六年级数学与生活
Ⅰ 六年级“我的数学与生活”研究论文
数 学 研 究 报 告
xx小学 x(x)班 xxx
一、研究时间: xxxx xx xx
二、研究目的:
1、在外力一定的条件下,自行车的快慢与哪些因素有关?
三、研究对象:
自行车、主动轮、被动轮。
四、研究过程:
一、与主动轮和被动轮齿的个数多少的关系
1、在外力一定的条件下,用100个扣长的链条、40个齿的主动轮、10个齿的被动轮,主动轮转一圈,被动轮跟随主动轮转4圈。
2、在外力一定的条件下,用100个扣长的链条、60个齿的主动轮、10个齿的被动轮,主动轮转一圈,被动轮跟随主动轮转6圈。
3、在外力一定的条件下,用100个扣长的链条、80个齿的主动轮、10个齿的被动轮,主动轮转一圈,被动轮跟随主动轮转8圈。
4、在外力一定的条件下,用100个扣长的链条、80个齿的主动轮、8个齿的被动轮,主动轮转一圈,被动轮跟随主动轮转10圈。
从以上研究过程可知:自行车的快慢与主动轮和被动轮齿的个数多少有关,被动轮的齿数越少,主动轮的齿数越多,自行车的速度就越快;反之,被动轮的齿数越多,主动轮的齿数越少自行车的速度就越慢。
五、研究结论:
自行车的速度不在于链条的长短,取决于主动轮与被动轮的齿数的多少。
也许有用
Ⅱ 生活中的数学 作文 六年级
生活中我们都离不开数学,比如买菜的几斤几两、日历上的几年几月几日,还有一些数学的等式都与数学有关。今天,我要向大家介绍几题数学题吧!
早上起床,当我们睁开朦朦胧胧的双眼,第一眼就向闹钟看去,闹钟上的数字,就是生活中的数学。因为我们一天的时间是时针转24圈、分针转1440圈、秒针转86400圈得来的。那24×30=一个月,一个月×12=一年,这就是时间的数学。
平时,我们都要去的菜市场里也离不开数学。星期天,妈妈带我去买菜,在一个卖白菜的摊子前,妈妈和卖白菜的人讨价还价起来,最后,以一斤八角钱的价格买三斤,送一斤的口头协议买了三斤大白菜。妈妈问我:“我这样买菜,每斤便宜了多少钱?”我想了想,对妈妈说:“便宜两角。”若得卖菜阿姨直夸我。回到家里,妈妈问我:“你是怎么算的?”我笑了笑说:“我先算3斤大白菜×0。8元=2元4角,再算买3斤送1斤=4斤,然后再算2元4角÷4斤=6角,那8角-6角不就等于2角了吗!”这就是生活中的单价×数量=总价。
我平时都要跟着妈妈乘公共汽车去新华书店,公交车一分钟行驶一千米,大约二十分钟就到了。妈妈问我:“我们家离新华书店距离大约有多少千米呀?”我一边用手指比划着一边对妈妈说:“大约二十千米。”这就是生活中的速度×时间=路程。
“勤动脑+勤动手=成功”这是我通过实际生活所悟出的道理,也是我一般的解题顺序。我总要先读懂题目,掌握其中的关系,列出算式,一步步地解答。有时,还要通过画图的方式,来理解题目。
其实,生活中还有许多奇妙的数学,在等着我们去寻找、去发现
Ⅲ 小学六年级数学与生活小论文(600字以上)
我在家里用纸筒做了一个“篮筐”,用小时候玩的小球作为篮球来
打篮球。 一天,我在投篮,球落下后滚到了床底下,在用竹竿把它勾出来时,我还得到了一个意外的收获:一个弹球。它几乎只有“篮球”的十分之一大。用小球投久了,不免觉得乏味,便突发奇想用那弹球来投,意外的,那似乎非常容易投进,虽然刚开始时很不容易进球,但随着投的次数增加,投进的几率比原来大多了,甚至超过了投小球的准确率,几乎百发百中。这绝不是运气,更不是碰巧,也不是我的水平突飞猛进了。 那是为什么呢?
于是我开始思考:弹球的质量比小球重多了,因此扔相同距离所需的力也较扔小球时增大不少。而以前扔小球居多,习惯上所用的力也不同,因此,这不是习惯或熟能生巧造成的,准确率的提高跟球的质量无关。而“篮筐”未变,故只可能是人或球的问题,而我方才没有那么高的进球率,故是球的问题。而进球率越来越高应该是渐渐习惯了投弹球时所用的力了。那么应该就是球体积的大小的改变造成的。
于是我便开始验证了。用尺子测量出“篮筐”的上截面直径约为25厘米,小球的直径约为10厘米,而弹球的直径约为5厘米。因此,
“篮筐”的上截面的面积约为:25* 25/2/2*3.14=490.625平方厘米,小球的最大横截面的面积约为:10*10/2/2*3.14=78.5平方厘米,
弹球的最大横截面的面积约为:5*5/2/2*3.14=19.625平方厘米。
而若要进球,则球的重心应偏向篮筐,及至少有一半的最大横截面的面积在篮筐内,而弹球的一半的最大横截面的面积小于小球的一半的最大横截面的面积,故弹球进球的几率大于小球进球的几率,且应为小球进球的几率的4倍。
通过计算我搞清了这个小问题,可见生活中处处有数学。
这是一篇小学生在玩球时的发现,而他用弹球往球蓝里投球得到了收获,这就是一个弹球,改用弹球来投结果,似乎非常容易投进,随着次数的增加,投进的几率比原来大多了,甚至超过了投小球的准确率,几乎百发百中,于是小作者就想探个究境,结果通过计算小作者明白了,这是球的重心偏向篮筐,及至少有一半的最大的横截面的面积在篮筐内,而弹球的一半的横截面的面积小于小球的一半的最大横截面的面积,所以弹球的几率大于小球的几倍,所以容易进。
通过这个事例,我明白了教学生学数学就要教给学生数学要和生活实际联系起来,学了就要会用,因为数学无处不在,只有这样,数学才不会乏味,学生才愿意学数学,学生才有兴趣学数学,数学才能真正地为社会服务,为人类造福。
望采纳
Ⅳ 六年级生活数学小论文500字以上!!!
在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢?
在数学活动组里,我就遇到了这样一道实际生活中的问题:
某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖 10000元 1名,一等奖1000元 2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大?
面对问题我们并不能一目了然。于是我们首先作了一个随机调查。把全组的16名学员作为调查对象,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?
在实际问题中,甲商厚每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。
一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客。
二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共 14000元(10000+ 2000+ 1000+1000=14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为 280000元( 14000 ÷ 5%=280000)。
所以由此可得:
(l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多。
(2)当两商厦的营业额都不足 280000元时,乙商厦的优惠则小于 14000元,所以这时甲商厦提供的优惠仍是 14000元,优惠较大。
(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。
像这样的问题,我们在日常生活中随处可见。例如,有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同。为了争取更多的用户,两站分别推出优惠政策。甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年。你作为用户,应该选哪家好?
这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。
随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩。买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。
作为跨世纪的学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题.这样才能更好地适应社会的发展和需要。
Ⅳ “生活与数学”六年级,怎么写
不是还可以进行专项研究吗
我写的就是怎么找圆心
很简单的
加油哦(*^__^*)
Ⅵ 六年级生活中的数学题及答案
※大头儿子和小头爸爸共同开了一家麦当劳店,他们晚上一起计算当天的营业额,发现账面上多出32.13元钱,后来发现是一笔钱的小数点点错了一位,原来这笔钱是( )
※王老师给学生买了72支钢笔,共用去□67.9△元,其中□和△外的数学已记不表了,请帮助老师算一算。每支钢笔多少钱?
※笑笑喝一瓶果汁,分四次喝完。第一次喝了一瓶果汁的六分之一,然后加满水;第二次喝了一瓶的三分之一,然后再加满水,第三次喝了半瓶,又加满水;第四次一饮而尽,笑笑喝的果汁是( ),喝的水是( )。
※某小学为每个学生编号,设定号码未尾为1表示男生,为2表示女生。如9652表示“96年入学,在四年级一班,025号同学,该同学是女生”。那么,01110101表示的学生是( )年入学,在( )年级( )班,学号是( )的一名( )同学。假若你是六年级三班的36号同学,请用以上方法编出自己的学号。
※某地区小灵通移动电话的交费方式有以下两种:(1)免交月租费。通话每分钟0.25元,每月基本消费15元;(2)交月租费,每月交月租费18元,通话每分钟0.1元。请算一下,每月通话时间为100分钟和200分钟,选择那种方式比较划算?如果你爸爸也有小灵通,你认为他用那种方式交费比较好?为什么?
※某城市自来水收费是这样规定的:每户每月用水15吨(含15吨)按0.9元一吨收费,超过15吨的,其超出部分按3元一吨收费。某户四月份用水21吨,应交多少元水费?
※一次,甲、乙、丙三位朋友合乘一辆出租车出去办事,出发时三人商量好,车费由三人合理分摊。早在行到6千米的地方下车,乙在行到12千米的地方下车,丙一直行到18千米的地方下车,并付了36元的车费,请问他们三人各应承担多少车费才比较合理?
※一农妇提着一蓝子鸡蛋去卖,第一次卖掉了全部鸡蛋的一半又多半个,第二次卖掉剩下的一半又多半个,第三次卖掉剩下的一半又多半个,最后篮子里还剩一个鸡蛋,问:农妇原来有多少个鸡蛋?
※某食品店有5箱饼干,如果从每个箱子里取出15千克,那么5个箱子里剩下的饼干正好是原来的两箱饼干,原来每个箱子里装多少千克饼干?
※小亮和爸爸坐出租车去郊游,10千米以内收费5元,超过10千米时,每千米收费0.3元,下车时小亮共交出租车费9.2元,求出租车行了多少千米?
※六(一)班52名同学去海洋馆游玩,中午时老师让贝贝给大家买饮料。由于买的多,阿姨给以买一箱送一盒的优惠,共付了4箱的钱,正好每人一盒。你知道每箱饮料有多少盒吗?
※某小学要买60个足球,现在有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同:
甲店:买10个足球免费赠送2个,不足10个不赠送;
乙店:每个足球优惠5元;
丙店:购物每满200元,返还现金30元。
为了节省费用,希望小学应到哪个商店购买,为什么?
※爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米以外),下面是已知的一些数据,人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,请问这次爆破的导火索应多长才能确保安全?
※某中学图书馆购买了3种精装本和5本平装本《汉语词典》,共用去27.8元。如果用一个精装本调换两本平装本还得再付1元钱,精装本词典每本多少元?
※六年级有甲、乙、丙三个班,已知甲、乙两班共有50人,乙、丙两班共有70人,甲、丙两班共有60人,问甲、乙、丙三个班各有多少人?
※小王用140元买了一件外衣,一顶帽子和一双鞋。外衣的价钱比帽子贵90元,外衣和帽子一共比鞋贵120元,问一双鞋垢价钱是多少元?
※甲、乙、丙三个共出27元合伙买了一批练习本,每人出了9元。由于乙和丙分别比甲多拿15本,国此,乙和丙每人都要给甲1.5元,问三人合伙买了多少本练习本?
※某小学组织325名师生去春游,已知大客车限乘40人,每天每辆1000元,小客车限乘25人,每天每辆650元,问怎样租车才合适?
※有两则招聘启事, A公司的工资采用年薪制,起薪为每年10000元,以后逐年增加,每年增加600元;而B公司采用半年薪制,起薪为每半年5000元,以后每半年增加200元,问那个公司的条件更优厚?
※A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一人24天的食物和水,如果不准将部分食物存放于途中,问:其中一个人最远可以深入沙漠多少千米?如果可以将部分食物存放于途中以备返回时取用呢?
※小强、小伟和小华三个人帮助李奶奶把装有相同重量的两个行李箱送到相距1.5千米处的车站,三人决定平均负担运行李的任务,每人每次只能背一箱,问平均每人背多少千米?
※甲、乙、丙三个进行60米赛跑,当甲冲过终点时,比乙领先10米,比丙领先20米,假如每的速度不变,问当乙到过终点时,比丙领先多少米?
※李阿姨拿120元钱到市场上买肉,由于肉价降低了五分之一,所以,她买的肉比上次拿同样的钱多买到5千克,问:原来的肉价是每千克多少元?
※电影票原价若干元,现在每张降价3元,观众增加了一半,收入也增加了五分之一,一张电影票原来是多少元?
※甲、乙两人在银行存款共9600元,如果两人分别取出自己的存款的40%,再从乙的存款中取出120元给甲,这时两人存款数相等,乙原来存款多少元?
(我也不知道答案)
Ⅶ 生活有趣的数学现象和数学问题(六年级的)
下楼梯 :小丁和小明、小红三个小朋友并排在有灰尘的楼梯上同时从顶上内向下走。小明一容步下2阶,小红一步下3阶,小丁一步下4阶,如楼顶和楼底均有所有三个人的脚印,那么仅有一个人脚印的楼梯最少有几级? 分析:因从顶上向下走,又都走到楼底,所以楼梯阶数必须是三个人每步走的阶数的公倍数。而2、3、4的最小公倍数是12,所以这个楼梯最少有12阶。仅有一个人脚印的是第2、3、9、10阶。因这些数仅含2、3、4中的一个因数。所以仅有一个人脚印的楼梯最少有4阶。
Ⅷ 6年级数学与生活什么深刻题材
主要体现数学在生活当中的应用
Ⅸ 六年级下册数学生活与百分数的手抄报图片
数学幽默笑话
100分
期末考试后,小亮回家说:“这回两门考了100分。”爸爸妈妈听后很高兴。 小亮接着说:“是两门加起来100分。”爸爸听了扬手就要打,妈妈劝住说:“语文就算得了40分,算术总该60分吧,总还有一门及格嘛!”小亮委屈地说:“妈,不是那么算法!语文是10分,算术0分,加在一块不正好是100分吗?
趣味数学题
小机灵几岁
有位叔叔问“小机灵”几岁了,他说:“如果从我三年后年龄的2倍中减去我三年前年龄的2倍,就等于我现在的年龄?
过桥
今有a b c d 四人在晚上都要从桥的左边到右边。此桥一次最多只能走两人,而且只有一支手电筒,过桥是一定要用手电筒。四人过桥最快所需时间如下为:a、 2 分;b、 3 、分;c、 8 分;d 、10分。走的快的人要等走的慢的人,请问如何的走法才能在 21 分 让所有的人都过桥?
《数学家小时候的故事》
欧拉(1707~1783)
欧拉瑞士数学家,英国皇家学会会员。欧拉从小着迷数学,是一位不折不扣的数学天才。他13岁便成为著名的巴塞尔大学的学生,16岁获硕士学位,23岁就晋升为教授。1727年,他应邀去俄国圣彼得堡科学院工作。过度的劳累,致使他双目失明。但是,这并没有影响他的工作 。欧拉具有惊人的记忆力。氢说,1771年圣彼德堡的一场大火,把他的大量藏书和手稿化为灰烬。他就凭着惊人的记忆,口授发表了论文400多篇、论著多部。欧拉这们18世纪数学巨星,在微积分、微分方程、几何、数论、变分学等 领域都作出了巨大贡献,从而确定了他作为变分法的奠基人、复变函数先驱者的地位。同时,他还是一位出色的科普作家,他发表的科普读物,在长达90年内不断重印。欧拉是古往今来最多产的数学家,据说他留下的宝贵的文化遗产够当时的圣彼得堡所有的印刷机同时忙上几年。
欧拉作为历史上对数学贡献最大的四位数学家之一(另外三位是阿基米德、牛顿、高斯),被誉为"数学界的莎士比亚"。
数学名人名言
数学是科学的皇后,而数论是数学的皇后。———高斯
只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。———希尔伯特
拿破仑说:“一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的发展和至善和国家繁荣昌盛密切相关”
邱成桐说:“现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量”
华罗庚说:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。”
一门科学,只有当它成功地运用数学时,才能达到真正完善的地步。——马克思
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。——毕达哥拉斯
开心笑一笑:
减法
数学课上,教师对一位学生说:“你怎么连减法都不会?例如,你家里有十个苹果,被你吃了四个,结果是多少呢?” 这个学生沮丧地说道:“结果是挨了十下屁股!
逻辑学的用处
有个学生请教爱因斯坦逻辑学有什么用。爱因斯坦问他:“两个人从烟囱 里爬出去,一个满脸烟灰,一个干干净净,你认为哪一个该去洗澡?” “当然 是脏的那个。”学生说。 “不对。脏的那个看见对方干干净净,以为自己也不会脏, 哪里会去洗澡? ”
脑筋急转弯
有一天,数字卡片在一起吃午饭的时候, 0弟弟说:“我们大家伙儿,一起拍几张合影吧,你们觉得怎么样?” 0的兄弟姐妹们一口齐声的说:“好啊。” 8哥哥说:“0弟弟的主意可真不错,我老8供应照相机和胶卷,好吧?” 老4说话了:“好是好,就是太麻烦了一点,到不如用我的数码照相机,就这么定了吧。” 于是,它们忙了起来,终于+号帮它们拍好了,就立刻把数码照相机送往店里洗照片,照片洗好了,电脑姐姐向它们要钱,可它们到底谁付钱呢?它们一个个呆呆的望着对方,这是电脑姐姐说:“一共5元钱,你们一共十一个兄弟姐妹,平均一人付多少元钱? ”
数学故事
韩信点兵
我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝, 七子团圆月正半,除百零五便得知。 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 1×70+2×21+3×15=157 157-105=52(个)
Ⅹ 我是六年级的学生,求数学与生活的题材不要画画
有重叠的地方往往就有美。中国民族风俗很讲究成双结对,文学里也有“双声”、“叠韵”等说法。在号称“人间天堂”的杭州,就有这样两副对联。其中之一是:
翠翠红红处处莺莺燕燕,
风风雨雨年年暮暮朝朝。
另一处则见于孤山中山公园的一座方亭,横匾题着“西湖天下景”五个大字,亭柱上悬挂一副楹联:
山山水水,处处明明秀秀;
晴晴雨雨,时时好好奇奇。
西湖的山山水水,处处明媚秀丽。这两幅对联写出了人们对杭州与西湖山水的共同感受,让人引起共鸣。不过对联的叠字毕竟有限,我们能否把重叠之美推向无限?这就得借助数学的力量了。出发点极其简单:3×4=12。
接下去可以写出第二式:33×34=1122。
重叠之美开始露头了,我们可以接下去看看第三式、第四式:333×334=111222;3333×3334=11112222。
当然重叠之美不限于此,只要你多留意,将来能够欣赏到更多的“数学之美”。