问” 教学互长。从另一个角度来说,学生也是老师的“教师”。由于学生接受新知识快,接受信息多,因此我从和他们的交流中亦能丰富我的教学知识。

为了不辜负领导的信任和同学的希望,我决心尽我最大所能去提高自身水平,争取较出色的完成新高一教学。为此,我一方面下苦功完善自身知识体系,打牢基础知识,使自己能够比较自如的进行教学;另一方面,继续向其他教师学习,抽出业余时间具有丰富教学经验的老师学习。对待课程,虚心听取他们意见备好每一节课;仔细听课,认真学习他们上课的安排和技巧。这一年来,通过认真学习教学理论,刻苦钻研教学,虚心向老教师学习,我自己感到在教学方面有了较大的提高。在今年的数学基本功竞赛中先后获得张甸区一等奖、姜堰市三等奖,并且被评为”姜堰市教坛新秀”。学生的成绩也证实了这一点,我教的班级在历次考试当中都取的了较好的成绩,所辅导的学生在“江苏省数学邀请赛”中分别获一二三等奖,同时我也获得第五届时代学习报数学文化节“优秀指导教师”奖

三、 考勤纪律方面

我严格遵守学校的各项规章制度,不迟到、不早退、有事主动请假。在工作中,尊敬领导、团结同事,能正确处理好与领导同事之间的关系。平时,勤俭节约、任劳任怨、对人真诚、热爱学生、人际关系和谐融洽,从不闹无原则的纠纷,处处以一名人民教师的要求来规范自己的言行,毫不松懈地培养自己的综合素质和能力。

四、业务进修方面

随着新课程改革对教师业务能力要求的提高,本人在教学之余,还挤时间自学本科和积极学习各类现代教育技术。

五、不足之处

反思一年多的工作,自己在一些细节工作上还存在着不足,特别是学生对作业本的保管、潜能生作业的书写缺乏指导和严格要求。在今后的工作中,应充分注重工作中的细节,尽量使自己的工作做得扎实。

总之,在这学期的教学工作中收获了很多,提高了很多,同时也感受到了自己的不足。在今后的工作中,应不断提高自己的业务能力、充实自己的业务理论水平、提高自己在学生管理方面的能力、注重细节工作,一如既往的兢兢业业,勤奋钻研,尽量使自己的各项工作做得更扎实、更完善、更有效、更实在。

F. 高中数学教师教学总结

数学 抓核心练能力克难点
山东兰陵县第一中学 王献新
考前最后冲刺既是一轮复习的巩固提高,也是高考成功与否的关键复习阶段,在考前最后冲刺中要抓核心、练能力、克难点。
抓核心。考前最后冲刺时间有限,在有限时间内要取得好的复习效果,必需抓核心。一抓核心知识点。如平面向量的核心知识点是向量的运算(线性运算、数量积运算)和两个定理(共线向量定理、平面向量基本定理),抓住它们带动向量的概念、向量坐标运算等,这样既掌握了核心知识点也掌握了知识之间的内在联系。二抓核心数学思想方法。核心数学思想方法主要是函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想。在复习中要时刻注意其在解题中的作用,养成自觉使用数学思想方法指导解题的思想意识。三抓核心数学方法。核心数学方法有综合法、分析法、反证法、数学归纳法、配方法、待定系数法、换元法、构造法、割补法等。
练能力。一练逻辑思维能力。解答数学试题要依靠逻辑思维分析试题的条件和结论,找出其内在关系后确定解题方向,考前最后冲刺中要把练逻辑思维能力放在首位。二练推理论证能力和运算求解能力。在确定解题方向后,主要依靠推理论证和运算完成解题过程,推理论证能力和运算求解能力是试题解答成败的关键。三练空间想象能力。空间想象能力是解决立体几何试题的必要能力,但平面也可以看作空间的特殊情况,它在解决函数、平面向量、解三角形、平面解析几何等问题中也发挥着重要作用。
克难点。难点是制约考试成绩的主要指标,克服一个难点就可以多得几分,考前最后冲刺要尽力多克服难点。要克服数学试题高频难点,主要是函数的图像性质的综合运用类试题、多面体与球的组合体、数列与不等式的综合、解析几何中直线与圆锥曲线交汇衍生的问题、导数研究函数性质时衍生的问题、新定义类试题等。

G. 高一数学总结如何写

主要写一下工作内容,取得的成绩,以及不足,最后提出合理化的建议或者新的努力方向。。。。。。
总结,就是把一个时间段的情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。总结是应用写作的一种,是对已经做过的工作进行理性的思考。总结与计划是相辅相成的,要以计划为依据,制定计划总是在个人总结经验的基础上进行的。
总结的基本要求
1.总结必须有情况的概述和叙述,有的比较简单,有的比较详细。这部分内容主要是对工作的主客观条件、有利和不利条件以及工作的环境和基础等进行分析。
2.成绩和缺点。这是总结的中心。总结的目的就是要肯定成绩,找出缺点。成绩有哪些,有多大,表现在哪些方面,是怎样取得的;缺点有多少,表现在哪些方面,是什么性质的,怎样产生的,都应讲清楚。
3.经验和教训。做过一件事,总会有经验和教训。为便于今后的工作,须对以往工作的经验和教训进行分析、研究、概括、集中,并上升到理论的高度来认识。
今后的打算。根据今后的工作任务和要求,吸取前一时期工作的经验和教训,明确努力方向,提出改进措施等
总结的注意事项
1.一定要实事求是,成绩不夸大,缺点不缩小,更不能弄虚作假。这是分析、得出教训的基础。2.条理要清楚。总结是写给人看的,条理不清,人们就看不下去,即使看了也不知其所以然,这样就达不到总结的目的。
3.要剪裁得体,详略适宜。材料有本质的,有现象的;有重要的,有次要的,写作时要去芜存精。总结中的问题要有主次、详略之分,该详的要详,该略的要略。 总结的基本格式 1、标题 2、正文
开头:概述情况,总体评价;提纲挈领,总括全文。
主体:分析成绩缺憾,总结经验教训。
结尾:分析问题,明确方向。
3、落款
署名,日期

H. 高一数学知识总结

高考数学总复习精品资料---高中数学解题小结大汇总
熟悉这些解题小结论,启迪解题思路、探求解题佳径,总结解题方法,防止解题易误点的产生,对提升高考数学成绩将会起到立竿见影的效果。
一、集合与简易逻辑
1.集合的元素具有无序性和互异性.
2.对集合 , 时,你是否注意到“极端”情况: 或 ;求集合的子集时是否注意到 是任何集合的子集、 是任何非空集合的真子集.
3.对于含有 个元素的有限集合 ,其子集、真子集、非空子集、非空真子集的个数依次为
4.“交的补等于补的并,即 ”;“并的补等于补的交,即 ”.
5.判断命题的真假
关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.
6.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.
7.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.
原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.
注意:命题的否定是“命题的非命题,也就是‘条件不变,仅否定结论’所得命题”,但否命题是“既否定原命题的条件作为条件,又否定原命题的结论作为结论的所得命题” .
8.充要条件

二、函数
1.指数式、对数式,
, ,
,.
, , , , ,
,. .
2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合 中的元素必有像,但第二个集合 中的元素不一定有原像( 中元素的像有且仅有下一个,但 中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集 的子集”.
(2)函数图像与 轴垂线至多一个公共点,但与 轴垂线的公共点可能没有,也可任意个.
(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.
(4)原函数与反函数有两个“交叉关系”:自变量与因变量、定义域与值域.求一个函数的反函数,分三步:逆解、交换、定域(确定原函数的值域,并作为反函数的定义域).
注意:① , , ,
但 .
②函数 的反函数是 ,而不是 .
3.单调性和奇偶性
(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.
偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.
单调函数的反函数和原函数有相同的性;如果奇函数有反函数,那么其反函数一定还是奇函数.
注意:(1)确定函数的奇偶性,务必先判定函数定义域是否关于原点对称.确定函数奇偶性的常用方法有:定义法、图像法等等.
对于偶函数而言有: .
(2)若奇函数定义域中有0,则必有 .即 的定义域时, 是 为奇函数的必要非充分条件.
(3)确定函数的单调性或单调区间,在解答题中常用:定义法(取值、作差、鉴定)、导数法;在选择、填空题中还有:数形结合法(图像法)、特殊值法等等.
(4)函数单调是函数有反函数的一个充分非必要条件.
(5)定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.
(6)函数单调是函数有反函数的充分非必要条件,奇函数可能反函数,但偶函数只有 有反函数;既奇又偶函数有无穷多个( ,定义域是关于原点对称的任意一个数集).
(7)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.
复合函数的奇偶性特点是:“内偶则偶,内奇同外”.
复合函数要考虑定义域的变化。(即复合有意义)

4.对称性与周期性(以下结论要消化吸收,不可强记)
(1)函数 与函数 的图像关于直线 ( 轴)对称.
推广一:如果函数 对于一切 ,都有 成立,那么 的图像关于直线 (由“ 和的一半 确定”)对称.
推广二:函数 , 的图像关于直线 (由 确定)对称.
(2)函数 与函数 的图像关于直线 ( 轴)对称.
推广:函数 与函数 的图像关于直线 对称(由“ 和的一半 确定”).
(3)函数 与函数 的图像关于坐标原点中心对称.
推广:函数 与函数 的图像关于点 中心对称.
(4)函数 与函数 的图像关于直线 对称.
推广:曲线 关于直线 的对称曲线是 ;
曲线 关于直线 的对称曲线是 .
(5)曲线 绕原点逆时针旋转 ,所得曲线是 (逆时针横变再交换).
特别: 绕原点逆时针旋转 ,得 ,若 有反函数 ,则得 .
曲线 绕原点顺时针旋转 ,所得曲线是 (顺时针纵变再交换).
特别: 绕原点顺时针旋转 ,得 ,若 有反函数 ,则得 .
(6)类比“三角函数图像”得:
若 图像有两条对称轴 ,则 必是周期函数,且一周期为 .
若 图像有两个对称中心 ,则 是周期函数,且一周期为 .
如果函数 的图像有下一个对称中心 和一条对称轴 ,则函数 必是周期函数,且一周期为 .
如果 是R上的周期函数,且一个周期为 ,那么 .
特别:若 恒成立,则 .
若 恒成立,则 .若 恒成立,则 .
如果 是周期函数,那么 的定义域“无界”.
5.图像变换
(1)函数图像的平移和伸缩变换应注意哪些问题?
函数 的图像按向量 平移后,得函数 的图像.

(2)函数图像的平移、伸缩变换中,图像的特殊点、特殊线也作相应的变换.

(3)图像变换应重视将所研究函数与常见函数(正比例函数、反比例函数、一次函数、二次函数、对数函数、指数函数、三角函数、“鱼钩函数 ”及函数 等)相互转化.
注意:①形如 的函数,不一定是二次函数.
②应特别重视“二次三项式”、“二次方程”、“二次函数”、“二次曲线”之间的特别联系.
③形如 的图像是等轴双曲线,双曲线两渐近线分别直线 (由分母为零确定)、直线 (由分子、分母中 的系数确定),双曲线的中心是点 .
三、数列
1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前 项和公式的关系: (必要时请分类讨论).
注意: ;
.
2.等差数列 中:
(1)等差数列公差的取值与等差数列的单调性.
(2) ; .
(3) 、 也成等差数列. (4)两等差数列对应项和(差)组成的新数列仍成等差数列.
(5) 仍成等差数列.
(6) , , ,
, .
(7) ; ; .
(8)“首正”的递减等差数列中,前 项和的最大值是所有非负项之和;
“首负”的递增等差数列中,前 项和的最小值是所有非正项之和;
(9)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”-“奇数项和”=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和”-“偶数项和”=此数列的中项.
(10)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.
(11)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).
3.等比数列 中:
(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.
(1) ; .
(3) 、 、 成等比数列; 成等比数列 成等比数列.
(4)两等比数列对应项积(商)组成的新数列仍成等比数列.
(5) 成等比数列.
(6) .
特别: .
(7) .
(8)“首大于1”的正值递减等比数列中,前 项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前 项积的最小值是所有小于或等于1的项的积;
(9)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和”=“首项”加上“公比”与“偶数项和”积的和.
(10)并非任何两数总有等比中项. 仅当实数 同号时,实数 存在等比中项.对同号两实数 的等比中项不仅存在,而且有一对 .也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.
(11)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).
4.等差数列与等比数列的联系
(1)如果数列 成等差数列,那么数列 ( 总有意义)必成等比数列.
(2)如果数列 成等比数列,那么数列 必成等差数列.
(3)如果数列 既成等差数列又成等比数列,那么数列 是非零常数数列;但数列 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.
(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.
如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.
注意:(1)公共项仅是公共的项,其项数不一定相同,即研究 .但也有少数问题中研究 ,这时既要求项相同,也要求项数相同.(2)三(四)个数成等差(比)的中项转化和通项转化法.
5.数列求和的常用方法:
(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),
③ , ,
, .
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.
(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前 和公式的推导方法).
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前 和公式的推导方法之一).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:
① , ② ,
③ ,

④ ,⑤ ,
⑥ ,
⑦ ,⑧ .
特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时分类讨论.
(6)通项转换法。

6.分期付款型应用问题
(1)重视将这类应用题与等差数列或等比数列相联系.
(2)若应用问题像“森林木材问题”那样,既增长又砍伐,则常选用“统一法”统一到“最后”解决.
(3)“分期付款”、“森林木材”等问题的解决过程中,务必“卡手指”,细心计算“年限”作为相应的“指数”. 

四、三角函数
1. 终边与 终边相同( 的终边在 终边所在射线上) .
终边与 终边共线( 的终边在 终边所在直线上) .
终边与 终边关于 轴对称 .
终边与 终边关于 轴对称 .
终边与 终边关于原点对称 .
一般地: 终边与 终边关于角 的终边对称 .
与 的终边关系由“两等分各象限、一二三四”确定.
2.弧长公式: ,扇形面积公式: ,1弧度(1rad) .
3.三角函数符号特征是:一是全正、二正弦正、三是切正、四余弦正.
注意: ,
, .
4.三角函数线的特征是:正弦线“站在 轴上(起点在 轴上)”、余弦线“躺在 轴上(起点是原点)”、正切线“站在点 处(起点是 )”.务必重视“三角函数值的大小与单位圆上相应点的坐标之间的关系,‘正弦’ ‘纵坐标’、‘余弦’ ‘横坐标’、‘正切’ ‘纵坐标除以横坐标之商’”;务必记住:单位圆中角终边的变化与 值的大小变化的关系. 为锐角 .

5.三角函数同角关系中,平方关系的运用中,务必重视“根据已知角的范围和三角函数的取值,精确确定角的范围,并进行定号”;
6.三角函数诱导公式的本质是:奇变偶不变,符号看象限.
7.三角函数变换主要是:角、函数名、次数、系数(常值)的变换,其核心是“角的变换”!
角的变换主要有:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.
如 , ,
, 等.
常值变换主要指“1”的变换:
等.
三角式变换主要有:三角函数名互化(切割化弦)、三角函数次数的降升(降次、升次)、运算结构的转化(和式与积式的互化). 解题时本着“三看”的基本原则来进行:“看角、看函数、看特征”,基本的技巧有:巧变角,公式变形使用,化切割为弦,用倍角公式将高次降次.
注意:和(差)角的函数结构与符号特征;余弦倍角公式的三种形式选用;降次(升次)公式中的符号特征.“正余弦‘三兄妹— ’的内存联系”(常和三角换元法联系在一起
).
辅助角公式中辅助角的确定: (其中 角所在的象限由a, b的符号确定, 角的值由 确定)在求最值、化简时起着重要作用.尤其是两者系数绝对值之比为 的情形. 有实数解 .
8.三角函数性质、图像及其变换:
(1)三角函数的定义域、值域、单调性、奇偶性、有界性和周期性
注意:正切函数、余切函数的定义域;绝对值对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变;其他不定. 如 的周期都是 , 但 的周期为 , y=|tanx|的周期不变,问函数y=cos|x|, ,y=cos|x|是周期函数吗?
(2)三角函数图像及其几何性质:

(3)三角函数图像的变换:两轴方向的平移、伸缩及其向量的平移变换.
(4)三角函数图像的作法:三角函数线法、五点法(五点横坐标成等差数列)和变换法.
9.三角形中的三角函数:
(1)内角和定理:三角形三角和为 ,任意两角和与第三个角总互补,任意两半角和与第三个角的半角总互余.锐角三角形 三内角都是锐角 三内角的余弦值为正值 任两角和都是钝角 任意两边的平方和大于第三边的平方.
(2)正弦定理: (R为三角形外接圆的半径).
注意:已知三角形两边一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解.
(3)余弦定理: 等,常选用余弦定理鉴定三角形的类型.
(4)面积公式: .
10.反三角函数:
(1)反正弦 、反余弦 、反正切 的取值范围分别是 .
(2)异面直线所成的角、直线与平面所成的角、二面角、向量的夹角的范围依次是 , .直线的倾斜角、 到 的角、 与 的夹角的范围依次是 .
五、向 量
1.向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.
2.几个概念:零向量、单位向量(与 共线的单位向量是 ,特别: )、平行(共线)向量(无传递性,是因为有 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影( 在 上的投影是 ).
3.两非零向量平行(共线)的充要条件 .
两个非零向量垂直的充要条件 .
特别:零向量和任何向量共线. 是向量平行的充分不必要条件!
4.平面向量的基本定理:如果e1和e2是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数 、 ,使a= e1+ e2.
5.三点 共线 共线;
向量 中三终点 共线 存在实数 使得: 且 .
6.向量的数量积: , ,

.
注意: 为锐角 且 不同向;
为直角 且 ;
为钝角 且 不反向
是 为钝角的必要非充分条件.
向量运算和实数运算有类似的地方也有区别:一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用;对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量;向量的“乘法”不满足结合律,即 ,切记两向量不能相除(相约).
7.
注意: 同向或有 ;
反向或有 ;
不共线 .(这些和实数集中类似)
8.平移与定比分点
(1)线段的定比分点坐标公式
设P(x,y)、P1(x1,y1),P2(x2,y2),且 ,则. , .
特别:分点的位置与 的对应关系.
中点坐标公式 , 为 的中点.
中, 过 边中点; ;
.
为 的重心;
特别 为 的重心.
为 的垂心;
所在直线过 的内心(是 的角平分线所在直线);
的内心.
.
(2)平移公式: 如果点P(x,y)按向量a=(h,k)平移至 ,则 .
曲线 按向量a=(h,k)平移得曲线 .
六、不等式
1.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.
(2)解分式不等式 的一般解题思路是什么?(移项通分,分子分母分解因式,x的系数变为正值,标根及奇穿过偶弹回);
(3)含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论、平方转化或换元转化);
(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.
2. 利用重要不等式 以及变式 等求函数的最值时,务必注意a,b (或a ,b非负),且“等号成立”时的条件是积ab或和a+b其中之一应是定值(一正二定三等四同时).
3.常用不等式有: (根据目标不等式左右的运算结构选用) a、b、c R, (当且仅当 时,取等号)
4.比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法和放缩法(注意:对“整式、分式、绝对值不等式”的放缩途径, “配方、函数单调性等”对放缩的影响).
5.含绝对值不等式的性质:
同号或有 ;
异号或有 .
注意:不等式恒成立问题的常规处理方式?(常应用方程函数思想和“分离变量法”转化为最值问题).
七、直线和圆
1.直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义( 或 )及其直线方程的向量式( ( 为直线的方向向量)).应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2.知直线纵截距 ,常设其方程为 或 ;知直线横截距 ,常设其方程为 (直线斜率k存在时, 为k的倒数)或 .知直线过点 ,常设其方程为 或 .
注意:(1)直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式、向量式.以及各种形式的局限性.(如点斜式不适用于斜率不存在的直线,还有截矩式呢?)
与直线 平行的直线可表示为 ;
与直线 垂直的直线可表示为 ;
过点 与直线 平行的直线可表示为:

过点 与直线 垂直的直线可表示为:
.
(2)直线在坐标轴上的截距可正、可负、也可为0.直线两截距相等 直线的斜率为-1或直线过原点;直线两截距互为相反数 直线的斜率为1或直线过原点;直线两截距绝对值相等 直线的斜率为 或直线过原点.
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合.
3.相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是 ,而其到角是带有方向的角,范围是 .相应的公式是:夹角公式 ,直线 到 角公式 .注:点到直线的距离公式 .
特别: ;

.
4.线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解.
5.圆的方程:最简方程 ;
标准方程 ;
一般式方程 ;
参数方程 为参数);
直径式方程 .
注意:(1)在圆的一般式方程中,圆心坐标和半径分别是 .
(2)圆的参数方程为“三角换元”提供了样板,常用三角换元有:



.
6.解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆 上一点 圆的切线方程是: ,
过圆 上一点 圆的切线方程是:

过圆 上一点 圆的切线方程是: .
如果点 在圆外,那么上述直线方程表示过点 两切线上两切点的“切点弦”方程.
如果点 在圆内,那么上述直线方程表示与圆相离且垂直于 ( 为圆心)的直线方程, ( 为圆心 到直线的距离).
7.曲线 与 的交点坐标 方程组 的解;
过两圆 、 交点的圆(公共弦)系为 ,当且仅当无平方项时, 为两圆公共弦所在直线方程.
八、圆锥曲线
1.圆锥曲线的两个定义,及其“括号”内的限制条件,在圆锥曲线问题中,如果涉及到其两焦点(两相异定点),那么将优先选用圆锥曲线第一定义;如果涉及到其焦点、准线(一定点和不过该点的一定直线)或离心率,那么将优先选用圆锥曲线第二定义;涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.
(1)注意:①圆锥曲线第一定义与配方法的综合运用;②圆锥曲线第二定义是:“点点距为分子、点线距为分母”,椭圆 点点距除以点线距商是小于1的正数,双曲线 点点距除以点线距商是大于1的正数,抛物线 点点距除以点线距商是等于1.③圆锥曲线的焦半径公式如下图:

2.圆锥曲线的几何性质:圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中 ,椭圆中 、双曲线中 .重视“特征直角三角形、焦半径的最值、焦点弦的最值及其‘顶点、焦点、准线等相互之间与坐标系无关的几何性质’”,尤其是双曲线中焦半径最值、焦点弦最值的特点.注意:等轴双曲线的意义和性质.

3.在直线与圆锥曲线的位置关系问题中,有“函数方程思想”和“数形结合思想”两种思路,等价转化求解. 特别是:
①直线与圆锥曲线相交的必要条件是他们构成的方程组有实数解,当出现一元二次方程时,务必“判别式≥0”,尤其是在应用韦达定理解决问题时,必须先有“判别式≥0”.
②直线与抛物线(相交不一定交于两点)、双曲线位置关系(相交的四种情况)的特殊性,应谨慎处理. 
③在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式
( , ,
)或“小小直角三角形”.
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率”为桥梁转化.
4.要重视常见的寻求曲线方程的方法(待定系数法、定义法、直译法、代点法、参数法、交轨法、向量法等), 以及如何利用曲线的方程讨论曲线的几何性质(定义法、几何法、代数法、方程函数思想、数形结合思想、分类讨论思想和等价转化思想等),这是解析几何的两类基本问题,也是解析几何的基本出发点.
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化.
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.

I. 高一数学教师期末总结

怎样学好高中数学
一、 高中数学课的设置
高中数学内容丰富,知识面广泛,将有:《代数》上、下册、《立体几何》和《平面解析几何》四本课本,高一年级学习完《代数》上册和《立体几何》两本书。高二将学习完《代数》下册和《平面解析几何》两本书。一般地,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。
二、初中数学与高中数学的差异。
1、知识差异。
初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。
2、学习方法的差异。
(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。
(2)模仿与创新的区别。
初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。
3、学生自学能力的差异
初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。
其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。
4、思维习惯上的差异
初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。
5、定量与变量的差异
初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2 bx c=0 (a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。
三、如何学好高中数学
良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。
1、 有良好的学习兴趣
两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?
(1)课前预习,对所学知识产生疑问,产生好奇心。
(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。
(3)思考问题注意归纳,挖掘你学习的潜力。
(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?
(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。
2、 建立良好的学习数学习惯。
习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。
3、 有意识培养自己的各方面能力
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
四、其它注意事项
1、注意化归转化思想学习。
人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。
2、学会数学教材的数学思想方法。
数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。
课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是 的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。
五、学数学的几个建议。
1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。
2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
3、记忆数学规律和数学小结论。
4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。
5、争做数学课外题,加大自学力度。
6、反复巩固,消灭前学后忘。
7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类
高中数学学习方法谈
进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。
一、 高中数学与初中数学特点的变化
1、数学语言在抽象程度上突变
初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。
2、思维方法向理性层次跃迁
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。
4、知识的独立性大
初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。
二、如何学好高中数学
1、养成良好的学习数学习惯。
建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法
学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。
3、逐步形成 “以我为主”的学习模式
数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。
4、针对自己的学习情况,采取一些具体的措施,记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再
犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
对新初三学生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。
其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。
在新学期要上好每一节课,数学课有知识的发生和形成的概念课,有解题思路探索和规律总结的习题课,有数学思想方法提炼和联系实际的复习课。要上好这些课来学会数学知识,掌握学习数学的方法。
概念课
要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。
习题课
要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。
复习课
在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。
最后,要有意识地培养好自己个人的心理素质,全面系统地进行心理训练,要有决心、信心、恒心,更要有一颗平常心。

高三复习计划
把高三的复习计划分为三大阶段。每个阶段有不同的任务、不同的目标和不同的学习方法。
第一阶段,是整个高三第一学期时间。这个阶段时间大约五个月,约占整个高三复习的一半时间左右。这个阶段可以称为基础复习阶段。学校里每一个科目都在逐册逐章节地进行复习,我们自己也应该和学校的教师步伐一致,进行各科的细致复习。我们要充分利用这五个月,把每一科在高考范围内的每个知识点都逐章逐节、逐篇逐段,甚至农字逐句地复习到,应做到毫无遗漏。这个阶段,复习中切忌急躁、浮躁,要知道“万丈高楼增地起”,只有这时候循序渐进、查缺被漏、巩固基础,才能在高考中取得好成绩;只有这时候把边边沿沿、枝枝杈杈的地方都复习到,才能在今后更多的时间去攻克一些综合性、高难度的题目。
这个阶段,还有一项重要任务,这就是高三第一学期的期末考试。这次考试十分重要,它既可以检验自己一学期来的复习效果,又可以查找自己急待解决的问题漏洞,还可以向你提出新的挑战。因此,我们把它戏称为一次“小高考”。这次考试还有一层特殊的涵义:它是高校招生中保送、推荐、评选市级三好学生的重要依据。我这里,特别提醒学习较好的高三同学,要格外重视这次考试。
第二阶段从寒假至第一次模拟考试前,时间大约四个月。这个阶段是复习工作中的最宝贵的时期,堪称复习的“黄金期”。之所以这样说,是因为这个时期复习任务最重,也最应该达到高效率的复习。也可以将这个阶段称为全面复习阶段。 我们的任务是把前一个阶段中较为零乱、繁杂的知识系统化、条理化,找到每科中的一条宏观的线索,提纲挈领,全面复习。这个阶段的复习,直接目的就是第一次模拟考试。第一次模拟教育是高考前最重要的一次学习检验和阅兵,是你选报志愿的重要依据。一模成功,可以使自己信心倍增,但不要沾沾自喜;一模受挫,也不要恢心丧气,妄自菲薄。应该为一模恰当定位,在战略上藐视它,在战术上重视它。
第三阶段从一模结束至高考前,时间大约两个月。这是高考前最后的一段复习时间,也可以称为综合复习阶段。随着高考的日益迫近,有些同学可能心理压力会越来越重。因此,这个时期应当以卸包袱为一个重要任务。要善于调节自己的学习和生活节奏,放松一下绷得紧紧的神经。古人云:“文武之道,一张一弛”,在此时,第天不必复习得太晚,要赶快调整高三一年紧张复习中形成的不当的生物钟,以保证充沛的精力。另外,这个时期不必再做过多的过量的习题,更不应死抠难题和偏题,应该做少而精的练习。比如,花些工夫研究研究历年高考的题目,因为这些题目既是经过千锤百炼的精品,又是高考命题人意志的直接体现,可谓字字珠玑。在复习中,我们中做题应先易后难,选择题拿不准也不要放弃,选一个最可能的空填上等等。
以上我介绍的是我在高三时的复习计划和体会。我想,我们在复习中,更重要的是从一点一滴做起。“千里之行,始于足下”,我们也应该重视日常每天每周的复习安排。
在高三一年的复习中,我们应该注意合理安排每一天的复习时间。在紧张的复习过程中,每天可供我们自己利用的时间并不多,其中最长的一段时间大约就是每天晚饭后至睡觉前的三个多小时时间。能否利用好这段时间,是高三复习成败的关键。在这方面,我的体会是不要在一个晚上把五科全复习到,这样做只会不分主次、自找麻烦。试想,仅仅是不足四小时的短短的一段宝贵时间,怎么能经得起五科的轮番轰炸呢?因此,我建议大家在一个晚上专攻一门到两门,抓住重点,集中精力,以争取达到较高的学习效率。我在高三每天晚上复习时,周一定为数学日,周二定为英语日,周三定为物理日,周四定为语文日,周五定为化学日,每晚集中精力复习一门功课,长期坚持,效果不错。
很多人在考试时总考不出自己的实际水平,拿不到理想的分数,究其原因,就是心理素质不过硬,考试时过于紧张的缘故,还有就是把考试的分数看得太重,所以才会导致考试失利,你要学会换一种方式来考虑问题,你要学会调整自己的心态,人们常说,考试考得三分是水平,七分是心理,过于地追求往往就会失去,就是这个缘故;不要把分数看得太重,即把考试当成一般的作业,理清自己的思路,认真对付每一道题,你就一定会考出好成绩的;你要学会超越自我,这句话的意思就是,心里不要总想着分数、总想着名次;只要我这次考试的成绩比我上一次考试的成绩有所提高,哪怕是只高一分,那我也是超越了自我;这也就是说,不与别人比成绩,就与自己比,这样你的心态就会平和许多,就会感到没有那么大的压力,学习与考试时就会感到轻松自如的;你试着按照这种方式来调整自己,你就会发现,在不经意中,你的成绩就会提高许多;
这就是我的经验之谈,妈妈教给我的道理,使我顺利地度过了中学阶段,也使我的成绩从高一班上的30多名到高三时就进入了年级的前10名,并且没有感到丝毫的压力,学得很轻松自如,你不妨也试一试,但愿我的经验能使你的压力有所减轻、成绩有所提高,那我也就感到欣慰了;
最后祝你学习进步!

热点内容
尹鹏老师 发布:2025-07-15 01:14:31 浏览:713
兰山教师招聘 发布:2025-07-15 00:33:48 浏览:173
新登地理 发布:2025-07-14 23:28:29 浏览:368
人教版语文二年级上册 发布:2025-07-14 23:01:45 浏览:454
爆高考语文 发布:2025-07-14 14:20:15 浏览:462
应用数学中心 发布:2025-07-14 13:37:52 浏览:19
鸡哪里最多 发布:2025-07-14 13:05:44 浏览:316
幼儿园安全教育活动方案 发布:2025-07-14 10:44:55 浏览:953
无翼鸟家庭教师 发布:2025-07-14 10:42:32 浏览:770
戴庙中学 发布:2025-07-14 09:56:33 浏览:699