五年级数学奥数题及答案
1. 五年级奥数题及答案40道
您好!
问题1 如果一个四位数与一个三位数的和是1999,并且四位数和三位数是由7个不同的数字组成的。那么,这样的四位数最多能有多少个?
这是北京市小学生第十五届《迎春杯》数学竞赛决赛试卷的第三大题的第4小题,也是选手们丢分最多的一道题。
得到a=1,b+e=9,(e≠0),c+f=9,d+g=9。
为了计算这样的四位数最多有多少个,由题设条件a,b,c,d,e,f,g互不相同,可知,数字b有7种选法(b≠1,8,9),c有6种选法(c≠1,8,b,e),d有4种选法(d≠1,8,b,e,c,f)。于是,依乘法原理,这样的四位数最多能有(7×6×4=)168个。
在解答完问题1以后,如果再进一步思考,不难使我们联想到下面一个问题。
问题2 有四张卡片,正反面各写有1个数字。第一张上写的是0和1,其他三张上分别写有2和3,4和5,7和8。现在任意取出其中的三张卡片,放成一排,那么一共可以组成多少个不同的三位数?
此题为北京市小学生第十四届《迎春杯》数学竞赛初赛试题。其解为:
后,十位数字b可取其他三张卡片的六种数字;最后个位数c可取剩余两张卡片的四种数字。综上所述,一共可以组成不同的三位数共(7×6×4=)168个。
如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,原来两仓库各存货物多少吨?
67×(2+1)-17×(5+1)
=201-102
=99(吨)
99÷〔(5+1)-(2+1)〕
=99÷3
=33(吨)答:原来的乙有33吨。
(33+67)×2+67
=200+67
=267(吨)答:原来的甲有267吨。
分析:
1、如果从甲仓库搬67吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的2倍;
甲和乙总的数量没有变,总的数量包括2+1=3个现在的乙,现在的乙是原来的乙加上67得来。所以总的数量就包括3个原来的乙和3个67〔67×(2+1)=201〕。
2、如果从甲仓库搬17吨货物到乙仓库,那么甲仓库的货物正好是乙仓库的5倍,
理由同上,总的数量包括5+1=6个原来的乙和6个17(即17×(5+1)=102)
3、从1和2可看出,原来3个乙和原来6个乙只相差3个乙,而这三个乙正好相差201-102=99吨。可求出原来的乙是多少,99÷3=33吨。
4、再求原来的甲即可。
甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离
甲乙的路程是一样的,时间甲少5小时,设甲用t小时
可以得到
1. 12t=8(t+5)
t=10
所以距离=120千米
小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?
280*8-220*8=480
这时候如果小明是第一次追上的话就是这样多
这时候小明多跑一圈...
1.用3.5.7.0组成一个两位数,( )乘( )的积最大.( )乘( )的积最小.
2.有一些积木的块数比50多,比70少,每7个一堆,多了一块,每9个一堆,还是多1块,这些积木有多少块?
3.6盆花要摆成4排,每排3盆,应该怎样摆?
4.4(1)班有4个人参加4X50米接力赛,问有多少种不同的安排方法?
5.能否从右图中选出5个数,使它们的和为60?为什么? 15 25 35
25 15 5
5 25 45
6.5饿连续偶数的和是240,这5个偶数分别是多少?
7.某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?
1 70*53最大 30*75最小
2 64块
3 五角星形
4 4*3*2*1=24
5不能,因为都是奇数,奇数个奇数相加不可能得偶数
6.240/5=48,则其余偶数是:48-2=46,48-4=44,48+2=50,48+4=52
7.摩托车的速度是xkm/h,自行车速是ykm/h 。
21y+8x=12x+9y
4x=12y
x=3y
所以摩托车共需12+9/3=15小时
数出图中含有"*"号的长方形个数(含一个或二个都可以)
* * *
第1题儿子算出来是8+16+8=32个,答案却是30个.
第2题儿子算出来是(12+24+24+12)*2,然后减去2*重复的,9+18+9=36,答案说应该减去48个,为什么呢?
一、填空题
1.有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?
2.某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.
3.现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.
4.一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?
5.小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?
6.一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米.
7.两人沿着铁路线边的小道,从两地出发,以相同的速度相对而行.一列火车开来,全列车从甲身边开过用了10秒.3分后,乙遇到火车,全列火车从乙身边开过只用了9秒.火车离开乙多少时间后两人相遇?
8. 两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?
9.某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.
10.甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?
二、解答题
11.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?
12.快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?
13.一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.
14.一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?
———————————————答 案——————————————————————
一、填空题
120米
102米
17x米
20x米
尾
尾
头
头
1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下:
设从第一列车追及第二列车到两列车离开需要x秒,列方程得:
102+120+17 x =20 x
x =74.
2. 画段图如下:
头
90米
尾
10x
设列车的速度是每秒x米,列方程得
10 x =90+2×10
x =11.
头
尾
快车
头
尾
慢车
头
尾
快车
头
尾
慢车
3. (1)车头相齐,同时同方向行进,画线段图如下:
则快车长:18×12-10×12=96(米)
(2)车尾相齐,同时同方向行进,画线段图如下:
头
尾
快车
头
尾
慢车
头
尾
快车
头
尾
慢车
则慢车长:18×9-10×9=72(米)
4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)
(2)车身长是:13×30-310=80(米)
5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)
(2)车身长是:20×15=300(米)
6. 设火车车身长x米,车身长y米.根据题意,得
①②
解得
7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得
①②
①-②,得:
火车离开乙后两人相遇时间为:
(秒) (分).
8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)¸(15+20)=8(秒).
9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.
90÷10+2=9+2=11(米)
答:列车的速度是每秒种11米.
10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:
①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则:
(i)火车开过甲身边用8秒钟,这个过程为追及问题:
故 ; (1)
(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:
故 . (2)
由(1)、(2)可得: ,
所以, .
②火车头遇到甲处与火车遇到乙处之间的距离是:
.
③求火车头遇到乙时甲、乙二人之间的距离.
火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:
④求甲、乙二人过几分钟相遇?
(秒) (分钟)
答:再过 分钟甲乙二人相遇.
二、解答题
11. 1034÷(20-18)=91(秒)
12. 182÷(20-18)=91(秒)
13. 288÷8-120÷60=36-2=34(米/秒)
答:列车的速度是每秒34米.
14. (600+200)÷10=80(秒)
答:从车头进入隧道到车尾离开隧道共需80秒.
平均数问题
1. 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分?
2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩?
3. 已知八个连续奇数的和是144,求这八个连续奇数。
4. 甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元?
5. 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克?
等差数列
1、下面是按规律排列的一串数,问其中的第1995项是多少?
解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984
2、在从1开始的自然数中,第100个不能被3除尽的数是多少?
解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149.
3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少?
解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。
4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少?
解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:
34×29+29=35×29
34×30+30=35×30
34×31+31=35×31
34×32+32=35×32
34×33+33=35×33
以上数的和为35×(29+30+31+32+33)=5425
5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。
解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。
6、下面的各算式是按规律排列的:
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992?
解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。
7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少?
解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。
8、有19个算式:
那么第19个等式左、右两边的结果是多少?
解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。
9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对?
解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。
11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人?
解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。
12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页?
解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。
13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵?
解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫
2. 小学五年级奥数题30道要答案算式
五年级数学思维训练题
1、用3个大瓶和5个小瓶可装墨水5.6千克,用一个大瓶和3个小瓶可装墨水2.4千克。那么用1个大瓶和2个小瓶可装墨水( )千克。
加在一起,4大8小装5.6+2.4=8,所以,1大2小装8/4=2千克
2、a,b,c,d四位同学参加奥数测试,a得74分,b得86分,c得96分,四人的平均成绩正好是整数。d可能得几分?
74/4余2, 86/4余2, 96/4是整数, 2+2=4, 能被4整除。所以,d分数应该是4的倍数,4n (n=0,1,2。。。25)
3、□×5÷3×9+11=1991中,□里应填入的数字是( )。
(1991-11) ÷9×3÷5=1980÷15=132
4、有红色小旗2面,蓝色小旗1面,这些旗大小和形状都相同,把这些小旗挂在旗杆上做出各种信号,每面旗以一定的间隔排列。利用这些旗能表示出多少种不同的信号。
只有蓝色:3
只有一面红色:3
只有两面红色:3
1红1蓝:3*2=6
2红1蓝:3
3*6=18
5、一筐苹果,如果平分给4小朋友多出3个苹果;如果平分给5个小朋友又多出4个苹果;如果平分给6小朋友则又少1个苹果。这筐苹果最少有( )个。
相当于4n-1, 5m-1, 6x-1
找4,5,6的最小公倍数,再-1就是了
4,5,6最小公倍数60,所以苹果最少有60-1=59个
6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。货车速度每小时60千米,客车速度每小时40千米,货车到达乙地后停留0.5小时,又以原速返回甲地,问从甲地出发几小时后两车相遇?
货车到达乙地时,走了360/60=6小时,再过0.5小时,客车共走6.5*40=260千米,距离乙地360-260=100千米,再过100/(40+60)=1小时两车相遇,此时距从甲地出发6+0.5+1=7.5小时。
7、一个数除以3余2,除以4余3,除以5余4,这个数最小是( )
同第5题,求3,4,5最小公倍数再-1。 3,4,5最小公倍数是60, 60-1=59
8、绿化工人在一段公路的两侧每隔4米栽一棵树,一共栽了74棵。现在要改成每隔6米栽一棵树,不用移栽的树有多少棵?
每侧74/2=37棵
每侧(37-1)*4=144米
4和6最小公倍数是12,所以0,12,24。。。。144米的不用移栽,共13棵,需要移栽的是37-13=24棵
两侧一共需要移栽24*2=48棵
9、滨海县实验小学五(4)班学生去野炊。用餐时,每2人一个饭碗,每3人一个菜碗,每4人一个汤碗,一共用了65个碗。这个班有多少个学生?
2,3,4最小公倍数是12,每12人用6饭碗、4菜碗、3汤碗,共13个碗。
65/13=5组,所以学生数5*12=60人
10、某县内电话话费计费是这样的:0~3分钟0.2元,超过3分钟,超过部分按每分钟0.1元计(不足1分钟按1分钟计),小军打了县内电话计时7分35秒,算一算这个电话的话费。
0.2+(8-3)*0.1=0.7元
3. 小学五年级奥数题,及答案
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案
1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人
2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)
3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90
4. 五年级上册奥数题及答案(简单的)
1.有一条长500米的环行跑道,甲乙两人同时从跑道上的某一点出发,如果反向而跑,则1分钟后相遇;如果同向而跑,则10分钟后追上以知甲比已跑的快,问:甲已两人每分钟各跑多少米?
答案:反向,二人的速度和是:500/1=500 同向,二人的速度差是:500/10=50
甲的速度是:(500+50)/2=275米/分 乙的速度是:(500-50)/2=225米/分
2.一个圆形跑道上,下午1:00,小明从A点,小强从B点同时出发相对而行,下午1:06两人相遇,下午1:10,小明到达B点,下午1:18,两人再次相遇问:小明环行一周要多少分钟?
答案:由题目得知,小强第一次相遇 前行了6分钟的距离小明行了4分钟,那么小明的速度是小强的:6/4=1。5倍。
又从第一次相遇 到第二次相遇 一共用了:18-6=12分。
所以小强的速度是:(1/12)/(1+1。5)=1/30 即小明的速度是:1/30*1。5=1/20
那么小明行一圈的时间是:1/(1/20)=20分
3.某中学七年级举行足球赛,规定:胜一场3分,平一场1分,负一场0分,七年1班比赛中共积8分,其中胜与平的场数相同,负比胜多1场,胜,平,负各几场?
答案:解:设胜的场数为x
3x+1x+0*(x+1)=8 4x=8 x=2 胜2场 平2场
负3场
4.xy,zw分别表示一个两位数,若xy+zw=139,那么x+y+z+w=?
答案:因为个位是9,所以个位相加没有进位个位 即:个位数的和Y+W=9,而不会是19,29,39 所以十位数的和X+Z=13于是:x+y+z+w=22
5. 五年级下册奥数题及答案
小学五年级奥数题——速算与巧算
在日常生活和解答数学问题时,经常要进行计算,在数学课里我们学习了一些简便计算的方法,但如果善于观察、勤于思考,计算中还能找到更多的巧妙的计算方法,不仅使你能算得好、算得快,还可以让你变得聪明和机敏。
例1:计算:9.996+29.98+169.9+3999.5
解:算式中的加法看来无法用数学课中学过的简算方法计算,但是,这几个数每个数只要增加一点,就成为某个整十、整百或整千数,把这几个数“凑整”以后,就容易计算了。当然要记住,“凑整”时增加了多少要减回去。
9.996+29.98+169.9+3999.5
=10+30+170+4000-(0.004+0.02+0.1+0.5)
=4210-0.624
=4209.376
例2:计算:1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
解:式子的数是从1开始,依次减少0.01,直到最后一个数是0.01,因此,式中共有100个数而式子中的运算都是两个数相加接着减两个数,再加两个数,再减两个数……这样的顺序排列的。
由于数的排列、运算的排列都很有规律,按照规律可以考虑每4个数为一组添上括号,每组数的运算结果是否也有一定的规律?可以看到把每组数中第1个数减第3个数,第2个数减第4个数,各得0.02,合起来是0.04,那么,每组数(即每个括号)运算的结果都是0.04,整个算式100个数正好分成25组,它的结果就是25个0.04的和。
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=(1+0.99-0.98-0.97)+(0.96+0.95-0.94-0.93)+…+(0.04+0.03-0.02-0.01)
=0.04×25
=1
如果能够灵活地运用数的交换的规律,也可以按下面的方法分组添上括号计算:
1+0.99-0.98-0.97+0.96+0.95-0.94-0.93+…+0.04+0.03-0.02-0.01
=1+(0.99-0.98-0.97+0.96)+(0.95-0.94-0.93+0.92)+…+(0.03-0.02-0.01)
=1
例3:计算:0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
解:这个算式的数的排列像一个等差数列,但仔细观察,它实际上由两个等差数列组成,0.1+0.2+0.3+…+0.8+0.9是第一个等差数列,后面每一个数都比前一个数多0.1,而0.10+0.11+0.12+…+0.19+0.20是第二个等差数列,后面每一个数都比前一个数多0.01,所以,应分为两段按等差数列求和的方法来计算。
0.1+0.2+0.3+…+0.8+0.9+0.10+0.11+0.12+…+0.19+0.20
=(0.1+0.9)×9÷2+(0.10+0.20)×11÷2
=4.5+1.65
=6.15
例4:计算:9.9×9.9+1.99
解:算式中的9.9×9.9两个因数中一个因数扩大10倍,另一个因数缩小10倍,积不变,即这个乘法可变为99×0.99;1.99可以分成0.99+1的和,这样变化以后,计算比较简便。
9.9×9.9+1.99
=99×0.99+0.99+1
=(99+1)×0.99+1
=100
例5:计算:2.437×36.54+243.7×0.6346
解:虽然算式中的两个乘法计算没有相同的因数,但前一个乘法的2.437和后一个乘法的243.7两个数的数字相同,只是小数点的位置不同,如果把其中一个乘法的两个因数的小数点按相反方向移动同样多位,使这两个数变成相同的,就可以运用乘法分配律进行简算了。
2.437×36.54+243.7×0.6346
=2.437×36.54+2.437×63.46
=2.437×(36.54+63.46)
=243.7
*例6:计算:1.1×1.2×1.3×1.4×1.5
解:算式中的几个数虽然是一个等差数列,但算式不是求和,不能用等差数列求和的方法来计算这个算式的结果。
平时注意积累计算经验的同学也许会注意到7、11和13这三个数连乘的积是1001,而一个三位数乘1001,只要把这个三位数连续写两遍就是它们的积,例如578×1001=578578,这一题参照这个方法计算,能巧妙地算出正确的得数。
1.1×1.2×1.3×1.4×1.5
=1.1×1.3×0.7×2×1.2×1.5
=1.001×3.6
=3.6036
计算下列各题并写出简算过程:
1.5.467+3.814+7.533+4.186
2.6.25×1.25×6.4
3.3.997+19.96+1.9998+199.7
4.0.1+0.3+…+0.9+0.11+0.13+0.15+…+0.97+0.99
5.199.9×19.98-199.8×19.97
6.23.75×3.987+6.013×92.07+6.832×39.87
*7.20042005×20052004-20042004×20052005
*8.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)
计算下列各题并写出简算过程:
1.6.734-1.536+3.266-4.464
2.0.8÷0.125
3.89.1+90.3+88.6+92.1+88.9+90.8
4.4.83×0.59+0.41×1.59-0.324×5.9
5.37.5×21.5×0.112+35.5×12.5×0.112
五年级下册数奥试题
姓名 班级 得分
用简便方法计算下面各题。
20.36-7.98-5.02-4.36 117.8÷2.3-4.88÷023
9.56×4.18-7.34×4.18-0.26×4.18
1、有123名小朋友,把他们分成12人一组或7人一组,恰好分完,而无剩余。又知总的组数在15组左右。那么,12人的多少组?7人的有多少组?
2、张妮5次考试的平均成绩是88.5分,每次考试的满分是100分,为了使平均成绩尽快达到92分以上,那么张妮要再考多少次满分?
3、父亲与三个儿子年龄和是108岁,若再过6年,父亲的年龄正好等于三个儿子年龄的和。问父亲现年多少岁?
4、加工一批零件,原计划每天加工80个,正好按期完成任务。由于改进了生产技术,实际每天加工了100个,这样,不仅提前4天完成加工任务,而且还多加工了100个。他们实际加工零件多少个?
5、一个水池能装8吨水,水池里装有一个进水管和一个出水管,两管齐开,20分钟能把一池水放完。已知进水管每分钟往池里进水0.8吨,求出水管每分钟放水多少吨?
6、将一根电线截成15段。一部分每段长8米,另一部分每段长5米。长8米的总长度比长5米的总长度多3米。这根铁丝全长多少米?
7、把一条大鱼分成鱼头、鱼身、鱼尾三部分,鱼尾重4千克,鱼头的重量等于鱼尾的重量加鱼身一半的重量,而鱼身的重量等于鱼头的重量加上鱼尾的重量。这条大鱼重多少千克?
8、体育室买回5个足球和4个篮球需要付287元,买2个足球和3个篮球需要付154元。那么买一个足球、一个篮球各付多少元?
9、有5元的和10元的人民币共14张,共100元。问5元币和10元币各多少张?
10、某人从A村翻过山顶到B村,共行30.5千米,用了7小时,他上山每小时行4千米,下山每小时行5千米。如果上下山速度不变,从B村沿原路返回A村,要用多少时间?
11、甲、乙两人同时从A、B两地相向而行,甲骑车每小时行16千米,乙骑摩托车每小时行65千米。甲离出发点62.4千米处与乙相遇。AB两地相距多少千米?
12、乌龟与兔子赛跑,兔子每分钟跑35千米,乌龟每分钟爬10米,途中兔子睡了一觉,醒来时发现乌龟已经在自己前50米。问兔子还需要多少长时间才能追上乌龟?
13、在一个600米长的环形跑道上,兄妹两人同时在同一起点都按顺时针方向跑步,每隔12分钟相遇一次。若两人速度不变,还是在原出发点同时出发,哥哥改为按逆时针方向跑,则每隔4分钟相遇一次。两人跑一圈各要几分钟?
14、静水中,甲乙两船的速度分别是每小时20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时,若水速是每小时行4千米,甲开出后几小时追上乙?
15、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的遂道需要30秒,这列火车的速度和本身长各是多少?
16、一个书架分上、下两层,上层的书的本数是下层的4倍。从下层拿5本放入上层后,上层的本数正好是下层的5倍。原来下层有几本书?
17、有1800千克的货物,分装在甲、乙、丙三辆车上。已知甲车装的千克数正好是乙车的2倍,乙车比丙车多装200千克。甲、乙、丙三辆车各
包含与排除
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
解:两个小组共有(15+18)-10=23(人),
都不参加的有40-23=17(人)
答:有17人两个小组都不参加。
--
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
解:45-29-10+3=9(人)
答:语文成绩得满分的有9人。
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
解:4的倍数有50/4商12个,6的倍数有50/6商8个,既是4又是6的倍数有50/12商4个。
4的倍数向后转人数=12,6的倍数向后转共8人,其中4人向后,4人从后转回。
面向老师的人数=50-12=38(人)
答:现在面向老师的同学还有38名。
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
解:2的倍数有100/2商50个,3的倍数有100/3商33个,2和3人倍数有100/6商16个。
领2支的共准备(50—16)*2=68,领3支的共准备(33—16)*3=51,重复领的共准备16*(2+3)=80,其余准备100-(50+33-16)*1=33
共需要68+51+80+33=232(支)
答:游艺会为该项活动准备的奖品铅笔共有232支。
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
解:3厘米的记号:180/3=60,最后到头了不划,60-1=59个
4厘米记号:180/4=45,45-1=44个,重复的记号:180/12=15,15-1=14个,所以绳子中间实际有记号59+44-14=89个。
剪89次,变成89+1=90段
答:绳子共被剪成了90段。
6、东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅?
解:1,2,3,4,5年级共有16,1,2,3,4,6年级共有15,5,6年级共有25
所以总共有(16+15+25)/2=28(幅),1,2,3,4年级共有28-25=3(幅)
答:其他年级的画共有3幅。
---
7、有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占2/3,标有4的倍数的卡片占3/4,标有12的倍数的卡片有15张。那么,这些卡片一共有多少张?
解:12的倍数有2/3+3/4-1=5/12,15/(5/12)=36(张)
答:这些卡片一共有36张。
--
--
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
---
9、五年级三班学生参加课外兴趣小组,每人至少参加一项。其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。
解:25+35+27-(8+12+9)+4=62(人)
答:这个班的学生人数是62人。
-- --
10、如图8-1,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73。求阴影部分的面积。
解:甲、乙、丙三者重合部分面积=73+(6+8+5)-3*30=2
阴影部分面积=73-(6+8+5)+2*2=58
答:阴影部分的面积是58。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:45:02
--
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:45:43
--
12、图书室有100本书,借阅图书者需要在图书上签名。已知在100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书有25本,同时有乙、丙签名的图书有36本。问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过?
解:三个人一共看过的书的本数是:甲+乙+丙-(甲乙+甲丙+乙丙)+甲乙丙=33+44+55-(29+25+36)+甲乙丙=42+甲乙丙,当甲乙丙最大时,三人看过的书最多,因为甲、丙共同看过的书只有25本,比甲乙和乙丙共同看到的都少,所以甲乙丙最多共同看过25本。
三人总共看过最多有42+25=67(本),都没看过的书最少有100-67=33(本)
答:这批图书中最少有33本没有被甲、乙、丙中的任何一人借阅过。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:46:53
--
13、如图8-2,5条同样长的线段拼成了一个五角星。如果每条线段上恰有1994个点被染成红色,那么在这个五角星上红色点最少有多少个?
解:五条线上右发有5*1994=9970个红点,如果所有交叉点上都放一个红点,则红点最少,这五条线有10个交叉点,所以最少有9970-10=9960个红点
答:在这个五角星上红色点最少有9960个。
此主题相关图片如下:
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:47:12
--
14、甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
解:甲和乙必有78+68-100=46盆共同浇过,丙有100-58=42没浇过,所以3人都浇过的最少有46-42=4(盆)
答:3人都浇过的花最少有4盆。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:52:54
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
________________________________________
-- 作者:abc
-- 发布时间:2004-12-12 15:53:43
--
15、甲、乙、丙都在读同一本故事书,书中有100个故事。每个人都从某一个故事开始,按顺序往后读。已知甲读了75个故事,乙读了60个故事,丙读了52个故事。那么甲、乙、丙3人共同读过的故事最少有多少个?
解:乙和丙共同读过的故事至少有60+52-100=12(个),甲无论从哪里开始都必定要读这12个故事。
答:甲、乙、丙3人共同读过的故事最少有12个。
________________________________________
-- 作者:cxcbz
-- 发布时间:2004-12-13 21:53:23
--
以下是引用abc在2004-12-12 15:42:17的发言:
8、在从1至1000的自然数中,既不能被5除尽,又不能被7除尽的数有多少个?
解:5的倍数有1000/5商200个,7的倍数有1000/7商142个,既是5又是7的倍数有1000/35商28个。5和7的倍数共有200+142-28=314个。
1000-314=686
答:既不能被5除尽,又不能被7除尽的数有686个。
题中的除尽应该是整除吧.
________________________________________
-- 作者:cxcbz
-- 发布时间:2004-12-13 21:56:00
--
以下是引用abc在2004-12-12 15:45:02的发言:
11、四年级一班有46名学生参加3项课外活动。其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组又参加文艺小组人数的3.5倍,又是3项活动都参加人数的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小组又参加语文小组的有10人。求参加文艺小组的人数。
解:设参加文艺小组的人数是X,24+20+X-(X/305+2/7*X+10)+X/7=46,解得X=21
答:参加文艺小组的人数是21人。
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《
少年文摘》或《学与玩》的有多少人?
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
(2)是2的倍数或是3的倍数的数有多少个?
(3)是2的倍数但不是3的倍数的数有多少个?
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
【试题答案】
1. 四年级三班订阅《少年文摘》的有19人,订阅《学与玩》的有24人,两种都订的有13人。问订阅《少年文摘》
或《学与玩》的有多少人?
19 + 24—13 = 30(人)
答:订阅《少年文摘》或《学与玩》的有30人。
2. 幼儿园有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴和只学画画的分别有多少
人?
只学钢琴人数:58—37 = 21(人)
只学画画人数:43—37 = 6(人)
3. 1至100的自然数中:
(1)是2的倍数又是3的倍数的数有多少个?
既是3的倍数又是2的倍数,一定是6的倍数
100÷6 = 16……4
所以,既是2的倍数又是3的倍数有16个
(2)是2的倍数或是3的倍数的数有多少个?
100÷2 = 50,100÷3 = 33……1
50 + 33—16 = 67(个)
所以,是2的倍数或是3的倍数的数有67个。
(3)是2的倍数但不是3的倍数的数有多少个?
50—16 = 34(个)
答:是2的倍数但不是3的倍数的数有34个。
4. 某班数学、英语期中考试的成绩统计如下:英语得100分的有12人,数学得100分的有10人,两门功
课都得100分的有3人,两门功课都未得100分的有26人。这个班共有学生多少人?
12 + 10—3 + 26 = 45(人)
答:这个班共有学生45人。
5. 全班50人,会骑车的有32人,会滑旱冰的有21人,两样都会的有8人,求两样都不会的有多少人?
50—(30 + 21—8)= 7(人)
答:两样都不会的有7人。
6. 一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,并且每人至少参加一个队。这个
班两队都参加的有多少人?
30 + 25—42 = 13(人)
答:这个班两队都参加的有13人。
某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人.问这个班最多多少人?最少多少人?
分析与解 如图6,数学、语文、英语得满分的同学都包含在这个班中,设这个班有y人,用长方形表示.A、B、C分别表示数学、语文、英语得满分的人,由已知有A∩C=8,A∩B=7,B∩C=9.A∩B∩C=X.
由容斥原理有
Y=A+B+c-A∩B-A∩C-B∩C+A∩B∩C+3
即y=20+20+20-7-8-9+x+3=39+x。
以下我们考察如何求y的最大值与最小值。
由y=39+x可知,当x取最大值时,y也取最大值;当x取最小值时,y也取最小值x是数学、语文、英语三科都得满分的人数,因而他们中的人数一定不超过两科得满分的人数,即x≤7,x≤8且x≤9,由此我们得到x≤7.另一方面数学得满分的同学有可能语文都没得满分,也就是说没有三科都得满分的同学,故x≥0,故0≤x≤7。
当x取最大值7时,y有最大值39+7=46,当x取最小值0时,y有最小值39+0=39。
答:这个班最多有46人,最少有39人。
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
1.解:设有1元的x张,1角的(28-x)张
x+0.1(28-x)=5.5
0.9x=2.7
x=3
28-x=25
答:有一元的3张,一角的25张。
2.解:设1元的有x张,2元的(x-2)张,5元的(52-2x)
x+2(x-2)+5(52-2x)=116
x+2x-4+260-10x=116
7x=140
x=20
x-2=18
52-2x=12
答:1元的有20张,2元18张,5元12张。
3.解:设有7元和5元各x张,3元的(400-2x)张
7x+5x+3(400-2x)=1920
12x+1200-6x=1920
6x=720
x=120
400-2x=160
答:有3元的160张,7元、5元各120张。
4.解:货物总数:(3024-2520)÷2=252(箱)
设有大汽车x辆,小汽车(18-x)辆
18x+12(18-x)=252
18x+216-12x=252
6x=36
x=6
18-x=12
答:有大汽车6辆,小汽车12辆。
5.解:天数=112÷14=8天
设有x天是雨天
20(8-x)+12x=112
160-20x+12x=112
8x=48
x=6
答:有6天是雨天。
6.解:西瓜数:(290-250)÷0.05=800千克
设有大西瓜x千克
0.4x+0.3(800-x)=290
0.4x+240-0.3x=290
0.1x=50
x=500
答:有大西瓜500千克。
7.解:甲得分:(152+16)÷2=84分
乙:152-84=68分
设甲中x次
10x-6(10-x)=84
10x-60+6x=84
16x=144
x=9
设乙中y次
10y-6(10-y)=68
16y=128
y=8
答:甲中9次,乙8次。
8.解:设他答对x道题
5x-2(20-x)=86
5x-40+2x=86
7x=126
x=18
答:他答对了18题。
6. 五年级简单奥数题带答案急!!
1、一个两层书架,上层放的书是下层的3倍。如果把上层的书搬60本到下层,则两层的书相等。原来上、下层各有多少本书?
2、这次期末数学考试,王刚和张兵的成绩和是190分,张兵和李涛的成绩和是193分,李涛和王刚的成绩是195分。请问:王刚、张兵、李涛三人的数学成绩各是多少?
3、甲乙两站共停了90辆汽车。如果从甲站开到乙站38辆后,乙站又开到甲站14辆,这时两站停车数相等,两站原来停车各多少辆?
4、有一个天平,只有5克和30克砝码各一个,现在要把300克巧克力均分30份,最少需要用天平称几次? 第1题设下层放的书是x本,则上层放的书是3x本
上层的书-60本=下层的书+60本
3x-60=x+60
3x-x=60+60
2x=120
x=60
下层的书有60本,上层的书有
3×60=180本
第2题
根据条件可得出
190+193+195=578分(李涛、王刚和张兵分数和的2倍)
578÷2=289分(李涛、王刚和张兵分数和的1倍)
李涛、王刚和张兵分数和的1倍-王刚和张兵的成绩和=李涛的成绩
李涛、王刚和张兵分数和的1倍-张兵和李涛的成绩和=王刚的成绩
李涛、王刚和张兵分数和的1倍-李涛和王刚的成绩和=张兵的成绩
289-190=99分(李涛的成绩)
289-193=96分(王刚的成绩)
289-195=94分(张兵的成绩)
第3题
设甲站共停了汽车x辆,则乙站共停了汽车(90-x)辆
甲站汽车辆数-38+14=乙站汽车辆数+38-14
x-38+14=(90-x)+38-14
x-24=90-x+38-14
x-24=114-x
x+x=114+24
2x=138
x=69
甲站有汽车69辆,则乙站有汽车
90-69=21辆
第4题
均分成30份就是每份
300÷30=10克
好像也没什么更好的称的方法,因为这个天平只有5克和30克砝码各一个,每份巧克力10克,也只能用哪个30克砝码称,5克砝码基本上就是个装饰了吧,跟30克砝码放一起,35克,最多还是称3个巧克力,你称4个巧克力40克,用35克的两个砝码称你知道那个40克就是40克吗?就算你把5克的砝码放到巧克力那边,那最多就只能称25克,也就是2个巧克力,放3个你知道那个35克就是35克吗?
所以也只能用30克砝码称了
30克的砝码能称几个平分后的巧克力
30÷10=3个
共有30份巧克力
30÷3=10次
所以最少需要用天平称10次
7. 五年级上册数学奥数题及答案 急
我给你搜了一些,因为不知道你QQ,这个有字数限制的,我先直接发一部分给你,你你先看下。答案发不下了小学五年级经典奥数题
题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?
题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?
题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?
题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?
题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?
题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?
题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?
题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?
13.五名裁判员给一名体操运动员评分,去掉一个最高分和一个最低分后平均得分是9.38分。若去掉一个最高分平均得分为9.26分;若去掉一个最低分平均得分为9.46分。这名体操运动员的最高分和最低分分别是多少分?
14.小狗给动物王国编一本童话故事书。
小狗编的这本书一共有多少页?
15.学校合唱团全部是来自甲、乙、丙三个班的同学,其中来自甲、乙两班的同学共有60人。合唱团中不是甲班的同学有100人,不是乙班的同学有90人。问:
(1)合唱团中来自甲、乙两班的同学各有多少人?
(2)合唱团的同学一共有多少人?
16.下面是一些“神秘等式”。式中的“+”、“-”、“×”、“÷”等运算符号的意义都与普通的用法相同,但0、1、2、3、……、9等数字所代表的意义则与普通的不同。
① 1×5=1 ② 7×2=96 ③ 99-5=3
④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97
(1)请你破解出这些“神秘等式”中的秘密,找出其中每个数字所代表的普通意义。
(2)普通意义的2006用“神秘等式”中数字所代表的意义来表示,怎样表示?
(3)如果采用“神秘等式”中数字所代表的意义,那么,60+06等于多少?
8. 20道简单的五年级奥数题及答案
有奖励
20道简单的五年级奥数题及答案
急急急!!!
我来答有奖励
138******49
LV.1
聊聊关注成为第1位粉丝
1.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?
【分析与解】 方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.
方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.
有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.
2.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?
【分析与解】 由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.
如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.
也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.
那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒.
3.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?
【分析与解】 方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.
因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.
又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.
在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.
那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.
所以甲班的平均分比乙班的平均分高96-84=12分.
方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.
所以甲班的平均分比乙班的平均分高12×(8-7)=12分.
4.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?
【分析与解】 如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;
如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.
现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.
设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.
即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.
即甲、乙两家各交电费2元7角6分,1元8角.
5.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?
【分析与解】 设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以 19×6+1≤m-n≤19×8-1,即115≤m-n≤151.
又已知两校共需租用14座面包车72辆,所以 70×14+2≤m+n≤72×14,即982≤m+n≤1008.
同时已知m与n都是10的倍数,于是有
, 解得 , 另外四组因为解得m、n不是10的倍数.
经检验只有 满足.
所以,一小参加春游430人,二小参加春游570人.
6.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?
【分析与解】 从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.
顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;
逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.
休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.
第一种情况:当开始顺流时,至少划行半小时,行驶2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.
3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.
第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.
于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.
所以,他最多能划离码头1.7千米.
7. 机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?
48×[40×4÷(48-40)]=960(台)
8. 某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?
【分析与解】12000×24÷(24-4)-12000=2400(本)
9. 甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?
【分析与解】甲厂存砖:87500-25000=62500(块)
乙厂存砖:(87500+4500)-(25000-3000)=70000(块)
∴ 乙厂存砖多,多 70000-62500=7500(块)
10. 一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?
【分析与解】(45-24)×2=42(千克)
11.小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?
【分析与解】这是一个相向而行相遇求路程的问题。但两人不是同时出发,如果能转换成同时出发,并且求出行多少小时相遇,就可以用数学课学的方法解答。
两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。
答:A、B两地间的路程是64千米。
12:甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?
【分析与解】如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。
答:小伟每分钟走78米。
13:客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?
【分析与解】当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时)
答:两车开出后4.95小时在途中相遇。
14:甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?
【分析与解】二人同时、同地出发同向而行,但开始时,乙比甲行得慢,当乙的速度增加到与甲相同前,两人间的距离越拉越大,当乙的速度超过甲时,两人间的距离又越来越近,直到乙追上甲。
开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。
答:乙出发后第21天追上甲。
15:甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?
【分析与解】慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。
16. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
【分析与解】7*18-6*19=126-114=12
6*19-5*20=114-100=14
去掉的两个数是12和14它们的乘积是12*14=168
17. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
【分析与解】28×3+33×5-30×7=39。
18. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
【分析与解】设第二组有x个数,则63+11x=8×(9+x),解得x=3。
19.小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分?
【分析与解】第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多9-8=1(分)。
20. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示)
【分析与解】每20天去9次,9÷20×7=3.15(次)。
编辑于 2020-02-13
查看全部8个回答
数学考试题,数学题目大全,0元试听,总结高效提分方法。
值得一看的数学相关信息推荐
数学考试题,掌门1对1拥有10000+教研人员,1对1针对性教学,查缺补漏,快速提升!数学考试题,初高中在线1对1辅导,好老师1对1辅导教出好成绩。
上海掌小门教育科技..广告
掌门优课在线高二数学题目及答案辅导_一线名师在线教学
名师高二数学题目及答案辅导,全程视频互动,结合地域差异,个性化教学,2节精品小班课免费领!
上海掌小门教育科技..广告
相关问题全部
广告数学题五年级_数学冲刺高分的秘籍_名师来告诉你
数学题五年级_作业帮,紧扣当地教材,快速吃透教材重难点,短时冲刺高分必备。学完就测评孩子成绩提升看得见!
572020-06-03
20道五年级下学期奥数题(简单一点的)不要答案
第六届小学“希望杯”全国数学邀请赛一、填空题(每小题5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )= 2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。如果在盒子中从左向右放5个不同的“福娃”,那么,有 种不同的放法。3、有一列数:1,1,3,8,22,60,164,448……其中的前三个数是1,1,3,从第四个数起,每个数都是这个数前面两个数之和的2倍。那么,这列数中的第10个数是 4、有一排椅子有27个座位,为了使后去的人随意坐在哪个位置都有人与他相邻,则至少要先坐 人。5、一个拧紧瓶盖的瓶子里装着一些水(如图1),由图中的数据可推知瓶子的容积是 立方厘米;( 取3.14)6、某小区有一块如图2所示的梯形空地,根据图中的数据计算,空地的面积是 平方米。 7、如图3,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是 平方厘米。8、五年级一班共有36人,每人参加一个兴趣小组,共有A,B,C,D,E五个小组,若参加A组的有15人,参加B组的仅次于A组,参加C组、D组的人数相同。参加E组的人数最少,只有4人,那么,参加B组的有 人。 9、菜地里的西红柿获得丰收,摘了全部的 时,装满了3筐还多16千克。摘完其余部分后,又装满6筐,则共收得西红柿 千克。10、工程队修一条公路,原计划每天修720米,实际每天比原计划多修80米。因而提前3天完成任务。这条路全长 千米。11、王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了 ,结果提前一个半小时到达;返回时,按原计划的速度行驶280千米后,将车速提高 ,于是提前1小时40分到达北京。北京、上海两市间的路程是 千米。12、两个完全相同长方体的长、宽、高分别是5厘米、4厘米、3厘米,把它们拼在一起可组成一个新长方体,在这些长方体中,表面积最小的是 平方厘米。二、解答题(本大题共4小题,每小题15分,共60分)要求:写出推算过程13、著名的哥德巴赫猜想:“任意一个大于4的偶数都可以表示为两个质数的和”。如6=3+3,12=5+7,等。那么自然数100可以写成多少种两个不同质数和的形式?请分别写出来(100=3+97和100=97+3算作同一种形式)14、如图4(a),ABCD是一个长方形,其中阴影部分是由一副面积为100平方厘米的七巧板(图4(b))拼成。那么,长方形ABCD的面积是多少平方厘米? 15、号码分别为2005、2006、2007、2008的4名运动员进行乒乓球赛,规定每2人比赛的场数是他们号码的和被4除所得的余数。那么2008号运动员比赛了多少场?16、有一个蓄水池装了9根相同的水管,其中一根是进水管,其余8根是出水管。开始时,进水管以均匀的速度不同地向蓄水池注水。后来,想打开出水管,使池内的水全部排光。如果同时打开8根出水管,则3小时可排尽池内的水;如果仅打开5根出水管,则需6小时才能排尽池内的水。若要在4.5小时内排尽池内的水,那么应当同时打开多少根出水管第二届华博士小学数学奥林匹克网上竞赛试题及答案选择正确的答案: (1)在下列算式中加一对括号后,算式的最大值是( )。7 × 9 + 12 ÷ 3 - 2 A 75 B 147 C 89 D 90(2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.A 500 B 540 C 360 D 480(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么 甲数是( ). A 1.75 B 1.47 C 1.45 D 1.95(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱 少1.1元,顾客应退回的瓶钱是( )元.A 0.8 B 0.4 C 0.6 D 1.2(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( ) 和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10 (7)一个两位数除250,余数是37,这样的两位数是( ).A 17 B38 C 71 D 91(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段.A 13 B 12 C 14 D 15(9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ). A 12 B 18 C10 D11(10)一昼夜钟面上的时针和分针重叠( )次.A 23 B 12 C 20 D13(11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台, 求四月份比原计划超产多少台机器?A 16 B 8 C 10 D 12(12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块? A 15 B 12 C 75 D 8 E(13)图中ABCD是长方形,已知AB=4厘米,BC=6厘米,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED=?厘米A 9 B 7 C 8 D 6 F DA BC (14)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问他们三人一共钓了多少条?A 48 B 50 C 52 D 58(15)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个?A 10 B 100 C 20 D 1602006年“希望杯”全国数学大赛(时间:90分钟 满分:120分)题 号一二其中:总 分13141516得 分 得分评卷人 一、填空题。(每题6分,共72分。) 1.计算:1+++++++++…+++…++…++=____________。2.8+88+888+…+88…8的和的个位上的数字是____________。3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。最后橘子分完了,苹果还剩下12个。那么一共分给了____________名小朋友。5.有这样一种算式:三个不同的自然数相乘,积是100。这样的算式有____________种。(交换因数位置的算同一种。)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。7.一天,小慧和刘老师一起谈心。小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。”刘老师今年的年龄是____________岁。8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。那么前3名同学的总分比后3名同学的总分多____________分。10.在右图中,已知正方形ABCD的面积是正方形EFGH面积的4倍,正方形AMEN的周长是4厘米,那么正方形ABCD的周长是____________厘米。11.一个自然数各个数位上的数字之和是15。如果它 的各个数位上的数字都不相同,那么符合条件的最大数是____________,最小数是____________。12.对自然数作如下操作:如果是偶数就除以2,如果是奇数就减去1,如此操作直到结果变成0为止。那么经过6次操作后使结果变成0的数有______个,分别是_____________________________________。得分评卷人 二、解答题。(每题12分,共48分。) 13.五名裁判员给一名体操运动员评分,去掉一个最高分和一个最低分后平均得分是9.38分。若去掉一个最高分平均得分为9.26分;若去掉一个最低分平均得分为9.46分。这名体操运动员的最高分和最低分分别是多少分?14.小狗给动物王国编一本童话故事书。 我编这本书一共用了666个数字。小狗编的这本书一共有多少页?15.学校合唱团全部是来自甲、乙、丙三个班的同学,其中来自甲、乙两班的同学共有60人。合唱团中不是甲班的同学有100人,不是乙班的同学有90人。问:(1)合唱团中来自甲、乙两班的同学各有多少人?(2)合唱团的同学一共有多少人?16.下面是一些“神秘等式”。式中的“+”、“-”、“×”、“÷”等运算符号的意义都与普通的用法相同,但0、1、2、3、……、9等数字所代表的意义则与普通的不同。① 1×5=1 ② 7×2=96 ③ 99-5=3④ 83÷4=4 ⑤ 5×5…×5=6 ⑥ 9+(7×8)=97(1)请你破解出这些“神秘等式”中的秘密,找出其中每个数字所代表的普通意义。(2)普通意义的2006用“神秘等式”中数字所代表的意义来表示,怎样表示?(3)如果采用“神秘等式”中数字所代表的意义,那么,60+06等于多少?
1 浏览560
求,,,20道小学五年级的奥数题及答案!
1.甲乙丙三人同时从同一地点出发沿同一路线追赶前面的小明;他们三人分别用9分,15分,20分追上小明,已知甲每小时行24千米,以每小时行20千米,求丙每小时行多少千米? 甲9分追上时行走了24*9/60=3.6,乙9分时行走了20*9/60=3,说明在9分时,乙和小明距离为0.6,15分时乙追上,用了6分追了0.6千米,说明乙比小明每分多走0.1千米,乙速度为20,则小明为14千米每小时,则设丙速度为x 9/60*x+11/60*(x-14)=3.6 x=18.5(千米每小时) 2.甲乙两人同时从山脚开始爬山,到达山顶后就立即下山,甲乙两人下山的速度都是各自上山速度的二倍,嫁到山顶是一句山顶还有500米,甲回到山脚是乙刚好下到半山腰,求从山脚到山顶的路程。 甲乙两人下山的速度都是各自上山速度的二倍,甲到山顶时乙距山顶还有500米,甲到山脚时乙距离山脚距离为500*(1+2)=1500米。 甲回到山脚是乙刚好下到半山腰,所以,从山脚到山顶的路程为3000米 3.甲一分钟能洗3个盘子或9个碗,乙一分钟能洗2个盘子或7个碗,甲乙两人合作,20分钟洗了134个盘子和碗,问洗了几个盘子几个碗? 设甲乙各用x、y分钟洗盘子,则 3x+9(20-x)+2y+7(20-y)=134 6x+5y=186 x<=20,y<=20 x=16, y=18 所以,盘子=16*3+18*2=84个,碗=4*9+2*7=50个 4.全班有30名学生,其中17人会骑自行车,16人会游泳,11人会滑冰,
9. 五年级数学上册简单奥数题,及答案,有一点点难度。
1、某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加。那么有多少人两个小组都不参加?
2、某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文成绩均得满分的有3人,这两科都没有得满分的有29人。那么语文成绩得满分的有多少人?
3、50名同学面向老师站成一行。老师先让大家从左至右按1,2,3,……,49,50依次报数;再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转。问:现在面向老师的同学还有多少名?
4、在游艺会上,有100名同学抽到了标签分别为1至100的奖券。按奖券标签号发放奖品的规则如下:(1)标签号为2的倍数,奖2支铅笔;(2)标签号为3的倍数,奖3支铅笔;(3)标签号既是2的倍数,又是3的倍数可重复领奖;(4)其他标签号均奖1支铅笔。那么游艺会为该项活动准备的奖品铅笔共有多少支?
5、有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断。问绳子共被剪成了多少段?
五年级试题三答案
1,因为10人2组都参加,所以只参加数学的5人,只参加航模的8人,加上那10人就是23人,40-23=17,2个小组都不参加的17人
2,同理,数学满分10人,2科都满分的3人,于是只是数学满分的7人,45-7-29=9,这个就是语文满分的人(如果说只是语文满分的则需要减去3)
3,50÷4取整12,50÷6取整8,但是要注意,报4倍数的同时可能是6的倍数,所以还要算出4和6的公倍数,有50÷12(4和6的最小公倍数)=4(取整),所以,应该是50-12-8+4=34
4,100÷2=50,100÷3=33(取整),还是算出2和3的公倍数100÷6=16(取整),然后找出即没不被2整除,也不被3整除的数的个数100-50-33+16=28,所以,准备铅笔为50X2+33X3+28=227
5,180÷3=60,180÷4=45,但是可能2个划线划在一起,也就是要算出他们的公倍数,180÷3÷4=15,所以应该为60+45-15=90
10. 小学五年级数学奥数题的答案
1.( 6 )÷12=1:( 2 )=3/( 6 )=0.5=( 50 )%
2.把0.13万改写成以“一”为单位的数是(1300 ),读作( 一千三百 )。
3.在括号里填上合适的单位名称。
(1)一个鸡蛋重50( 克 );(2)一枝粉笔的长度接近1( 分米 );
(3)我国的陆地面积约是960万( 平方千米 )。
4.食堂有煤5吨,平均每天烧1/5吨,可以烧( 10 )天。
5.2008年奥运会将在中国北京举行,这一年有( 366 )天。
6.如果2a=b/3,那么a:b=( 1 ):( 6 )
7.有一个机器零件长5毫米,画在设计图纸上长2厘米,这副图的比例尺是( 1:4 )。
8.我国伟大的数学家( 祖冲之 )是世界上第一个把圆周率的值计算精确到7位小数的人。
9.小东、小明和小军三人同在一张球桌上练习打乒乓球,他们轮流上场打了一小时,平均每人打球( 20 )分钟。
10.一张长为11厘米,宽为8厘米的长方形红纸,要剪成直角边分别是4厘米和2厘米的三角形小红旗,一共可以剪( 20 )面。
11.用铁皮做一个底面直径为6分米,高为8分米的圆柱形无盖水桶,至少要用(178.98 )平方分米的铁皮,这个水桶最多能装水( 226.08 )升。
三、计算。(40分)
1.脱式计算。(每小题4分,共16分)
①91-91÷13 ②6÷0.5×4 ③1-0.125÷1/8 ④(5/8+1/2)÷25%
=91—7 =6*1/2*4 =1-1/8÷1/8 =(5/8+1/2)÷1/4
=84 =12 =1-1 =5/8 *4+1/2 *4
=0 =5/2+ 2
=4又1/2
2.用简便方法计算。(写出主要过程)(每小题2分,共8分)
①4.2-1.8+0.8 ②2-3/4-1/4 ③ 118÷25 ④ 4.2× 97+12.6
=4.2+0.8-1.8 =2-(3/4+1/4) =118*0.04 =4.2× 97+4.2*3
=5-1.8 =2-1 =4.72 =4.2×(97+3)
=3.2 =1 =420
3.求未知数х的值。(每小题1分,共4分)
① χ+2/3=2 ②111χ=3 ③ χ/5-13=0 ④ 1.2:χ=4/3
x=2-2/3 x=3/111 x/5=13 4x=1.2*3
x=1又1/3 x=65 x=0.9
4.列式计算。(每小题6分,共12分)
① 125与它的1/5的差是多少?
125-125*1/5
=125*(1-1/5)
=125*4/5
=100
②一个数的1/4比2.8多1.2,
求这个数
解:设这个数为x
1/4x-2.8=1.2
1/4x=4
x=16
附加题(15分)
一个圆柱形容器的容积为V立方米开始用一根小水管向容器内注水水面高度达到容器高度一半后改用一根口径为小水管2倍的大水管注水向容器中注满水的全过程共用时间t分求两根水管各自注水的速度。
答:因为大水管的口径为小水管的2倍,所用的时间是小水管1/4。那么大水管所用的时间是1/5t,小水管所用的时间是4/5t。
大水管:1/2V/(1/5t)=2.5v/t
小水管:1/2V/(4/5t)=5/8v/t