高等数学要点
等数学在复习过程中考生们要注意以下几点:
第一:要明确考试重点,充分把握重点。
比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法。
第二:关于导数和微分
其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性。还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。
第三:关于积分部分
定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
第四:微分方程,还有无穷级数,无穷级数的求和等
这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。
2. 高等数学的基本内容和要点
多元微分、多元积分、反常积分、无穷级数、微分方程、假设检验
3. 高等数学的要点有哪些
现在不知道你学习目的是什么:
1、如果你只是想在下一个学期学的轻松一点的话,你只需要把条条框框的公式记住就可以了,以后再学校考试用的上。
2、如果你想学好,以后要考研究生的话,那你最好自己推导出每一个公式,这样可以加深理解,对以后的考研究生很有帮助。
4. 学好高数的要点是什么
其实高数并非想象的那么不可高攀,最关键的是要注意学习方法,而高数一和高数二的学习又有所不同,下面具体介绍我的对学习高数的技巧。
一)高数一(或工专),首先要有扎实的基本功因为高数一主要是微积分,它实际是有关函数的各种运算。所以首先就是熟悉各种函数的性质、运算等,这些内容都是高中课本上的内容,在高数一书本上只是简单介绍而已。那么对那些准备学习高数一的朋友,要先看看你的基础如何,如果中学的知识全还给老师的话,我建议你先看看中学的书,特别是有关指数函数、幂函数、对数函数、三角函数等一定要很熟,否则要想学好高数可能就需要很多时间了。
在有较扎实的基础后,现在可以开始学习高数了。因为高数一各章是相互关联层层推进的,每一章都是后一章的基础,所以学习时一定要按部就班,只有将这一章真正搞懂了才可进入下一章学习,切忌为求快而去速学,欲速则不达嘛,特别是当前面没学好硬去学后面的,会将不懂的问题越集越多,此时自学者的心态就会越来越烦躁,并且不知从何处下手去改善,所见的题目、知识全都不懂,这时很大部分朋友可能就会放弃做逃兵。所以一定要一章一章去学。
在学每一章时,建议先将课本内容看一遍,如果一遍还不明的话,再看一遍。然后看书上的例题,同时试着去做书后的习题。有条件的话,可以买一些参考书来看和做题。做了部分题后,就拿一套以往考试题看看考题中本章有没有题,可以看看关于本章出题的方式。一定要多做题,高数一讲究“熟能生巧”,“熟做高数三千题,考试一定就能行)。
高数一学习是一个长期的过程,所以往后学的过程中,一定要制定计划定期拿一些前面章节的题来做。很多考生在学习过程中,往往学到后面的就把前面内容忘记了。边学边忘肯定是不行的,也会影响到后面的学习。
高数一历年来都是通过率较低的一门学科,原因在于学习着必须真正认真去学才能通过,仅仅靠蒙是很难过的。它出题千变万化,根本无法去估题。并且由于各章相互联系,所以根本无法区分重点和非重点,很多学友问可否划划重点,我的答案是没有重点,因为全是重点。另外强烈推荐学习者去参加一些培训或有一个可以请教的高手,这样可以在遇到难题时及时得到解决同时可以学到各种解题方法(一般书上的解题方法太少)。
另外还要特别强调的是高数学习最好是一个连贯的过程,也就是说一定要制订一个阶段性的学习计划,比如用半年或一年的时间去学它。很多学高数屡战屡败的朋友可能都有这样的经历:准备考比如十月的高数,那么就去报班读,但读到一小半时可能由于种种原因就读不下去了,高数也只学到积分那章就放弃了,心里可能想,哎高数那么难,留到明年再考吧。借口一有,马上放弃十月的考试了。那等明年,这种情况可能又会重复一次,从而周而复始,于是所有科目都过了,只剩下高数这个硬骨头,心理自然就生出高数好难的念头。这种情况在我以前上课时经常发生,刚开课时,教室挤满人,但课程还没上到一半人就走掉一半了,最后能坚持下来的人寥寥无几,而最后能通过考试的恰好就是这些坚持下来的学生。所以有时我就学员当准备考高数时,最好只报考高数一门,全心投入去学习它,当你中途感到吃力坚持不下时,不要找任何借口逃脱,而要想想问题出在哪里,为什么学不下去?找到问题所在然后克服它,那最后一定能成功!
二)高数二的学习与高数一相比有很大的差异。首先说一说它们之间的异同,第一点,高数二不需要太多的基础知识,只是概率里有一点积分和导数的简单计算;第二点,高数一整个内容由微分扣积分这条线贯穿始终,而高数二内容连贯性不是很强;第三点,高数一学习要从根本上加强对基本概念和理论的理解,拓宽解题思路,加强例题典型题的分析和综合练习,并能对典型题举一反三,所以需要做大量题,而高数二要加强基本概念的理解,并能掌握书本上的基本例题即可,不需举一反三,考试题目特别是概率的大题大多千篇一律,无非就是将书上例题数字改一改而已,所以不需做大量题,只需将书上题目“真正”会做即可,如果你能找到大量的题的话,你仔细看看,肯定是千篇一律的。
根据以上几点,我们再来谈谈高数二的学习,首先学习过程中,一定要将每一章内容、概念、定理等真正理解,这可以通过多看几遍书来达到。看书时一定要静下心来,因为高数二内容较难理解,当看不下去时一定不要放弃,要硬着头皮往下读。这里要注意一点的是,高数二中可能会有很多对定理、推论的证明过程,这些证明过程又长又复杂,我建议大家对这些证明过程可以不用去看,你只需捉住精华---定理、推论,好好理解它们就可以了。
当看懂一章内容之后,可以将书后的习题拿来做一做,一定要会做,而不是做完就了事。高数二主要的题型无非就是:(1)行列式的计算;(2)矩阵的运算;(3)线性方程组的求解;(4)特征值和特征向量的计算;(5)二次型的化简;(6)概率论中求概率;(7)求分布与求数字特征;(8)数理统计中求点估计,求区间估计与求检验的拒绝域。书上关于这几方面的题目一定要做完并理解怎样做的。
总得说来,高数一内容好象少点,也不难理解,但由于变化多端,且相互联系紧密,故出题多样,且一道题可能涉及到好几章内容,所以更难点。而高数二,内容较多,也很难理解,但出题简单,题目比较单一,并且有可能都见过。对它们的学习,很精辟的一句话:高数一,多做题;高数二,多看书理解!
以上观点为本人学习和教学中的理解,仅供大家参考。对于广大自考者,学习高数一定要结合自己的知识背景和学习特点总结出自己学习高数的方法和技巧。我相信:天道酬勤,主要付出一份辛苦,一定会有一份收获的!努力吧!
5. 学好高等数学的要点是什么
好好听讲,然后做题培养兴趣.
当你自己做出来题时,你就会发现那其实很有趣
6. 大一高数必考知识点
大一高数必考知识点,大一里面的知识点有很多,你可以在必考知识点里头找一些重点去学习一下,因为谁也不知道大一到底能考出什么样的题材
7. 高等数学哪部分是重点
第一:要明确考试重点,充分把握重点。
比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法。
第二:关于导数和微分
其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性。还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。
第三:关于积分部分
定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
第四:微分方程,还有无穷级数,无穷级数的求和等
这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。
8. 高等数学,要点步骤,谢谢
望采纳,谢谢啦