当前位置:首页 » 语数英语 » 数学教学的基本要求

数学教学的基本要求

发布时间: 2021-07-28 04:56:30

❶ 小学数学课堂教学的基本要求

小学数学课堂教学主要是掌握基本的数学常识,比如100以内的加减法,并能运用到实际的生活当中,在此过程中发展学生的思维能力和表达能力

❷ 数学学科教学基本要求 答案

学科教学基本要求
数学
第一单元 数与运算
一、数的整除

1. 内容要目
数的整除性、奇数和偶数、因数和倍数、素数和合数,公因数和最大公因数、公倍数和最小公倍数、分解素因数;能被2和5整除的正整数的特征。
2.基本要求
(1)知道数的整除性、奇数和偶数、素数和合数、因数和倍数、公倍数和公因素等的意义;知道能被2、5整除的正整数的特征。
(2)会用短除法分解素因数;会求两个正整数的最大公因素和最小公倍数。
3.重点和难点
重点是会正确地分解素因数,并会求两个正整数的最大公因数和最小公倍数。
难点是求两个正整数的最小公倍数。
4.知识结构

二、实数

1.内容要目
实数的概念,实数的运算。近似计算以及科学记数法。
2. 基本要求
(1)理解开方及方根的意义,知道无理数的概念,知道实数与数轴上的点具有一一对应的关系。
(2)理解实数概念,掌握实数的加、减、乘、除、乘方、开方等运算的法制,会正确进行实数的运算。
(3)会用计算器进行实数的运算,初步掌握估算、近似计算的基本方法和科学记数法。
3.重点和难点
重点是理解实数概念,会正确进行实数的运算。
难点是认识实数与数轴上的点的一一对应关系。

第二单元 方程与代数
一、整式与分式
1.内容要目
代数式,整式的加减法,同底数幂的乘法和除法,幂的乘方,积的乘方。
单项式的乘法和除法,单项式与多项式的乘法,多项式除以单项式,多项式的乘法。
乘法公式:
因式分解:提取公因式法,公式法,十字相乘法,分组分解法。
分式,分式的基本性质,约分,最简分式,通分,分式的乘除法,分式的加减法,整数的指数幂,整数指数幂的运算。
2.基本要求
(1)理解用字母表示数的意义;理解代数式的有关概念。
(2)通过列代数式,掌握文字语言与数学式子的表述之间的转换,领悟字母“代”数的数学思想;会求代数式的值。
(3)掌握整式的加、减、乘、除及乘方的运算法则,掌握平方差公式、两数和(差)的平方公式。
(4)理解因式分解的意义,掌握提取公因式法、公式法、二次项系数为1时的十字相乘法、分组分解法等因式分解的基本方法。
(5)理解分式的有关概念及其基本性质,掌握分式的加、减、乘、除运算。
(6)理解正整数指数幂、零指数幂、负整数指数幂的概念,掌握有关整数指数幂的乘(除)、乘方等运算的法则。
说明 ①在求代数式的值时,不涉及繁难的计算;②不涉及繁难的整式运算,多项式除法中的除式限为单项式;③在因式分解中,被分解的多项式不超过四项,不涉及添项、拆项等技巧;④不涉及繁复的分式运算。
3.重点和难点
重点是整式与分式的运算,因式分解的基本方法,整数指数幂的运算。
难点是选择适当的方法因式分解及代数式的混合运算。
4.知识结构

二、二次根式
1.内容要目
二次根式的概念,二次根式的性质;最简二次根式,同类二次根式,分母有理化,二次根式的加、减、乘、除及其混合运算,分数指数幂。
2.基本要求
(1)理解二次根式的概念,会根据二次根式中被开放数应满足的条件,判断或确定所含字母的取值范围。
(2)掌握二次根式的性质,会利用性质化简二次根式。
(3)理解最简二次根式、同类二次根式、分母有理化的意义,会将二次根式化为最简二次根式,会判别同类二次根式,会进行分母有理化。
(4)会进行二次根式的加、减、乘、除及其混合运算。
(5)会解系数或常数项含二次根式的一元一次方程和一元一次不等式。
(6)理解分数指数幂的概念,会求分数指数幂。
说明 ①关于二次根式的性质,包括:

②不出现繁难的二次根式的运算;在求解其系数或常数项含二次根式的一元一次方程和一元一次不等式时,所涉及的计算不繁难。
3.重点和难点
重点是二次根式的性质,二次根式的加、减、乘、除及其混合运算,分数指数幂的运算。
难点是系数或常数项含二次根式的一元一次不等式的求解。
4.知识结构

三、一次方程与不等式(组)
1.内容要目
列方程,一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。
不等式的概念,不等式的性质,不等式的解集;一元一次不等式,一元一次不等式的解法;一元一次不等式组及其解集,一元一次不等式组的解法。
二元一次方程、二元一次方程组的概念,二元一次方程组的解法,三元一次方程的概念,三元一次方程组的解法。
一次方程组的应用。
2.基本要求
(1)理解一元一次方程的有关概念,掌握一元一次方程解法。
(2)理解二元一次方程和它的解以及一次方程组和它的解的概念,掌握“消元法”,会解二元、三元一次方程组。
(3)会列一次方程(组)解简单的应用题。
(4)理解不等式及不等式的基本性质,理解一元一次不等式(组)及其解的有关概念,掌握一元一次不等式的解法,会利用数轴表示不等式的解集,会解简单的一元一次不等式组。
说明 不出现涉及繁难计算的解方程(组)、不等式(组)的问题。
3.重点和难点
重点是一元一次方程、二元一次方程组、三元一次方程组、一元一次不等式、一元一次不等式组的解法。
难点是一次方程(组)的应用。
4.知识结构

四、一元二次方程
1.内容要目
一元二次方程的概念,一元二次方程的解法,一元二次方程的根的判别式,一元二次方程的应用。
2.基本要求
(1)理解一元二次方程的概念。
(2)会用开平方法、因式分解法解特殊的一元二次方程,理解配方法解一元二次方程的思路,会用配方法和公式法解一元二次方程。
(3)会求一元二次方程的根的判别式的值,知道判别式与方程实数根情况之间的联系,会利用判别式判断实数根的情况。
(4)会利用一元二次方程的求根公式对二次三项式在实数范围内进行因式分解。
(5)会列一元二次方程解简单的实际问题。
3.重点和难点
重点是一元二次方程的解法。
难点是一元二次方程的简单应用。
4.知识结构

五、代数方程
1.内容要目
含有字母系数的一元一次与一元二次方程,特殊的高次方程(二项方程、双二次方程),分式方程,无理方程,简单的二元二次方程(组),列方程(组)解应用题。
2.基本要求
(1)知道整式方程的概念;会解含有一个字母系数的一元一次方程与一元二次方程。
(2)知道高次方程的概念;会用计算器求二项方程的实数根(近似跟),会用换元法解双二项方程,会用因式分解的方法解某些简单的高次方程。
(3)理解分式方程、无理方程的概念;掌握可化为一元一次方程、一元二次方程的分式方程(组)和简单的无理方程的解法,知道“验根”是解分式方程(组)和无理方程的必要步骤,掌握验根的基本方法。
(4)理解二元二次方程和二元二次方程组的概念;会用代入消元法解由一个二元一次方程与一个二元二次方程所组成的二元二次方程组,会用因式分解法解两个方程中至少有一个容易变形为二元一次方程的二元二次方程组。
(5)会列出一元二次方程、分式方程(组)、无理方程、二元二次方程组求解简单的实际问题。
3.重点和难点
重点是特殊的高次方程的解法和简单的分式方程、无理方程、二元二次方程组的解法,以及有关方程(组)的基本应用。
难点是对分式方程和无理方程有可能产生增根的理解以及对实际问题中数量关系的分析。
4.知识结构

第三单元 图形和几何
一、长方体的在认识
1.内容要目
长方体,长方体的画法,直线与直线、直线与平面、平面与平面的基本位置关系。
2.基本要求
(1)认识长方体的顶点、棱、面等元素,会画长方体的直观图。
(2)以长方体为载体理解长方体中棱、面之间的基本位置关系的含义,知道两条直线之间三种位置关系。
(3)认识线面、画面的平行和垂直关系,知道一些简单的检验方法。
3.重点和难点
重点是长方体的概念、画法,长方体中棱、面之间的位置关系。
难点是利用工具检验空间直线、平面之间的位置关系。
4.知识结构

二、相交直线与平行直线
1.内容要目
平面上两直线的位置关系;垂线;对顶角;邻补角。
同位角、内错角、同旁内角。
两点的距离、点到直线的距离、两条平行线间的距离。
平行线的判定、性质。
角平分线及其性质,线段的垂直平分线及其性质;轨迹。基本作图。
2.基本要求
(1)知道平面中两条直线的位置关系是相交或平行;知道两条相交直线只有一个交点,它们所成的角(小于平角)有四个,会用交角的大小描述相交直线的位置特征;知道垂线的概念及性质;理解对顶角和邻补角的概念,掌握对顶角的性质。
(2)掌握同位角、内错角、同旁内角的概念。
(3)知道两点之间线段最短,理解两点的距离的意义;知道过直线外一点到直线的垂线段最短,理解点到直线的距离的意义;知道过直线外一点能且只能画一条直线与这条直线平行,理解两条平行线间的距离的意义。
(4)掌握平行线的判定方法及其性质。
(5)掌握角的平分线、线段的垂直平分线的有关性质,知道轨迹的意义以及三条基本轨迹(圆、角平分线、线段的垂直平分线)。
(6)掌握直尺、三角板、圆规、量角器的使用方法,会画已知线段的中点和直线的垂线;会用直尺和圆规作一条线段等于已知线段,作一个角等于已知角、作角的平分线、作线段的垂直平分线等,从中体会交轨法作图。
3.重点和难点
重点的平行线的判定和性质及其应用。
难点是角的平分线性质和线段的垂直平分线性质及其应用。
4.知识结构

三、三角形
(一)三角形的概念
1.内容要目
三角形的概念,三角形三边之间的关系,三角形的高、中线、角平分线,三角形中位线定理,三角形的分类,三角形的内角和定理,三角形外角的概念和性质。命题,真命题,假命题,逆命题,定理,逆定理。
2.基本要求
(1)掌握三角形的任意两边之和大于第三边的性质
(2)理解三角形的高、中线、角平分线等概念,并会画这些特殊线段。
(3)知道三角形的三条中线交与一点(重心)、三条角平分线交于一点(内心)、三条高所在的直线交于一点(垂心),三条边的垂直平分线交于一点(外心)。
(4)知道三角形中位线的定义,掌握三角形中位线定理。
(5)知道三角形按边分类和按角分类的类型,体会分类讨论思想。
(6)理解三角形内角和定理的推导过程,掌握三角形的内角和定理;知道三角形的外角,初步掌握三角形外角的性质。
(7)理解命题、真命题、假命题、逆命题、定理、逆定理的意义,会叙述简单命题的逆命题,知道命题的真假与逆命题的真假无关。
3.重点和难点
重点是三角形的内角和定理,以及三角形中位线定理。
难点是三角形内角和定理的证明过程和对三角形的任意两边之和大于第三边的理解。
4.知识结构

(二)等腰三角形与直角三角形
1.内容要目
等腰三角形的概念,等腰三角形的性质和判定,等边三角形的概念,等边三角形的性质和判定,直角三角形的概念,直角三角形的性质和判定,勾股定理。
2.基本要求
(1)知道等腰三角形的轴对称性及对称轴。
(2)掌握等腰三角形、等边三角形的有关性质和判定,能运用这些性质及判定定理进行有关的计算和证明
(3)掌握直角三角形的判断和性质,能运用这些性质及判定定理进行有关的计算和证明。
(4)掌握勾股定理及其逆定理,进一步理解形数之间的联系。
3.重点和难点
重点是等腰三角形的判断和性质,直角三角形的判断和性质,勾股定理。
难点是灵活运用等腰三角形、直角三角形的性质和判定定理解决问题。
4.知识结构

(三)全等三角形
1.内容要目
全等三角形的概念,全等三角形的判定,全等三角形的性质。
2.基本要求
(1)理解全等三角形的概念
(2)掌握全等三角形的性质和判定方法,能运用全等三角形的性质及判定定理证明两条线段相等和两个角相等。
(3)掌握判定两个直角三角形全等的特殊方法。
说明 在证明和计算中,运用三角形全等不超过两次;或同时运用三角形全等、等腰三角形的性质与判定,分别以一次为限。
3.重点和难点
重点是全等三角形的性质和判定。
难点是全等三角形的判定与性质的灵活运用。
4.知识结构

(四)相似三角形
1.内容要目
比例的合比性质,比例的等比性质,两条线段的比,成比例的线段,平行线分线段成比例定理,三角形一边的平行线的判定,三角形重心的性质,相似三角形的概念,相似三角形的判定,相似三角形的性质。
2.基本要求
(1)掌握比例的性质,了解黄金分割的意义。
(2)理解两条线段的比和比例线段的概念。
(3)掌握平行线分线段成比例定理;掌握三角形一边的平行线的判定方法。
(4)理解相似三角形的概念,掌握判定两个三角形相似的基本方法
(5)掌握两个相似三角形的周长比、面积比以及对应的角平分线比、对应的中线比、对应的高的比的性质。
(6)会用相似三角形的判定和性质解决简单的几何问题和实际问题。
(7)知道三角形的中心及其性质。
说明 在证明和计算中,运用三角形相似不超过两次。
3.重点和难点
重点是平行线分线段成比例定理、相似三角形的判定和性质
难点是运用平行线分线段成比例定理,相似三角形的判定和性质解决有关的问题。
4.知识结构

四、四边形
1.内容要目
多边形;平行四边形;梯形。
2.基本要求
(1)理解多边形及其有关概念,掌握多边形的内角和定理,理解多边形的外角和定理。
(2)理解平行四边形的概念,掌握平行四边形性质定理和判定定理,并会应用平行四边形的性质定理和判定定理解决简单的几何证明和几何计算问题。
(3)掌握矩形、菱形、正方形的特殊性质和判定方法。
(4)理解梯形的概念,掌握等腰梯形的性质与判定;掌握梯形中位线定理;会计算特殊四边形的面积。
3.重点和难点
重点是平行四边形(包括矩形、菱形、正方形)的判定与性质。
难点是用平行四边形的判定定理和性质定理进行几何证明和计算。
4.知识结构

五、圆与正多边形
1.内容要目
圆的周长和面积,弧长与扇形面积。
点和圆的位置关系,圆心角、弧、弦、弦心距的意义以及四者之间的关系;垂径定理及其推论。
直线与圆的位置关系及其相应的数量关系;圆与圆的位置关系及其相应的数量关系。
正多边形的概念及其性质。
2.基本要求
(1)会用圆的周长、面积、弧长和扇形面积的公式进行简单计算,体会近似与精确的数学思想。
(2)理解圆的旋转不变性,理解圆心角、弧、弦、弦心距的概念以及它们之间的关系。
(3)掌握垂径定理及其推论。
(4)初步掌握点与圆、直线与圆、圆与圆的各种位置关系及其相应的数量关系。
(5)掌握正多边形的有关概念和基本性质,会画正三、四、六边形。
3.重点和难点
重点是圆心角、弧、弦、弦心距之间的关系,垂径定理及其推论,点与圆、直线与圆、圆与圆的位置关系及其数量关系。
难点是通过操作、实验、归纳得出位置或数量的关系、有关定理和计算方法,以及证明。
4.知识结构

六、锐角三角比
1.内容要目
锐角三角比;特殊角的锐角三角比值;用计算器求锐角三角比值。
解直角三角形;解直角三角形的应用。
2.基本要求
(1)理解锐角三角比的概念。
(2)会求特殊锐角(30°、45°、60°)的三角比的值。
(3)会用计算器求锐角的三角比的值;能根据锐角三角比的值,利用计算器求锐角的大小。
(4)会解直角三角形。
(5)理解仰角、俯角、坡度、坡角等概念,并能解决有关的实际问题。
3.重点和难点
重点是应用锐角三角比的意义及运用解直角三角形的方法进行有关几何计算。
难点是解直角三角形的应用。
4.知识结构

七、图形运动
1.内容要目
图形的平移,选择与旋转对称图形,翻折与轴对称图形。
2.基本要求
(1)理解图形的平移、旋转、翻折的直观意义。
(2)认识平面图形翻折的过程,在实例中理解轴对称的意义;知道轴对称图形的基本性质。
(3)认识图形的旋转及其基本特征;知道旋转对称图形;知道中心对称是旋转对称的特例,理解中心对称的意义,知道中心对称图形的基本性质。
(4)会画平移后的图形;会画已知图形关于某一条直线对称的图形;会画已知图形关于某一点对称的图形
(5)理解两个图形叠合的意义,知道在平移、翻折、旋转等运动中图形的形状和大小保持不变。
3.重点和难点
重点是理解图形的平移、旋转、翻折的意义及其有关性质,会画经过平移后的图形、已知图形关于某一条直线对称的图形、已知图形关于某一点对称的图形。
难点是理解两个图形成中心对称与一个中心对称图形概念的区别、两个图形成抽对称与轴对称图形概念的区别。
4.知识结构

八、平面向量
1.内容要目
平面向量的概念,向量的加法与减法,实数与向量的乘法,向量的线性运算。
2.基本要求
(1)知道向量的有关概念,会用有向线段表示向量。
(2)理解相等的向量、相反向量、平行向量、零向量的意义。
(3)初步掌握向量的加法和减法的法则,会进行向量的加减运算,能画出表示向量的和与差的向量。
(4)理解实数与向量相乘的意义,会画实数与向量相乘所得的向量,会进行向量的线性运算和化简算式。
(5)知道向量加法、实数与向量相乘的有关运算律。
(6)知道平行向量定理,知道向量的线性表示和向量的分解的意义。
3.重点和难点
重点是向量的有关概念,画和向量、差向量及实数与向量相乘所得的向量。
难点是向量的线性表示。
4.知识结构

第四单元 函数与分析
一、平面直角坐标系
1.内容要目
平面直角坐标系,两点的距离公式。
2.基本要求
(1)理解平面直角坐标系的有关概念,体会直角坐标平面上的点与有序实数对的一一对应关系。
(2)在直角坐标平面中,会根据点确定坐标,根据坐标确定点。
(3)掌握直角坐标平面上两点的距离公式。
(4)会在直角坐标平面上讨论点的平移、对称以及简单图形的对称问题。
3.重点和难点
重点是直角坐标平面内点与坐标的对应关系
难点是两点的距离公式的应用。
4.知识结构

二、函数的有关概念
1.内容要目
函数的概念,函数的表示方法。
2.基本要求
(1)认识变量、自变量,知道函数的意义。
(2)知道函数的定义域以及函数值的意义,知道自变量的值与函数值之间的对应关系,会求简单函数的定义域,会求函数值;知道常值函数。
(3)知道函数的几种常用的表示方法,知道y=f(x)的含义。
3.重点和难点
重点是体会函数的意义。
难点是函数的表示方法。
4.知识结构

三、正比例函数与反比例函数
1.内容要目
正比例函数与反比例函数的概念、图形及性质。
2.基本要求
(1)理解正比例函数与反比例函数的概念,知道函数图像的意义;会在平面直角坐标系中画出正比例函数与反比例函数的图像,理解正比例函数与反比例函数的图像。
(2)直观认识正比例函数与反比例函数性质,并能用数学语言表达;会运用待定系数法确定它们的解析式,会解决简单的实际问题。
3.重点和难点
重点是正比例函数与反比例函数的图像与性质。
难点是画反比例函数的图像。
4.知识结构

四、一次函数
1.内容要目
一次函数的概念、图像、基本性质及其简单应用。
2.基本要求
(1)理解一次函数的概念,会判断两个变量之间的关系是否为一次函数。会画一次函数的图像,并借助图像直观认识和掌握一次函数的性质。
(2)了解两条平行直线的表达式之间的关系,能以运动的观点认识两条平行直线之间的上下平移关系。
(3)能借助一次函数,进一步认识一元一次方程、一元一次不等式的解的情况,并理解一次函数与一元一次方程、一元一次不等式之间的关系。
(4)初步学会一次函数知识的实际应用,能通过建立简单函数模型解决问题。在解决问题的过程中,提高根据图像获得信息、应用图像解决问题的能力。
3.重点和难点
重点是一次函数的图像与性质。
难点是一次函数的应用。
4.知识结构

五、二次函数
1.内容要目
二次函数的概念、图像、图像特征及其基本应用。
2.基本要求
(1)理解二次函数的概念,会用描点法画二次函数的图像;知道二次函数的图像是抛物线,会用二次函数的解析式来表达相应的抛物线。
(2)掌握二次函数 的图像平移后得到二次函数 、 和 的图像的规律,并根据图像认识并归纳图像的对称轴、顶点坐标、开口方向和升降情况等特征。能体会解析式中字母系数的意义。
(3)会用配方法把形如 的二次函数解析式化为 的形式;会用待定系数法确定二次函数的解析式。
(4)能利用二次函数及图像特征等知识解决简单的实际问题。
3.重点和难点
重点是二次函数的图像特征。
难点是画二次函数的图像与二次函数知识的实际应用。
4.知识结构

第五单元 数据整理和概率统计
一、以概率初步
1.内容要目
必然事件、不可能事件,确定事件和随机事件,频率与概率,等可能试验,等可能试验中事件的概率计算。
2.基本要求
(1)理解必然事件、不可能事件、随机事件等概念,知道确定实际与不确定事件的含义;对生活中的一些简单事件,能辨别它是哪一类事件。
(2)知道各种事件发生的可能性有大有小,能根据经验对某随机事件发生的可能性大小进行定性说明,并对一些事件发生的可能性大小进行比较。
(3)知道随机事件发生的频率的意义,知道概率的含义;知道随机事件的概率可用大数次试验的频率来估计。
(4)知道等可能试验的含义;初步掌握等可能试验中事件的概率计算公式,会运用公式计算简单事件的概率。
(5)初步学会用树形图分析概率问题的方法,会画树形图;对于于几何图形有关且试验结果等可能的概率问题,知道将它转化为等可能试验中的概率问题来解决。
(6)初步会用所学的概率知识解释生活中的一些简单概率问题;具有初步的概率意识,对于机会与风险、规则公平性与决策合理性等有初步认识
3.重点和难点
重点是会用枚举法探究等可能事件的概率。
难点是将实际问题转化为概率的计算。
4.知识结构

二、统计初步
1.内容要目
数据整理与表示,统计的意义,总体与样本,平均数、中位数与众数,方差与标准差,频数与频率,频数分布直方图与频率分布直方图。
2.基本要求
(1)知道数据整理和表示的常用方法,会制作表格和画条形图、折线图、扇形图;能从这些图表中获取相关信息。
(2)知道统计的意义,理解统计中的总体、个体、样本、普查、抽样调查、随机样本等有关概念;知道用随机样本推断总体是重要的统计思想,并初步体会这一统计思想的运用。
(3)理解平均数、加权平均数、中位数和众数等概念,会求一组数据的平均数或加权平均数;会确定一组数据的中位数和众数;能根据实际问题,在平均数、中位数和众数种选择合适的量来表示一组数据的平均水平。
(4)理解方差、标准差的概念,会计算一组数据的方差和标准差;能根据一组数据的方差或标准差来解释数据的波动性。
(5)理解组频率的概念;对一组数据,在给定分组的情况下会制作频数分布表、频率分布表,会绘制频率数分布直方图和频率分布直方图;能从频数分布直方图和频率分布直方图中获取有关信息以及判断数据分布情况。
(6)具有初步的统计意识,能运用所学的统计知识解决现实生活中的简单的统计问题。
(7)会用计算器求有关统计量。
3.重点和难点
重点是认识统计的意义,会求出统计量,并能用于解释简单的统计问题。
难点是能通过图表获取有关信息。
4.知识结构

❸ 数学课程标准的基本要求有什么变化

一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化

2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念的变化:“三句”变“两句”、“6条”改“5条”

2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。

2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术

2011年版:数学课程——课程内容——教学活动——学习评价——信息技术

四、课程理念中新增加了一些提法

要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。

五、“双基”变“四基”

2001年版的“双基”:基础知识、基本技能。

2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。

六、四个领域名称的变化

2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。

2011年版:数与代数、图形与几何、统计与概率、综合与实践。

七、课程内容的变化

更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。

八、实施建议的变化

不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。

一、“课程基本理念”的修改

1.将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

2.将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。”

二、“设计思路”的修改

1.对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。

2.将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。并专门阐述了“应用意识”和“创新意识”。

三、“课程目标”的修改

1.明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。

2.提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。

3.完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。

4.规范了课程目标的若干术语。并在学段目标中使用这些术语。

四、“课程内容”(原“内容标准”)的修改

1.对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。

2.从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。

3.四个领域中一些具体的内容的变化主要表现在以下几个方面,一个是删除了一些条目,第二是新增了一些内容(包括必学和选学内容),第三是对相同内容的要求不同(包括程度上的不同以及要求的进一步细化),具体如下。

(1)删除的内容

▲在“数与代数”领域,删除了一些内容,例如:

①对“大数”的认识与应用——“能对含有较大数字的信息作出合理的解释与推断”(实验稿P31)

②对有效数字的要求——“了解有效数字的概念”(实验稿P32)

③对一元一次不等式组的要求——“能够根据具体问题中的数量关系,列出一元一次不等式组,解决简单的问题”(实验稿P33)

▲在“图形与几何”(实验稿为“空间与图形”)领域,删除的主要内容和要求有:

①关于等腰梯形的相关要求(实验稿P39、P43)

②探索并了解圆与圆的位置关系(实验稿P39)

③关于影子、视点、视角、盲区等内容,以及对雪花曲线和莫比乌斯带等图形的欣赏等(实验稿P40)

④关于镜面对称的要求(实验稿P41)

▲“统计与概率”部分删除的内容

极差、频数折线图等内容

(2)新增加的内容

▲“数与代数”中既有必学的内容,也有选学的内容

①知道|a|的含义(这里a表示有理数)

②最简二次根式和最简分式的概念

③能进行简单的整式乘法运算中增加了一次式与二次式相乘

④能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等

⑤会利用待定系数法确定一次函数的解析表达式

以上为增加的必学内容,此外,此次《标准》修改,还以标注“*”的方式,增加了选学内容,具体如下:

*⑥解简单的三元一次方程组

*⑦了解一元二次方程的根与系数的关系

*⑧知道给定不共线三点的坐标可以确定一个二次函数

▲在“几何与图形”领域中,增加的内容既有必学的内容,也有选学的内容。

①会比较线段的大小,理解线段的和、差,以及线段中点的意义

②了解平行于同一条直线的两条直线平行

③会按照边长的关系和角的大小对三角形进行分类

④了解并证明圆内接四边形的对角互补

⑤了解正多边形的概念及正多边形与圆的关系

⑥尺规作图:过一点作已知直线的垂线;已知一直角边和斜边作直角三角形;作三角形的外接圆、内切圆;作圆的内接正方形和正六边形

下面的要求是选学内容:

*⑦了解平行线性质定理的证明

*⑧探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧

*⑨探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等

*⑩了解相似三角形判定定理的证明

(3)在要求上有变化的内容(略)

4.在综合与实践领域,基本保持了实验稿的要求,如:要经历从实际问题抽象为数学问题并加以解决的过程,体会数学知识之间的联系,等等。此外,还提出更为具体的要求,如:反思参与活动的全过程,将研究的过程和结果形成报告或小论文,交流成果,总结参与数学活动的收获,进一步积累数学活动经验。这样使综合与实践的学习更加具有可操作性。

五、“实施建议”的修改

“实施建议”由原来按学段表述,改为三个学段整体表述,避免不必要的重复。

六、“实例”的修改

增加了一些帮助教师理解、澄清困惑的实例。并且,对大部分实例不仅仅呈现了实例要求本身,而且提出了实例的设计思路及教学过程建议,有利于教师理解课程内容、体会数学思想、实施教学。

七、增加附录

将课程目标中的“术语解释”和课程内容及实施建议中的实例统一放在附录中,分别成为附录1和附录2。对实例进行统一编号,便于查找和使用。

❹ 小学数学教学的基本要求有哪些

1、数学教学活动要注重课程目标的整体实现
2、重视学生在学习活动中的主题地位
3、注重学生对基础知识、基本技能的理解和掌握
4、感悟数学思想,积累数学活动经验
5、关注学生情感态度的发展
6、合理把握“综合与实践”的实施

❺ 数学课堂教学语言的基本要求

:小学数学课堂教学不仅是一门严肃的科学,而且是一门巧妙的艺术。说它是一门严肃的科学,是因为小学数学课堂教学有它自身的规律、原则和特点;说它是一门巧妙的艺术,是因为小学数学课堂教学要依靠教师的创造性劳动,有赖于教师教学技能技巧的充分发挥,才能把课堂教学活动组织得生动活泼,让学生在课堂上如沐春风,既学到数学知识,又得到艺术享受;既形成技能,又在培养能力的基础上发展智力。
关键词:数学 教学 语言艺术

语言是人们反映思想、交流思想的工具,是“一切事物和思想的衣裳”(高尔基)。作为教师,要将自己的
“知”转化为学生的“知”,必须依靠语言;教师对学生晓之以理、动之以情地育人,也必须依靠语言。教师的语言在很大程度上对学生逻辑思维能力和语言表达能力方面起着示范作用。有人对教师的语言作了如下概括:“教师的语言如钥匙,能打开学生心灵的窗户;如火炬,能照亮学生的未来;如种子,能深埋在学生的心里”。一个教师的语言艺术会直接影响学生听课的效果。特别是数学教学,本身内容比较单调、枯燥乏味,教师的语言艺术就显得更为重要。
根据小学数学学科特点以及小学生的心理年龄特点,小学数学课堂教学语言艺术的基本要求应体现在语言的准确性、启发性、变异性和趣味性。

一、小学数学课堂教学的语言必须准确

1、语言准确性的基本特征是准确、严谨与规范
所谓语言的准确,是指概念的揭示、问题的剖析、内容的阐述等都必须用准确的数学语言表达。例如:“数位”这个概念,如果说成“个位、十位、百位、……就叫数位”,这就没有揭示出概念的本质特征,而应表述为“数位,是表示各个不同计数单位所占的位置”。又如:讲分数的乘法,如果给学生作出如下的归纳“分数乘法中有带分数的,首先应将带分数化成分数,然后再乘”,这种说法貌似在理,实则不准确。这个“不准确”就出自“首先”二字。准确的说法应该是“通常”。所谓“通常”是指一般的、常用的方法,而不是唯一的方法。
所谓语言的严谨,应该是无懈可击。如“一个数的约数是由它的质因数组成的”这句话就说得不严谨。准确的说法应该是“一个数的约数,除1以外,还包括它的全部质因数和质因数的乘积。”如18的约数是:1;它的全部质因数是:2、3;质因数的乘积是:2×3 = 6,3×3 = 9,2×3×3 = 18。即18的约数有1、2、3、6、9、18。
所谓数学教学语言的规范,是指要遵循逻辑学和语言学的基本规律,不能用生活语言代替数学语言,有利于学生理解和领悟教师所表达对象的确切含义,清晰地感知教学内容。如“1平方米就是边长为1米的正方形”的说法,是不规范的。“1平方米”是表示面积单位的名数,“正方形”是图形,二者无可等同。
教师数学语言的准确来自教师自身数学文化的自我修养和对教材内容的深刻理解以及课堂用语的严格训练。为此,作为一个数学教师,课前要精心设计语言,课堂上不可以随便信口开河。

二、小学数学课堂教学的语言要有启发性

启发式教学的过程主要是通过教师的启发性语言来实现的。小学数学教学的启发性语言具有诱发激励的作用。
小学数学教学的启发性语言是针对教学中的重点、难点、关键,引导学生积极思考,使他们学会发现问题、分析问题并解决问题。如教学“能被3整除的数的特征”时,在学生通过计算找出教师所给出的一组数哪些能被3整除之后,教师可“挑战性”的宣布:“下面老师不用计算,就能知道哪些数能不能被3整除。不信,同学们可随便说出一个数来‘考考’老师”。就这样一句话,可以有效地诱发学生探求新知识的欲望。

三、小学数学课堂教学的语言要体现变异性

课堂教学语言的艺术性,要求教师从多种角度、不同方位着手,寻求把数学知识阐述得更深透的多种可能性,而又不拘泥于常规的脱俗的语言表达形式。做到多样而又统一,奇异而又和谐,发散而又凝聚。这样做,将给课堂教学注入一股新鲜的活力,极大地激发学生强烈的求知欲望和企图创新的心理机制。
小学数学课堂教学语言的变异性,首先体现在课堂教学中的导言设计的多种多样,如:开门见山,点出课题;层层设问,揭示主题;渲染气氛,创设情境;故事切入,引趣激思等等。这些导言形式的灵活运用,都会令学生耳目一新,有助于引发学生的积极性和主动性。
小学数学课堂教学语言的变异性,还要注意语言的抑扬顿挫和起伏跌岩。首先,要注意停顿。停顿是保证说话清楚、加深印象的一个主要方法,也是学生领会和思考问题的时间来源。停顿的时间要适当,不能太短,讲话象爆米花一样,学生听得缓不过气来,会使学生既不能领会意思,又容易疲劳;不能随便停顿,讲课时把一句话弄的得支离破碎,使学生听起来很费劲。其次,是注意节奏和重音的处理。讲课有张有弛,有板有眼,富有节奏感。为此,必须在教学内容上区分主次,突出重点。关键地方,重复几句;枝节问题,一点而过。讲授的速度要定好节拍,其快慢要与学生的承受能力相适应。一堂课,叙述事件,明快清晰;说理论证 ,沉稳冷静;关节点处,声音舒展。学生注意力高度集中时,语言要热烈奔放,富有节奏;学生疲劳时,语言要机智风趣,诙谐幽默。
语言的变异性还通过语气的使用来体现。语气的使用,影响着意思的表达、感情的色彩、讲课的生动及感染力。讲课中要注意区分和使用叙述、疑问、祈使、感叹等各种语气。不要总是一种语气到底,要伴随着课堂中教学进度的推移,所用教法、学生的情绪及注意力以及师生间感情的变化而变化。

四、小学数学课堂教学语言要富有趣味性

兴趣是打开知识大门的钥匙。许多小学生对数学缺乏兴趣,原因之一是数学教师未能很好把握数学知识中许多有趣的东西,用有趣的数学语言加以引导,把学生带进有趣的数学王国。
有趣的数学语言能引人入胜,能在课堂上“栓”住学生、“迷” 住学生,使学生集中注意听讲,把学习数学知识视为一种享受。要做到这一点,教师的教学语言必须形象生动,风趣幽默和具有童趣色彩。

❻ 数学教学的要求

一、认真备课
1、要提前备课,提前量为1-3课时。
2、教案要目标准确,重难点明确, 要备课标、备教材、备学生、备教法、备学法、备教学具,要有三维目标设计、教学过程设计、练习设计、板书设计、有课后反思。
3、采用电脑备课的老师要在备课本上留下二次备课的痕迹。教案中的教学反思,每学期不少于30次,每次字数不少于50字。
二、认真上课
4、要按备课的教案上课,上课内容要与备课内容基本一致。
5、上课前3分钟进行口算或笔算训练,下课前3分钟出示适当的提高题。
6、坚持自主、合作、探究为主的教学方式,不得满堂讲和满堂问,让学生采用多样化的学习方式学习数学,调动学生学习的积极性。
7、教学时间分配合理,一般应在前20—25分钟完成主要教学任务,并保证学生有10分钟左右的集中练习时间,让绝大部分学生在课内完成课堂作业,切实减轻学生课后作业负担。
8、新授课均要有板书,板书的内容主要有课题、知识、方法及注意点等。
三、认真布置与批改作业
9、作业分课堂作业与家庭作业两种。课堂作业的内容为教材上的习题、《补充习题》,课堂作业本要标明次数、页码、栏目及序号。家庭作业为《同步练习》 。
10、作业布置后均要批改。课堂作业的批改要在当日内完成,家庭作业的批改要在次日内完成。订正要在批阅当天完成,订正后教师要再次批改。
11、教师要有专用批改作业记录本,用于记录学生作业中的典型错误。
12、批改等第评定为“优秀”、“良好”“及格”、“不及格” ,一律用正楷书写。教师可根据具体情况书写评语,评语要有鼓励性。
13、批改作业的符号用法。正确用“√”;部分有错用“半钩”;并用“~”标明错误之外;全错用“×”;运算不合理用“?”;没有带单位名称用“()”。符号以作业本的两格长度为宜。

❼ 数学教学要求

数学课堂教学的本质是数学活动,数学活动的本质是思维活动,有效的数学学习活动不能单纯的依赖模仿和记忆,动手实践、自主探索与合作交流也不能完全体现课堂学习的内容要求,这就要求我们正确认识直接经验和间接经验的关系,合理地设计数学活动单元,用思维活动这条主线,沟通活动单元、数学思想方法和思维方式。使不同的学生在数学活动中均得到发展,为了防止思维失真,必须保证学生活动时间,并适度推迟对结论的判断,数学活动单元的设计,提倡不同的学习内容适应不同的学习方式,突出数学中的活动和活动中的数学,体现中学的新课标理念。强调教与学的整合和贴近,使学生在不同的活动单元中,既掌握必须的知识与技能,又获得方法和能力,从而保证了双基的落实和能力的培养,关注学生在活动中的感受和成长,符合新课标对学生发展提出的三维目标要求。

为改进课堂教学方式,体现知识与技能,过程与方法,情感态度价值观并重的教学要求,须根据数学课程标准的有关要求,以及教学内容、教学方式、教学效果反映出的教学方法,按研究教学内容→制定分解目标→设计单元活动→整合教学方法→有效组织教学的思路,落实每个环节工作,这里就以数学活动为中心的备课谈一些看法。

1、分解教学目标,把握活动要领。
教学目标的制定和落实是有效实施课堂教学的关键,也是当前课堂教学需要解决的问题,由于新的教学目标强调知识与技能、过程与方法、情感态度价值观并重的三元体系,需要正确认识知识技能目标与过程性目标的关系,找准其中的生成点和结合点,转化为教与学活动。由于仅有笼统的教学目标而不进行活动分解,目标容易模糊,教学方法容易单调,教学过程不易把握。因此,要求合理分解教学目标,形成教与学的双边活动,并通过关键的行为动词,把握活动要求,体现新的教学理念和教学过程的可操作性。

2、贴近教学内容,反映教学方法
数学课把教学内容和学习要求变成数学活动单元,能有效的落实教学目标,有助于教学中把握不同活动的方法。数学活动单元设计是在教学要求、学习方式、学生经验、数学规律和教材特点的基础上,用活动作为主线串联相应的知识点,突出不同的学习要求和学习方式,反映不同活动单元的核心内容,形成不同活动的重点和相应操作要求。数学活动单元有很强的操作性,容易体现知识技能与过程方法,有助于通过活动加深对数学本质的认识,感受其中的数学思想方法,掌握解决问题的基本策略。

3、整合学习资源,完善教学设计
数学活动单元是以有效学习为目的进行设计的,着眼于学生在学习活动中的效果和价值,教师在其中的定位只是数学活动的.组织者、引导者与合作者。这就要求数学活动单元中的学习内容应当是现实的、有意义的、富有挑战性的,这些内容应有利于学生主动地进行观察、实验、猜测、验证、推理、交流等活动。因此,合理开发学习资源,有效调动学生参与数学学习显得非常重要;教师要有意识地进行教学资源的开发与整合,关注学生的生活实际,关注教材的内容链接。由于新教材要求充分使用操作、视、听等手段,因此,教师不能像过去一样,要充分利用远程教育资源,使静态的教材变成动态的教学素材。

4、关注学生活动,体现数学本质
由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的学习活动应当是一个生动活泼的、主动的和富有个性的过程。数学活动单元应满足不同学生的需要,使不同学生在数学学习活动中得到发展。因此,要从活动组织和内容选择上合理思考,立足于基本问题引导学生操作、观察、实验、归纳、类比、猜想,立足于基本问题中的思维价值,防止内容选择不当,形成认知障碍,防止组织不当,造成活动形式单调和失真。

❽ 优秀的数学教学设计的基本要求有哪些

在教学标准中有建议,没有要求!
1、数学教学活动要注重课程目标的整体实现
2、重视学生在学习活动中的主题地位
3、注重学生对基础知识、基本技能的理解和掌握
4、感悟数学思想,积累数学活动经验
5、关注学生情感态度的发展
6、合理把握“综合与实践”的实施

❾ 小学数学新课标教学的基本要求是什么

1.数学课程
2.数学(主讲数学的作用)
3.数学学习
4.数学教学活动
5.评价
6.现代信息技术

❿ 数学学科教学基本要求

^那个关于四边形面积的方程求出来的是:S=-2[x-(1+a)/4]^2+(1+a)^2/8 (0≤x≤1)
当a>3时,括号里面的(1+a)/4就大于1了,也就是说版(1+a)/4大于x,此时权x最大值只能取1,然后,你带进去算就是a-1了~~......
还有啊,哪有你这么问问题的啊,就不能把题目全打上来啊喂……

热点内容
师生训戒文 发布:2025-08-16 01:54:39 浏览:268
2017高考数学原卷 发布:2025-08-16 01:07:03 浏览:663
一年级数学单元测试卷 发布:2025-08-15 22:14:30 浏览:170
八年级下册物理书答案北师大版 发布:2025-08-15 21:26:22 浏览:938
合同三年试用期多久 发布:2025-08-15 21:11:20 浏览:947
初三化学配平视频 发布:2025-08-15 20:10:50 浏览:739
鸿雁舞蹈教学视频 发布:2025-08-15 19:46:52 浏览:288
师德考核调查 发布:2025-08-15 18:12:45 浏览:340
暑期班主任培训心得体会 发布:2025-08-15 18:08:35 浏览:531
天桥教师招聘 发布:2025-08-15 17:43:38 浏览:457