高一必修4数学三角函数
㈠ 高一数学必修4三角函数
三角函数图像平移变换
由
y
=
sin
x
的图象变换出
y
=
sin(
ω
x
+
)
的图象一般有两个途径,
只有区别开这两个
途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现
无论哪种
变形,请切记每一个变换总是对字母
x
而言,即图象变换要看
“变量”起多大变化,而不是
“角变化”多少。
途径一:先平移变换再周期变换
(
伸缩变换
)
先将
y
=
sin
x
的图象向左
(
>
0)
或向右
(
<
0
=平移|
|个单位,再将图象上各点
的横坐标变为原来的
1
倍
(
ω
>
0)
,便得
y
=
sin(
ω
x
+
)
的图象。
途径二:先周期变换
(
伸缩变换
)
再平移变换。
先将
y
=
sin
x
的图象上各点的横坐标变为原来的
1
倍
(
ω
>
0)
,再沿
x
轴向左
(
>
0)
或向右
(
<
0
=平移
|
|
个单位,便得
y
=
sin(
ω
x
+
)
的图象。
㈡ 高一数学必修4三角函数例题
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.函数f(x)=3sin(x2-π4),x∈R的最小正周期为()
A.π2 B.π
C.2π D.4π
【解析】T=2πω=2π12=4π.
【答案】D
2.化简sin(9π-α)+cos(-9π2-α)=()
A.2sin α B.2cos α
C.sin α+cos α D.0
【解析】sin(9π-α)+cos(-9π2-α)=sin(π-α)+cos(π2+α)=sin α-sin α=0.
【答案】D
3.函数f(x)=tan ωx(ω>0)图像的相邻的两支截直线y=π4所得线段长为π4,则f(π4)的值是()
A.0 B.1
C.-1 D.π4
【解析】由题意知截得线段长为一周期,∴T=π4,
∴ω=ππ4=4,
∴f(π4)=tan (4×π4)=0.
【答案】A
4.已知角α的终边上一点的坐标为(sin 2π3,cos 2π3),则角α的最小正值为
()
A.5π6 B.2π3
C.5π3 D.11π6
【解析】∵sin 2π3>0,cos 2π3<0,
∴点(sin 2π3,cos 2π3)在第四象限.
又∵tan α=cos 2π3sin 2π3=-33,
∴α的最小正值为2π-16π=116π.
【答案】D
5.要得到函数y=sin(4x-π3)的图像,只需把函数y=sin 4x的图像()
A.向左平移π3个单位长度
B.向右平移π3个单位长度
C.向左平移π12个单位长度
D.向右平移π12个单位长度
【解析】由于y=sin(4x-π3)=sin[4(x-π12)],所以只需把y=sin 4x的图像向右平移π12个单位长度,故选D.
【答案】D
6.设函数f(x)=sin(2x+π3),则下列结论正确的是()
A.f(x)的图像关于直线x=π3对称
B.f(x)的图像关于点(π4,0)对称
C.把f(x)的图像向左平移π12个单位长度,得到一个偶函数的图像
D.f(x)的最小正周期为π,且在[0,π6]上为增函数
【解析】f(π3)=sin(2×π3+π3)=sin π=0,故A错;
f(π4)=sin(2×π4+π3)=sin(π2+π3)=cos π3=12≠0,故B错;把f(x)的图像向左平移π12个单位长度,得到y=cos 2x的图像,故C正确.
【答案】C
7.(2012•福建高考)函数f(x)=sin(x-π4)的图像的一条对称轴是()
A.x=π4 B.x=π2
C.x=-π4 D.x=-π2
【解析】法一∵正弦函数图像的对称轴过图像的最高点或最低点,
故令x-π4=kπ+π2,k∈Z,∴x=kπ+3π4,k∈Z.
取k=-1,则x=-π4.
法二x=π4时,y=sin(π4-π4)=0,不合题意,排除A;x=π2时,y=sin(π2-π4)=22,不合题意,排除B;x=-π4时,y=sin(-π4-π4)=-1,符合题意,C项正确;而x=-π2时,y=sin(-π2-π4)=-22,不合题意,故D项也不正确.
【答案】C
8.(2013•西安高一检测)下列函数中,以π为周期且在区间(0,π2)上为增函数的函数是()
A.y=sinx2 B.y=sin x
C.y=-tan x D.y=-cos 2x
【解析】C、D中周期为π,A、B不满足T=π.
又y=-tan x在(0,π2)为减函数,C错.
y=-cos 2x在(0,π2)为增函数.
∴y=-cos 2x满足条件.
【答案】D
9.已知函数y=sin πx3在区间[0,t]上至少取得2次最大值,则正整数t的最小值为()
A.6 B.7
C.8 D.9
【解析】T=6,则5T4≤t,如图:
∴t≥152,∴tmin=8.
故选C.
【答案】C
10.(2012•天津高考)将函数f(x)=sin ωx(其中ω>0)的图像向右平移π4个单位长度,所得图像经过点(3π4,0),则ω的最小值是()
A.13 B.1
C.53 D.2
【解析】根据题意平移后函数的解析式为y=sin ω(x-π4),将(3π4,0)代入得sin ωπ2=0,则ω=2k,k∈Z,且ω>0,故ω的最小值为2.
【答案】D
二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横线上)
11.已知圆的半径是6 cm,则15°的圆心角与圆弧围成的扇形的面积是________cm2.
【解析】15°=π12,∴扇形的面积为S=12r2•α=12×62×π12=3π2.
【答案】3π2
12.sin(-120°)cos 1 290°+cos(-1 020°)sin(-1 050°)=________.
【解析】原式=-sin(180°-60°)•cos(3•360°+210°)+cos(-1 080°+60°)•sin(-3×360°+30°)
=-sin 60°cos(180°+30°)+cos 60°•sin 30°
=-32×(-32)+12×12=1.
【答案】1
13.(2013•江苏高考)函数y=3sin(2x+π4)的最小正周期为________.
【解析】函数y=3sin(2x+π4)的最小正周期T=2π2=π.
【答案】π
图1
14.已知函数f(x)=sin(ωx+φ)(ω>0)的图像如图所示,则ω=________.
【解析】由图像可知,
T=4×(2π3-π3)=4π3,
∴ω=2πT=32.
【答案】32
15.关于x的函数f(x)=sin(x+φ)有以下命题:
①对于任意的φ,f(x)都是非奇非偶函数;②不存在φ,使f(x)既是奇函数又是偶函数;③存在φ,使f(x)是奇函数;④对任意的φ,f(x)都不是偶函数.
其中假命题的序号是________.
【解析】当φ=2kπ,k∈Z时,f(x)=sin x是奇函数;
当φ=(2k+1)π,k∈Z时,f(x)=-sin x仍是奇函数;
当φ=2kπ+π2,k∈Z时,f(x)=cos x或φ=2kπ-π2,k∈Z时,f(x)=-cos x都是偶函数.
所以①和④是错误的,③是正确的.
又因为φ无论取何值都不能使f(x)恒为零,故②正确.所以填①④.
【答案】①④
三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分12分)已知角x的终边过点P(1,3).
(1)求:sin(π-x)-sin(π2+x)的值;
(2)写出角x的集合S.
【解】∵x的终边过点P(1,3),
∴r=|OP|=12+32=2.
∴sin x=32,cos x=12.
(1)原式=sin x-cos x=3-12.
(2)由sin x=32,cos x=12.
若x∈[0,2π],则x=π3,
由终边相同角定义,∴S={x|x=2kπ+π3,k∈Z}.
17.(本小题满分12分)已知函数f(x)=Asin(ωx+φ)+2(A>0,ω>0)图像上的一个最高点的坐标为(π8,22),则此点到相邻最低点间的曲线与直线y=2交于点(38π,2),若φ∈(-π2,π2).
(1)试求这条曲线的函数表达式;
(2)求函数的对称中心.
【解】(1)由题意得A=22-2=2.
由T4=3π8-π8=π4,
∴周期为T=π.
∴ω=2πT=2ππ=2,
此时解析式为y=2sin(2x+φ)+2.
以点(π8,22)为“五点法”作图的第二关键点,则有
2×π8+φ=π2,
∴φ=π4,
∴y=2sin(2x+π4)+2.
(2)由2x+π4=kπ(k∈Z)得x=kπ2-π8(k∈Z).
∴函数的对称中心为(kπ2-π8,2)(k∈Z).
18.(本小题满分12分)(2012•陕西高考)函数f(x)=Asin(ωx-π6)+1(A>0,ω>0)的最大值为3,其图像相邻两条对称轴之间的距离为π2.
(1)求函数f(x)的解析式;
(2)设α∈(0,π2),f(α2)=2,求α的值.
【解】(1)∵函数f(x)的最大值为3,∴A+1=3,即A=2.
∵函数图像的相邻两条对称轴之间的距离为π2,
∴最小正周期T=π,∴ω=2,
∴函数f(x)的解析式为y=2sin(2x-π6)+1.
(2)∵f(α2)=2sin(α-π6)+1=2,
∴sin(α-π6)=12.
∵0<α<π2,∴-π6<α-π6<π3,
∴α-π6=π6,∴α=π3.
19.(本小题满分13分)已知y=a-bcos 3x(b>0)的最大值为32,最小值为-12.
(1)求函数y=-4asin(3bx)的周期、最值,并求取得最值时的x的值;
(2)判断(1)问中函数的奇偶性.
【解】(1)∵y=a-bcos 3x,b>0,
∴ymax=a+b=32,ymin=a-b=-12,解得a=12,b=1.
∴函数y=-4asin(3bx)=-2sin 3x,
∴此函数的周期T=2π3.
当x=2kπ3+π6(k∈Z)时,函数取得最小值-2;
当x=2kπ3-π6(k∈Z)时,函数取得最大值2.
(2)∵函数解析式为y=-2sin 3x,x∈R,
∴-2sin(-3x)=2sin 3x,即f(-x)=-f(x),
∴f(x)为奇函数.
20.(本小题满分13分)函数f1(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的一段图像过点(0,1),如图所示.
图2
(1)求函数f1(x)的表达式;
(2)将函数y=f1(x)的图像向右平移π4个单位,得函数y=f2(x)的图像,求y=f2(x)的最大值,并求出此时自变量x的集合,并写出该函数的增区间.
【解】(1)由题意知T=π=2πω,∴ω=2.
将y=Asin 2x的图像向左平移π12,得y=Asin(2x+φ)的图像,于是φ=2×π12=π6.
将(0,1)代入y=Asin(2x+π6),得A=2.
故f1(x)=2sin(2x+π6).
(2)依题意,f2(x)=2sin[2(x-π4)+π6]
=-2cos(2x+π6),xKb 1. Com
∴y=f2(x)的最大值为2.
当2x+π6=2kπ+π(k∈Z),
即x=kπ+5π12(k∈Z)时,ymax=2,
x的集合为{x|x=kπ+5π12,k∈Z}.
∵y=cos x的减区间为x∈[2kπ,2kπ+π],k∈Z,
∴f2(x)=-2cos (2x+π6)的增区间为{x|2kπ≤2x+π6≤2kπ+π,k∈Z},解得{x|kπ-π12≤x≤kπ+5π12,k∈Z},
∴f2(x)=-2cos(2x+π6)的增区间为x∈[kπ-π12,kπ+5π12],k∈Z.
图3
21.(本小题满分13分)已知定义在区间[-π,2π3]上的函数y=f(x)的图像关于直线x=-π6对称,当x∈[-π6,2π3]时,函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π2<φ<π2),其图像如图所示.
(1)求函数y=f(x)在[-π,2π3]上的表达式;
(2)求方程f(x)=22的解.
【解】(1)由图像可知,A=1,T4=2π3-π6=π2,
∴T=2π.
∴ω=2πT=2π2π=1.
∵f(x)=sin(x+φ)过点(2π3,0),
∴2π3+φ=π.
∴φ=π3.
∴f(x)=sin(x+π3),x∈[-π6,2π3].
∵当-π≤x<-π6时,-π6≤-x-π3≤2π3,
又∵函数y=f(x)在区间[-π,2π3]上的图像关于直线x=-π6对称,
∴f(x)=f(-x-π3)=sin[(-x-π3)+π3]=sin(-x)=-sin x,x∈[-π,-π6].
∴f(x)=sinx+π3,x∈[-π6,2π3],-sin x,x∈[-π,-π6.
(2)当-π6≤x≤2π3时,π6≤x+π3≤π.
由f(x)=sin(x+π3)=22,得x+π3=π4或x+π3=3π4,
∴x=-π12或x=5π12.
当-π≤x<-π6时,由f(x)=-sin x=22,即sin x=-22得x=-π4或x=-3π4.
∴方程f(x)=22的解为x=-π12或5π12或-π4或-3π4.
㈢ 高中数学必修四的三角函数的所有公式。
这个东西给你也没用。自己去推导。不然肯定全部不会用·
楼上的公式有什么用。 还有其他的很多东西都没有覆盖到。
㈣ 高一数学必修四三角函数总结
同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ) =2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 坡度公式 我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示, 即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作 a(叫做坡角),那么 i=h/l=tan a. 二倍角公式 正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 万能公式 sinα=2tan(α/2)/[1+(tan(α/2))^2;] cosα=[1-(tan(α/2))^2]/[1+(tan(α/2))^2] tanα=2tan(α/2)/[1-(tan(α/2))^2] 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a) 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式 tan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanαtanβ) cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ -cosαsinβ 积化和差 sinαsinβ =-[cos(α+β)-cos(α-β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z)
㈤ 高中数学必修4三角函数公式大全
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
诱导公式记忆口诀
※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)
例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα
上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.
其他三角函数知识:
同角三角函数基本关系
⒈同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函数关系六角形记忆法
六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
两角和差公式
⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα ·tanβ
倍角公式
⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2tanα
tan2α=—————
1-tan^2(α)
半角公式
⒋半角的正弦、余弦和正切公式(降幂扩角公式)
1-cosα
sin^2(α/2)=—————
2
1+cosα
cos^2(α/2)=—————
2
1-cosα
tan^2(α/2)=—————
1+cosα
万能公式
⒌万能公式
2tan(α/2)
sinα=——————
1+tan^2(α/2)
1-tan^2(α/2)
cosα=——————
1+tan^2(α/2)
2tan(α/2)
tanα=——————
1-tan^2(α/2)
万能公式推导
附推导:
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因为cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=tan2α/(1+tan^2(α))
然后用α/2代替α即可。
同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。
三倍角公式
⒍三倍角的正弦、余弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
3tanα-tan^3(α)
tan3α=——————
1-3tan^2(α)
三倍角公式推导
附推导:
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^2(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
三倍角公式联想记忆
记忆方法:谐音、联想
正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))
余弦三倍角:4元3角 减 3元(减完之后还有“余”)
☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
和差化积公式
⒎三角函数的和差化积公式
α+β α-β
sinα+sinβ=2sin—----·cos—---
2 2
α+β α-β
sinα-sinβ=2cos—----·sin—----
2 2
α+β α-β
cosα+cosβ=2cos—-----·cos—-----
2 2
α+β α-β
cosα-cosβ=-2sin—-----·sin—-----
2 2
积化和差公式
⒏三角函数的积化和差公式
sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]
和差化积公式推导
附推导:
首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。
减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。
数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。
㈥ 高一数学必修四 三角函数
cos(π+A)= -cosA=-1/2
cosA=1/2
sin( π/2 + A)= cosA=1/2
公式背出来就可以了