当前位置:首页 » 语数英语 » 八上数学知识点

八上数学知识点

发布时间: 2021-08-01 00:03:56

Ⅰ 八年级数学的知识点有哪些

八年级上册数学知识点及基本方法步骤

第十一章 全等三角形

1、全等三角形的性质:全等三角形对应边相等、对应角相等。

2、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等。

4、角平分线推论:角的内部到角的两边的距离相等的点在这个角的平分线上。

5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

①确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等边三角形所隐含的边角关系);

②回顾三角形判定,搞清我们还需要什么

③正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

学习方法

第十二章 轴对称

1、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3、角平分线上的点到角两边距离相等。

4、线段垂直平分线上的任意一点到线段两个端点的距离相等。

5、与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6、轴对称图形上对应线段相等、对应角相等。

7、画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8、点(xy)关于x轴对称的点的坐标为(x-y)

点(xy)关于y轴对称的点的坐标为(-xy)

点(xy)关于原点轴对称的点的坐标为(-x-y)

9、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

学习方法

10、等腰三角形的判定:等角对等边。

11、等边三角形的三个内角相等,等于60°。

12、等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

13、直角三角形中,30°角所对的直角边等于斜边的一半。

14、直角三角形斜边上的中线等于斜边的一半。

第十三章 实数

1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时a才有算术平方根。

2、平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

3、正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

4、立方根:一般地,如果一个数x的立方根等于a,即x3=a,那么数x就叫做a的立方根。

5、正数的立方根是正数;0的立方根是0;负数的立方根是负数。

学习方法

6、数a的相反数是-a,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。

第十四章 一次函数

1、画函数图象的一般步骤:

第1步列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值);

第2步描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点);

第3步连线(依次用平滑曲线连接各点——按横坐标由小到大的顺序)。

2、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

3、若两个变量xy间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量y为因变量)。特别地当b=0时称y是x的正比例函数。

八字方针:正撇负捺(K),上加下减(b)

具体图象:大大不过四,小小不过一,大小不过二,小大不过三

4、正比列函数一般式:y=kx(k≠0),其图象是经过原点(00)的一条直线。

5、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限y随x的增大而增大(增函数),当k0时y随x的增大而增大;当kn)。 学习方法

2、在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数所以法则中a≠0。

②任何不等于0的数的0次幂等于1即 如 (-2.50=1)则00无意义.

③任何不等于0的数的-p次幂(p是正整数)等于这个数的p的次幂的倒数即 ( a≠0p是正整数) 而0-10-3都是无意义的;当a>0时a-p的值一定是正的;当a

Ⅱ 八年级上数学知识点

第十一章 全等三角形
11.1 全等三角形
11.2 三角形全等的判定
阅读与思考 全等与全等三角形
11.3 角的平分线的性质
教学活动
小结
复习题11
第十二章 轴对称
12.1 轴对称
12.2 作轴对称图形
12.3 等腰三角形
教学活动
小结
复习题12
第十三章 实数
13.1 平方根
13.2 立方根
13.3 实数
教学活动
小结
复习题13
第十四章 一次函数
14.1 变量与函数
14.2 一次函数
14.3 用函数观点看方程(组)与不等式
14.4 课题学习 选择方案
教学活动
小结
复习题14
第十五章 整式的乘除与因式分解
15.1 整式的乘法
15.2 乘法公式
15.3 整式的除法
教学活动
小结
例题:
1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;
(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线
(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(- ,0)。

(2)正比例函数y=kx(k≠0)的图象是经过(0,0)和(1,k)的一条直线;一次函数y=kx+b(k≠0)的图象是经过(- ,0)和(0,b)的一条直线。

(3)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x平行。
3、一次函数图象的性质:
(1)图象在平面直角坐标系中的位置:

(2)增减性:

k>0时,y随x增大而增大;
k<0时,y随x增大而减小。
4、求一次函数解析式的方法
求函数解析式的方法主要有三种:
一是由已知函数推导,如例题1;
二是由实际问题列出两个未知数的方程,再转化为函数解析式,如例题4的第一问。
三是用待定系数法求函数解析式,如例2的第二小题、例7。
其步骤是:①根据题给条件写出含有待定系数的解析式;②将x、y的几对值或图象上几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;③解方程,得到待定系数的具体数值;④将求出的待定系数代入要求的函数解析式中。
二、例题举例:
例1、已知变量y与y1的关系为y=2y1,变量y1与x的关系为y1=3x+2,求变量y与x的函数关系。
分析:已知两组函数关系,其中共同的变量是y1,所以通过y1可以找到y与x的关系。
解:∵ y=2y1
y1=3x+2,
∴ y=2(3x+2)=6x+4,
即变量y与x的关系为:y=6x+4。
例2、解答下列题目
(1)(甘肃省中考题)已知直线 与y轴交于点A,那么点A的坐标是( )。
(A)(0,–3) (B) (C) (D)(0,3)

(2)(杭州市中考题)已知正比例函数 ,当x=–3时,y=6.那么该正比例函数应为( )。
(A) (B) (C) (D)

(3)(福州市中考题)一次函数y=x+1的图象,不经过的象限是( )。
(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限
分析与答案:
(1) 直线与y轴交点坐标,特点是横坐标是0,纵坐标可代入函数关系求得。
或者直接利用直线和y轴交点为(0,b),得到交点(0,3),答案为D。
(2) 求解析式的关键是确定系数k,本题已知x=-3时,y=6,代入到y=kx中,解析式可确定。答案D: y=-2x。
(3) 由一次函数y=kx+b的图象性质,有以下结论:

题目中y=x+1,k=1>0,则函数图象必过一、三象限;b=1>0,则直线和y轴交于正半轴,可以判定直线位置,也可以画草图,或取两个点画草图判断,图像不过第四象限。

答案:D。

例3、(辽宁省中考题)某单位急需用车;但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家签订月租车合同。设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公司的月费用是y2元,y1、y2分别与x之间的函数关系图象(两条射线)如图,观察图象回答下列问题:
(1)每月行驶的路程在什么范围内时,租国营公司的车合算?
(2)每月行驶的路程等于多少时,租两家车的费用相同?
(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算?

分析:因给出了两个函数的图象可知一个是一次函数,一个是一次函数的特殊形式正比例函数,两条直线交点的横坐标为1500,表明当x=1500时,两条直线的函数值y相等,并且根据图像可以知道x>1500时,y2在y1上方;0<x<1500时,y2在y1下方。利用图象,三个问题很容易解答。
答:(1)每月行驶的路程小于1500千米时,租国营公司的车合算。
[或答:当0≤x<1500(千米)时,租国营公司的车合算]。
(2)每月行驶的路程等于1500千米时,租两家车的费用相同。
(3)如果每月行驶的路程为2300千米,那么这个单位租个体车主的车合算。
例4、(河北省中考题)某工厂有甲、乙两条生产线先后投产。在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天分别生产20吨和30吨成品。
(1)分别求出甲、乙两条生产线投产后,各自总产量y(吨)与从乙开始投产以来所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同;
(2)在如图所示的直角坐标系中,作出上述两个函数在第一象限内的图象;观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高?

分析:(1)根据给出的条件先列出y与x的函数式, =20x+200, =30x,当 = 时,求出x。
(2)在给出的直角坐标系中画出两个函数的图象,根据点的坐标可以看出第15天和25天结束时,甲、乙两条生产线的总产量的高低。

解:(1)由题意可得:
甲生产线生产时对应的函数关系式是:y=20x+200,
乙生产线生产时对应的函数关系式是:y=30x,
令20x+200=30x,解得x=20,即第20天结束时,两条生产线的产量相同。
(2)由(1)可知,甲生产线所对应的生产函数图象一定经过两点A(0,200)和
B(20,600);
乙生产线所对应的生产函数图象一定经过两点O(0,0)和B(20,600)。
因此图象如右图所示,由图象可知:第15天结束时,甲生产线的总产量高;第25天结束时,乙生产线的总产量高。
例5.直线y=kx+b与直线y=5-4x平行,且与直线y=-3(x-6)相交,交点在y轴上,求此直线解析式。
分析:直线y=kx+b的位置由系数k、b来决定:由k来定方向,由b来定与y轴的交点,若两直线平行,则解析式的一次项系数k相等。例如y=2x,y=2x+3的图象平行。
解:∵ y=kx+b与y=5-4x平行,
∴ k=-4,
∵ y=kx+b与y=-3(x-6)=-3x+18相交于y轴,
∴ b=18,
∴ y=-4x+18。
说明:一次函数y=kx+b图象的位置由系数k、b来决定:由k来定方向,由b来定点,即函数图象平行于直线y=kx,经过(0,b)点,反之亦成立,即由函数图象方向定k,由与y轴交点定b。
例6.直线与x轴交于点A(-4,0),与y轴交于点B,若点B到x轴的距离为2,求直线的解析式。
解:∵ 点B到x轴的距离为2,
∴ 点B的坐标为(0,±2),
设直线的解析式为y=kx±2,
∵ 直线过点A(-4,0),
∴ 0=-4k±2,
解得:k=± ,
∴直线AB的解析式为y= x+2或y=- x-2。

说明:此例看起来很简单,但实际上隐含了很多推理过程,而这些推理是求一次函数解析式必备的。
(1)图象是直线的函数是一次函数;
(2)直线与y轴交于B点,则点B(0,yB);
(3)点B到x轴距离为2,则|yB|=2;
(4)点B的纵坐标等于直线解析式的常数项,即b=yB;
(5)已知直线与y轴交点的纵坐标yB,可设y=kx+yB;
下面只需待定k即可。
三、提高与思考
例1.已知一次函数y1=(n-2)x+n的图象与y轴交点的纵坐标为-1,判断y2=(3- )xn+2是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。
解:依题意,得
解得n=-1,
∴ y1=-3x-1,
y2=(3- )x, y2是正比例函数;
y1=-3x-1的图象经过第二、三、四象限,y1随x的增大而减小;
y2=(3- )x的图象经过第一、三象限,y2随x的增大而增大。
说明:由于一次函数的解析式含有待定系数n,故求解析式的关键是构造关于n的方程,此题利用“一次函数解析式的常数项就是图象与y轴交点纵坐标”来构造方程。
例2.已知一次函数的图象,交x轴于A(-6,0),交正比例函数的图象于点B,且点B在第三象限,它的横坐标为-2,△AOB的面积为6平方单位,求正比例函数和一次函数的解析式。
分析:自画草图如下:
解:设正比例函数y=kx,
一次函数y=ax+b,
∵ 点B在第三象限,横坐标为-2,
设B(-2,yB),其中yB<0,
∵ =6,
∴ AO•|yB|=6,
∴ yB=-2,
把点B(-2,-2)代入正比例函数y=kx,得k=1,
把点A(-6,0)、B(-2,-2)代入y=ax+b,

解得:

∴ y=x, y=- x-3即所求。

说明:(1)此例需要利用正比例函数、一次函数定义写出含待定系数的结构式,注意两个函数中的系数要用不同字母表示;
(2)此例需要把条件(面积)转化为点B的坐标。这个转化实质含有两步:一是利用面积公式 AO•

BD=6(过点B作BD⊥AO于D)计算出线段长BD=2,再利用|yB|=BD及点B在第三象限计算出yB=-2。若去掉第三象限的条件,想一想点B的位置有几种可能,结果会有什么变化?(答:有两种可能,点B可能在第二象限(-2,2),结果增加一组y=-x, y= (x+3)。

Ⅲ 八年级上册数学知识点归纳、总结 人教版、

1 全等三角形的对应边、对应角相等 ­

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ­

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ­

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ­

5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ­

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ­

7 定理1 在角的平分线上的点到这个角的两边的距离相等 ­

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ­

9 角的平分线是到角的两边距离相等的所有点的集合 ­

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ­

21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ­

22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ­

23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ­

24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ­

25 推论1 三个角都相等的三角形是等边三角形 ­

26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ­

27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ­

28 直角三角形斜边上的中线等于斜边上的一半 ­

29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ­

30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ­

31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ­

32 定理1 关于某条直线对称的两个图形是全等形 ­

33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ­

34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ­

35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ­

36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ­

37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ­

38定理 四边形的内角和等于360° ­

39四边形的外角和等于360° ­

40多边形内角和定理 n边形的内角的和等于(n-2)×180° ­

41推论 任意多边的外角和等于360° ­

42平行四边形性质定理1 平行四边形的对角相等 ­

43平行四边形性质定理2 平行四边形的对边相等 ­

44推论 夹在两条平行线间的平行线段相等 ­

45平行四边形性质定理3 平行四边形的对角线互相平分 ­

46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ­

47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ­

48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ­

49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ­

50矩形性质定理1 矩形的四个角都是直角 ­

51矩形性质定理2 矩形的对角线相等 ­

52矩形判定定理1 有三个角是直角的四边形是矩形 ­

53矩形判定定理2 对角线相等的平行四边形是矩形 ­

54菱形性质定理1 菱形的四条边都相等 ­

55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ­

56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ­

57菱形判定定理1 四边都相等的四边形是菱形 ­

58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ­

59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ­

60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ­

61定理1 关于中心对称的两个图形是全等的 ­

62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ­

63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ­

点平分,那么这两个图形关于这一点对称 ­

64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ­

65等腰梯形的两条对角线相等 ­

66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ­

67对角线相等的梯形是等腰梯形 ­

68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ­

相等,那么在其他直线上截得的线段也相等 ­

69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ­

70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ­

三边 ­

71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ­

的一半 ­

72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ­

一半 L=(a+b)÷2 S=L×h ­

73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ­

如果ad=bc,那么a:b=c:d ­

74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ­

75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ­

(a+c+…+m)/(b+d+…+n)=a/b ­

76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ­

线段成比例 ­

77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ­

78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ­

79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ­

80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ­

81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ­

82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ­

83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ­

84 判定定理3 三边对应成比例,两三角形相似(SSS) ­

85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 ­

角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ­

86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 ­

分线的比都等于相似比 ­

87 性质定理2 相似三角形周长的比等于相似比 ­

88 性质定理3 相似三角形面积的比等于相似比的平方 ­

89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 ­

于它的余角的正弦值 ­

90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 ­

于它的余角的正切值 ­

91圆是定点的距离等于定长的点的集合 ­

92圆的内部可以看作是圆心的距离小于半径的点的集合 ­

93圆的外部可以看作是圆心的距离大于半径的点的集合 ­

94同圆或等圆的半径相等 ­

95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 ­

径的圆 ­

96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 ­

平分线 ­

97到已知角的两边距离相等的点的轨迹,是这个角的平分线 ­

98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 ­

离相等的一条直线 ­

99定理 不在同一直线上的三点确定一个圆。 ­

100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ­

101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ­

②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ­

③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 ­

102推论2 圆的两条平行弦所夹的弧相等 ­

103圆是以圆心为对称中心的中心对称图形 ­

104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 ­

相等,所对的弦的弦心距相等 ­

105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 ­

弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 ­

106定理 一条弧所对的圆周角等于它所对的圆心角的一半 ­

107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 ­

108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 ­

对的弦是直径 ­

109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ­

110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 ­

的内对角 ­

111①直线L和⊙O相交 d<r ­

②直线L和⊙O相切 d=r ­

③直线L和⊙O相离 d>r ­

112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 ­

113切线的性质定理 圆的切线垂直于经过切点的半径 ­

114推论1 经过圆心且垂直于切线的直线必经过切点 ­

115推论2 经过切点且垂直于切线的直线必经过圆心 ­

116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, ­

圆心和这一点的连线平分两条切线的夹角 ­

117圆的外切四边形的两组对边的和相等 ­

118弦切角定理 弦切角等于它所夹的弧对的圆周角 ­

119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 ­

120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 ­

相等 ­

121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 ­

两条线段的比例中项 ­

122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 ­

线与圆交点的两条线段长的比例中项 ­

123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 ­

124如果两个圆相切,那么切点一定在连心线上 ­

125①两圆外离 d>R+r ②两圆外切 d=R+r ­

③两圆相交 R-r<d<R+r(R>r) ­

④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r) ­

126定理 相交两圆的连心线垂直平分两圆的公共弦 ­

127定理 把圆分成n(n≥3): ­

⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ­

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 ­

128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 ­

129正n边形的每个内角都等于(n-2)×180°/n ­

130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 ­

131正n边形的面积Sn=pnrn/2 p表示正n边形的周长 ­

132正三角形面积√3a/4 a表示边长 ­

133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 ­

360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 ­

134弧长计算公式:L=n兀R/180 ­

135扇形面积公式:S扇形=n兀R^2/360=LR/2 ­

136内公切线长= d-(R-r) 外公切线长= d-(R+r)­

Ⅳ 新人教版八年级上册数学知识点总结

第十一章 全等三角形

1.
全等三角形的性质:全等三角形对应边相等、对应角相等。

2.
全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

3.
角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

4.
角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

6.
第十二章 轴对称

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60°,

12.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

13.直角三角形中,30°角所对的直角边等于斜边的一半。

14.直角三角形斜边上的中线等于斜边的一半

第十三章 实数

※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

※正数的立方根是正数;0的立方根是0;负数的立方根是负数。

数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

第十四章 一次函数

1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。

2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。

6.已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

第十五章 整式的乘除与因式分解

1.同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

⑤公式还可以逆用: (m、n均为正整数)

2.幂的乘方与积的乘方

※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。

3. 整式的乘法

※(1). 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

※(2).单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

※(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

4.平方差公式

¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

※即 。

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

5.完全平方公式

¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

¤即 ;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。

添括号法则:添正不变号,添负各项变号,去括号法则同样

6. 同底数幂的除法

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

7.整式的除法

¤1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

8. 分解因式

※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

※2. 因式分解与整式乘法是互逆关系.

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘.

分解因式的一般方法:

1. 提公共因式法

※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

如:

※2. 概念内涵:

(1)因式分解的最后结果应当是“积”;

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,即:

※3. 易错点点评:

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提“干净”;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

2. 运用公式法

※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2. 主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3. 易错点点评:

因式分解要分解到底.如 就没有分解到底.

※4. 运用公式法:

(1)平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号.

(2)完全平方公式:

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.

3. 因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

4. 分组分解法:

※1. 分组分解法:利用分组来分解因式的方法叫做分组分解法.

如:

※2. 概念内涵:

分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.

※3. 注意: 分组时要注意符号的变化.

5. 十字相乘法:

※1.对于二次三项式 ,将a和c分别分解成两个因数的乘积, , , 且满足 ,往往写成 的形式,将二次三项式进行分解.

如:

※2. 二次三项式 的分解:

※3. 规律内涵:

(1)理解:把 分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.

(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.

※4. 易错点点评:

(1)十字相乘法在对系数分解时易出错;

(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.
第十一章 全等三角形

1.
全等三角形的性质:全等三角形对应边相等、对应角相等。

2.
全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

3.
角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

4.
角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).

6.
第十二章 轴对称

1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.角平分线上的点到角两边距离相等。

4.线段垂直平分线上的任意一点到线段两个端点的距离相等。

5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6.轴对称图形上对应线段相等、对应角相等。

7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8.点(x,y)关于x轴对称的点的坐标为(x,-y)

点(x,y)关于y轴对称的点的坐标为(-x,y)

点(x,y)关于原点轴对称的点的坐标为(-x,-y)

9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

10.等腰三角形的判定:等角对等边。

11.等边三角形的三个内角相等,等于60°,

12.等边三角形的判定: 三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形

有两个角是60°的三角形是等边三角形。

13.直角三角形中,30°角所对的直角边等于斜边的一半。

14.直角三角形斜边上的中线等于斜边的一半

第十三章 实数

※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

※正数的立方根是正数;0的立方根是0;负数的立方根是负数。

数a的相反数是-a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

第十四章 一次函数

1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。

2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。

6.已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

第十五章 整式的乘除与因式分解

1.同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

⑤公式还可以逆用: (m、n均为正整数)

2.幂的乘方与积的乘方

※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2. .

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。

3. 整式的乘法

※(1). 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

※(2).单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

※(3).多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

4.平方差公式

¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,

※即 。

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

5.完全平方公式

¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,

¤即 ;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。

添括号法则:添正不变号,添负各项变号,去括号法则同样

6. 同底数幂的除法

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,

④运算要注意运算顺序.

7.整式的除法

¤1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

8. 分解因式

※1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

※2. 因式分解与整式乘法是互逆关系.

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘.

分解因式的一般方法:

1. 提公共因式法

※1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.

如:

※2. 概念内涵:

(1)因式分解的最后结果应当是“积”;

(2)公因式可能是单项式,也可能是多项式;

(3)提公因式法的理论依据是乘法对加法的分配律,即:

※3. 易错点点评:

(1)注意项的符号与幂指数是否搞错;

(2)公因式是否提“干净”;

(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.

2. 运用公式法

※1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.

※2. 主要公式:

(1)平方差公式:

(2)完全平方公式:

¤3. 易错点点评:

因式分解要分解到底.如 就没有分解到底.

※4. 运用公式法:

(1)平方差公式:

①应是二项式或视作二项式的多项式;

②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;

③二项是异号.

(2)完全平方公式:

①应是三项式;

②其中两项同号,且各为一整式的平方;

③还有一项可正负,且它是前两项幂的底数乘积的2倍.

3. 因式分解的思路与解题步骤:

(1)先看各项有没有公因式,若有,则先提取公因式;

(2)再看能否使用公式法;

(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;

(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;

(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.

4. 分组分解法:

※1. 分组分解法:利用分组来分解因式的方法叫做分组分解法.

如:

※2. 概念内涵:

分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.

Ⅳ 数学八年级上册知识点,要总结归纳

八年级上册数学复习提纲
1 全等三角形的对应边、对应角相等 ¬
2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬
3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬
4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬
5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬
6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬
7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬
8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬
9 角的平分线是到角的两边距离相等的所有点的集合 ¬
10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬
21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬
22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬
23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬
24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬
25 推论1 三个角都相等的三角形是等边三角形 ¬
26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬
27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬
28 直角三角形斜边上的中线等于斜边上的一半 ¬
29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬
30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬
31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ¬
32 定理1 关于某条直线对称的两个图形是全等形 ¬
33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ¬
34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ¬
35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ¬
36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ¬
37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ¬
38定理 四边形的内角和等于360° ¬
39四边形的外角和等于360° ¬
40多边形内角和定理 n边形的内角的和等于(n-2)×180° ¬
41推论 任意多边的外角和等于360° ¬
42平行四边形性质定理1 平行四边形的对角相等 ¬
43平行四边形性质定理2 平行四边形的对边相等 ¬
44推论 夹在两条平行线间的平行线段相等 ¬
45平行四边形性质定理3 平行四边形的对角线互相平分 ¬
46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ¬
47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ¬
48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ¬
49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ¬
50矩形性质定理1 矩形的四个角都是直角 ¬
51矩形性质定理2 矩形的对角线相等 ¬
52矩形判定定理1 有三个角是直角的四边形是矩形 ¬
53矩形判定定理2 对角线相等的平行四边形是矩形 ¬
54菱形性质定理1 菱形的四条边都相等 ¬
55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ¬
56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ¬
57菱形判定定理1 四边都相等的四边形是菱形 ¬
58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ¬
59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ¬
60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ¬
61定理1 关于中心对称的两个图形是全等的 ¬
62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ¬
63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ¬
点平分,那么这两个图形关于这一点对称 ¬
64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ¬
65等腰梯形的两条对角线相等 ¬
66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ¬
67对角线相等的梯形是等腰梯形 ¬
68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ¬
相等,那么在其他直线上截得的线段也相等 ¬
69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ¬
70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ¬
三边 ¬
71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ¬
的一半 ¬
72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ¬
一半 L=(a+b)÷2 S=L×h ¬
73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ¬
如果ad=bc,那么a:b=c:d ¬
74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬
75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ¬
(a+c+…+m)/(b+d+…+n)=a/b ¬
76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ¬
线段成比例 ¬
77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ¬
78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ¬
79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ¬
80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ¬
81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ¬
82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ¬
83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ¬
84 判定定理3 三边对应成比例,两三角形相似(SSS) ¬

热点内容
如何去痘坑 发布:2025-07-28 16:00:56 浏览:102
海峰教育 发布:2025-07-28 15:38:20 浏览:540
湘君文言文 发布:2025-07-28 13:53:17 浏览:32
清华数学系 发布:2025-07-28 12:09:19 浏览:628
九年级语文期中 发布:2025-07-28 11:01:39 浏览:995
小学义务教育教科书 发布:2025-07-28 11:01:03 浏览:202
地理学博士点 发布:2025-07-28 04:05:20 浏览:110
什么是网络地址 发布:2025-07-28 02:48:59 浏览:217
a了什么意思 发布:2025-07-28 02:40:42 浏览:398
2012考研数学二答案 发布:2025-07-27 23:12:08 浏览:651