竞赛数学题
1. 高中数学竞赛题
我曾经参加过全国高中数学竞赛。初赛的题目比任何学校公开的数学考试的最后一题都难。建议你买一本高中数学竞赛题看一下,上面有很多例子。初赛的题目目标是让百分之五十的人题目意思都看不懂,让百分之九十九的人根本无从下手如何解题。只让百分之一的人能做出来。
2. 历届高中数学竞赛试题及答案
2011年全国高中数学联赛江西省预赛
试 题
一、填空题(每小题10分,共 分)
、 是这样的一个四位数,它的各位数字之和为 ;像这样各位数字之和为 的四位数总共有 个.
、设数列 满足: ,且对于其中任三个连续项 ,都有: .则通项 .
、以抛物线 上的一点 为直角顶点,作抛物线的两个内接直角三角形 与 ,则线段 与 的交点 的坐标为 .
、设 ,则函数 的最大值是 .
、 .
、正三棱锥 的底面边长为 ,侧棱长为 ,过点 作与侧棱 都相交的截面 ,那么, 周长的最小值是 .
、满足 的一组正整数 .
、用 表示正整数 的各位数字之和,则 .
二、解答题(共 题,合计 分)
、(20分)、设 ,且满足: ,求 的值.
、( 分)如图, 的内心为 , 分别是
的中点, ,内切圆 分别与边 相切于 ;证明: 三线共点.
、( 分)在电脑屏幕上给出一个正 边形,它的顶点分别被涂成黑、白两色;某程序执行这样的操作:每次可选中多边形连续的 个顶点(其中 是小于 的一个固定的正整数),一按鼠标键,将会使这 个顶点“黑白颠倒”,即黑点变白,而白点变黑;
、证明:如果 为奇数,则可以经过有限次这样的操作,使得所有顶点都变成白色,也可以经过有限次这样的操作,使得所有顶点都变成黑色;
、当 为偶数时,是否也能经过有限次这样的操作,使得所有的顶点都变成一色?证明你的结论.
解 答
、 .提示:这种四位数 的个数,就是不定方程 满足条件 , 的整解的个数;即 的非负整解个数,其中 ,易知这种解有 个,即总共有 个这样的四位数.(注:也可直接列举.)
、 . 提示:由条件得,
,
所以
,
故 ,而 ;
;
于是
;
由此得
.
、 .提示:设 ,则
,
直线 方程为
,
即 ,因为 ,则
,
即
,
代人方程得
,
于是点 在直线 上;
同理,若设 ,则 方程为
,
即点 也在直线 上,因此交点 的坐标为 .
、 .提示:由
所以,
,
即
,
当 ,即 时取得等号.
、 .提示:
.
、 .提示:作三棱锥侧面展开图,易知 ∥ ,且由周长最小,得 共线,于是等腰 , ,
,
即 , ,
,
所以 ,由 ,则
.
、 .提示:由于 是 形状的数,所以 必为奇数,而 为偶数, 设 , ,代人得
,
即
. ①
而 为偶数,则 为奇数,设 ,则
,
由①得,
, ②
则 为奇数,且 中恰有一个是 的倍数,当 ,为使 为奇数,且 ,只有 ,②成为
,
即 ,于是 ;
若 ,为使 为奇数,且 ,只有 ,②成为 ,即 ,它无整解;
于是 是唯一解: .
(另外,也可由 为偶数出发,使
为 的倍数,那么 是 的倍数,故 是 形状的偶数,依次取 ,检验相应的六个数即可.)
、 .提示:添加自然数 ,这样并不改变问题性质;先考虑由 到 这一千个数,将它们全部用三位数表示,得到集 ,易知对于每个 ,首位为 的“三位数”恰有 个: ,
这样,所有三位数的首位数字和为
.
再将 中的每个数 的前两位数字互换,成为 ,得到的一千个数的集合仍是 ,
又将 中的每个数 的首末两位数字互换,成为 ,得到的一千个数的集合也是 ,由此知
.
今考虑四位数:在 中,首位(千位)上,共有一千个 ,而在
中,首位(千位)上,共有一千个 ,因此
;
其次,易算出, . 所以,
.
、由
,
即
,
平方得
所以
,
即
,
所以
.
、如图,设 交于点 ,连 ,由于中位线 ∥ ,以及 平分 ,则 ,所以 ,因 ,得 共圆.所以 ;又注意 是 的内心,则
.
连 ,在 中,由于切线 ,所以
,
因此 三点共线,即有 三线共点.
、 证明:由于 为质数,而 ,则 ,据裴蜀定理,存在正整数 ,使
, ①
于是当 为奇数时,则①中的 一奇一偶.
如果 为偶数, 为奇数,则将①改写成:
,
令 ,上式成为 ,其中 为奇数, 为偶数.
总之存在奇数 和偶数 ,使①式成立;据①,
, ②
现进行这样的操作:选取一个点 ,自 开始,按顺时针方向操作 个顶点,再顺时针方向操作接下来的 个顶点……当这样的操作进行 次后,据②知,点 的颜色被改变了奇数次( 次),从而改变了颜色,而其余所有顶点都改变了偶数次( 次)状态,其颜色不变;称这样的 次操作为“一轮操作”,由于每一轮操作恰好只改变一个点的颜色,因此,可以经过有限多轮这样的操作,使所有黑点都变成白点,从而多边形所有顶点都成为白色;也可以经过有限多轮这样的操作,使所有白点都变成黑点,从而多边形所有顶点都成为黑色.
、当 为偶数时,也可以经过有限多次这样的操作,使得多边形所有顶点都变成一色.具体说来,我们将有如下结论:
如果给定的正多边形开初有奇数个黑点、偶数个白点,则经过有限次操作,可以将多边形所有顶点变成全黑,而不能变成全白;反之,如果给定的正多边形开初有奇数个白点、偶数个黑点,则经过有限次操作,可以将多边形所有顶点变成全白,而不能变成全黑;
为此,采用赋值法:将白点改记为“ ”,而黑点记为“ ”,改变一次颜色,相当于将其赋值乘以 ,而改变 个点的颜色,即相当于乘了 个(偶数个) ,由于 ;
因此当多边形所有顶点赋值之积为 ,即总共有奇数个黑点,偶数个白点时,每次操作后,其赋值之积仍为 ,因此无论操作多少次,都不能将全部顶点变白.
但此时可以变成全黑,这是由于,对于偶数 ,则①②中的 为奇数,设 是多边形的两个相邻顶点,自点 开始,按顺时针方向操作 个顶点,再顺时针方向操作接下来的 个顶点……当这样的操作进行 次后,据②知,点 的颜色被改变了偶数次( 次),从而颜色不变,而其余所有 个顶点都改变了奇数次( 次)状态,即都改变了颜色;再自点 开始,按同样的方法操作 次后,点 的颜色不变,其余所有 个顶点都改变了颜色;于是,经过上述 次操作后,多边形恰有 两个相邻顶点都改变了颜色,其余所有 个点的颜色不变.
现将这样的 次操作合并,称为“一轮操作”;每一轮操作,可以使黑白相邻的两点颜色互换,因此经过有限轮操作,总可使同色的点成为多边形的连续顶点;
于是当多边形开初总共有偶数个白点时,每一轮操作又可将相邻两个白点变成黑点,使得有限轮操作后,多边形所有顶点都成为黑色.
同理得,如果给定的正多边形开初总共有奇数个白点、偶数个黑点,经过有限次操作,可以使多边形顶点变成全白,而不能变成全黑;(只需将黑点赋值为“ ”,白点赋值为“ ”,证法便完全相同).
3. 初中数学竞赛题库
由图结合等式关系x^2+y^2+z^2=2xyz得知:x、y与z有关系x^2+y^2=xyz
z^2=xyz,故x^2+y^2=z^2。正整数解为x=1,y=1,z=1。
4. 数学知识竞赛题
—— 蔡勒(Zeller)公式
历史上的某一天是星期几?未来的某一天是星期几?关于这个问题,有很多计算公式(两个通用计算公式和一些分段计算公式),其中最著名的是蔡勒(Zeller)公式。即w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1
公式中的符号含义如下,w:星期;c:世纪-1;y:年(两位数);m:月(m大于等于3,小于等于14,即在蔡勒公式中,某年的1、2月要看作上一年的13、14月来计算,比如2003年1月1日要看作2002年的13月1日来计算);d:日;[ ]代表取整,即只要整数部分。(C是世纪数减一,y是年份后两位,M是月份,d是日数。1月和2月要按上一年的13月和 14月来算,这时C和y均按上一年取值。)
算出来的W除以7,余数是几就是星期几。如果余数是0,则为星期日。
以2049年10月1日(100周年国庆)为例,用蔡勒(Zeller)公式进行计算,过程如下:
蔡勒(Zeller)公式:w=y+[y/4]+[c/4]-2c+[26(m+1)/10]+d-1
=49+[49/4]+[20/4]-2×20+[26× (10+1)/10]+1-1
=49+[12.25]+5-40+[28.6]
=49+12+5-40+28
=54 (除以7余5)
即2049年10月1日(100周年国庆)是星期5。1956年
最多的吧!
5. 在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分
设得奖者答对X道题,竞赛题共30题,则不答或答错30-X道题。
答对一道题得4分,则得4X分。
不答或答错一道题倒扣2分,则倒扣2(30-X)分。
得分不低于60分者得奖,则4X-2(30-X)>=60。
解不等式方程得X>=20,即得奖者至少应答对20道题。
(5)竞赛数学题扩展阅读:
一元一次不等式方程解法:
(1)去分母:根据不等式的性质2和3,把不等式的两边同时乘以各分母的最小公倍数,得到整数系数的小等式。
(2)去括号:根据上括号的法则,特别要注意括号外面是负号时,去掉括号和负号,括号里面的各项要改变符号。
(3)移项:根据不等式基本性质1,一般把含有未知数的项移到不等式的左边,常数项移到不等式的右边。
(4)合并同类项。
(5)将未知数的系数化为1:根据不等式基本性质2或3,特别要注意系数化为1时,系数是负数,不等号要改变方向。
(6)有些时候需要在数轴上表示不等式的解集。
6. 小学六年级数学竞赛题(带答案的)
一只小船从甲港到乙港往返一次共用2小时,回来时顺水,比去时每小时多行驶8千米,因此第2小时比第1小时多行驶了6千米。甲乙两港的距离是多少千米?
解:设去的速度为X 回来则为X+8; 两港的距离为Y千米(单边)
有一元二次方程
y/x(去的时间)+y/(x+8)(回来的时间)=2
(y/x -1)*x=6/2=3(根据条件:第2小时比第1小时多行驶了6千米)
解的 y=15 x=12
则 两港距离为15千米
7. 小学数学奥林匹克竞赛试题与答案
1.一个三位数除以9余7,除以5余2,除以4余3。这样的三位数共有________个。
2.每千克价分别为2元、3元、2元4角、4元的桔子、苹果、香蕉、柿子四种水果共买了83千克,用去228元。已知买桔子用去的前与买苹果用去的钱一样多,买柿子用去的钱是买香蕉所用的钱的2倍。那么桔子买了________千克,苹果买了________千克,香蕉买了________千克,柿子买了________千克。
3.税法规定,一次性劳务收入若低于800原,免交所得税。若超过800元,需教所得税,具体标准为:800~2000的部分按10%计,2000~5000元部分按15%计,5000~10000元部分安20%计。某人一次劳务收入上税1300元,他在这次劳务中税后的净收入为________元。
4.八进制加法是逢八进一,例如:13+6=21,77+4=103。在下面的八进制加法竖式中,a、b、c、d、e、f这六个数恰好由1、2、3、4、5、6这六个数组成,那么满足题中条件的加法式子共有________个。
5.下图的正六边形是由24个边长为1的小等边三角形组成的。在以格点为顶点、面积与阴影部分相同的三角形中,边长都不是1的三角形共有________个。
6.1到2000这2000个数中,最大可取出________个数,使得这些数中任意三个数的和都不能被7整除。
7.某商品成本为每个80原,如果按每个100卖,可卖出1000个。当这种商品每个涨价1元,销售量就减少20个。为了赚取最多的利润,售价应定为每个________元。
8.一只小虫从A处爬到B处。如果它的速度每分增加1米,可提前15分到达。如果它的速度每分再增加2米,则又可提前15分到达。A处到B处之间的路程是________米。
9.甲瓶中酒精浓度为70%,乙瓶中酒精的浓度为60%,两瓶酒精混合后的浓度为66%。如果两瓶酒精各用去5升后再混合,则混合后的浓度为66.25%。问:原来甲、乙两瓶酒精分别有________升与________升。
10.用1、2、3、4、5、6、7、8、9这9个数字排成一个最小的能被11整除的九位数,这个九位数是________。
11.把1~625这625个自然数按顺时针方向依次排列成一个圆圈。从1开始顺时针方向擦去1,保留2,再擦去3、4,保留5,擦去6,保留7,再擦去8、9,保留10……这样擦去一个数,保留一个数,擦去两个数,保留一个数;再擦去一个数,保留下一个数,擦去两个数,保留一个数……一直转圈擦下去,最后剩下的数是________。
12、一根钢条截下全长的1/8,再接上15米,结果比原来的长度多1/2,求钢条原来的长度?(接头不计算)
13、食堂有大小两堆煤,一共重24吨。大堆煤中用去1/4后,还比小堆煤多4吨。这两堆煤原来各有多少吨?
8. 有关圆的竞赛数学题
证明:设D是FB延长线上的一点。
因为 直线L与三角形ABC的外接圆相切于点B,
所以 角DBA=角ACB,
因为 BE垂直于AC于E,CF垂直于直线L于F,
所以 角BEC+角BFC=90度+90度=180度,
所以 B,E,C,F四点共圆,
所以 角DBE=角ACF,
所以 角DBE--角DBA=角QCF--角ACB
即: 角ABE=角BCF,
又因为 B,E,C,F四点共圆,
所以 角BCF=角BEF,
所以 角ABE=角BEF,
所以 EF//AB。
9. 给我30道数学竞赛题(初二)
初二数学学科竞赛试题一、选择题:(每小题3分,共30分)1.下列各组数中,能构成直角三角形的是〖 〗A.4,5,6 B.1,1, C.6,8,11 D.5,12,232. 如下书写的四个汉字,其中为轴对称图形的是〖 〗.A. B. C. D. 3. 下列说法中不正确的是〖 〗.A.9的算术平方根是3 B. 的平方根是 C.27的立方根是 D.立方根等于-1的实数是-14. 估算 的值〖 〗A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间5. 为了防控输入性甲型H1N1流感,某市医院成立隔离治疗发热流涕病人防控小组,决定从内科5位骨干医师中(含有甲)抽调3人组成,则甲一定抽调到防控小组的概率是〖 〗A. B. C. D. 6. 如图的四个图象中,不表示某一函数图象的是〖 〗 A B C D7.已知 是二元一次方程组 的解,则 的值为〖 〗.A.1 B.-1 C. 2 D.38.所示图形中,表示函数y=mx+n与正比例函数y=mnx(mn≠0)图象的是〖 〗 A B C D9. 下列说法正确的是〖 〗A.连续抛掷一枚硬币4次都是正面朝上,第五次一定是反面朝上; B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖; C.天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨; D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等. 4003050x/时Oy/顷10. 为积极响应党中央关于支援5·12汶川地震灾区抗震救灾的号召,某工厂日夜连续加班,计划为灾区生产m顶帐篷.生产过程中的剩余生产任务y(顶)与已用生产时间x(时)之间的关系如图所示.则m的值为〖 〗A. 600 B. 800 C. 1000 D.1200 二、填空题:(每小题3分,共30分)11.若x2=3,则x= .12.已知直线y1=2x-1和y2=-x-1的图象如图所示,根据图象知方程组 的解是________.捐款(元)5102050人数6 713. 实验中学组织爱心捐款支援灾区活动,七年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数没填,请你帮助填上表中的数据.14. 在△ABC中,AB=12cm, BC=16cm, AC=20cm, 则△ABC的面积是 .15. 已知一次函数y=x+m和y=-x+n的图象都经过点A(-2,0)且与y轴分别交于B、C两点,那么△ABC的面积是 .16.如果 的平方根是±3,则a=________.17.如图,是由四个直角边分别是3和4的全等的直角三角形拼成的“赵爽弦图”,小亮随机的往大正方形区域内投针一次,则针扎在阴影部分的概率是 .18. 在 中, , ,点 为 的中点, 于点 ,则 等于 19.在数据在实数 , , , ,3.1415, 中无理数出现的频率是 .20.如图是某工程队在“村村通”工程中,修筑的公路长度 (米)与时间 (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是______米. 28818048x(天)y(米)2
三、作图题:(6分)21.如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶.⑴牛奶站应建在什么地方,才能使A、B到它的距离之和最短?⑵牛奶站应建在什么地方,才能使A、B到它的距离相等?街道居民区B ·居民区A ·
四、解答题:22.(6分)计算: - + 23. (6分)解方程组: 24.(8分)已知 中, , cm, cm.DE为AB的垂直平分线,求AE的长. 25.(8分)一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是 . (1)取出白球的概率是多少?(2)如果袋中的白球有18只,那么袋中的红球有多少只? 26.(8分)鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:[注:“鞋码”是表示鞋子大小的一种号码]鞋长(cm)16192124鞋码(号)22283238(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上?(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少? 27.(8分)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:⑴ 小明他们一共去了几个成人,几个学生?⑵请你帮助小明算一算,用哪种方式购票更省钱?说明理由。爸爸,等一下,让我算一算,找一种方式是否可以省钱.票价成人:每张35元学生:按成人5折优惠团体票[16人以上含16人]:按成人6折优惠.大人门票是每张35元,学生门票是5折优惠.我们一共12人,共需350元.
O(天)y(米 )40001000302028.(10分)某农户种植一种经济作物,总用水量 (米 )与种植时间 (天)之间的函数关系式如图10所示.⑴第 天的总用水量为多少米 ?⑵当 ≥ 时,求 与 之间的函数关系式. ⑶种植时间为多少天时,总用水量达到7000米 ?