数学文化的论文
不知道!!!!!!
② 数学文化与生活3000字论文
数学文化
人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。
早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。
数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展
了几千年,表现出了强大的生命力。
数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。
数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。
数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的
创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。
(2)数学对人的文化素养影响
面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:
有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世
界。
有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。
有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值
在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐
民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
二,数学:一种思想方法
数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。
数学作为推理工具的作用是巨大的。特别是对由于技术条件限
制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。
值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭
义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。
数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。
三,数学:理性的艺术
通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,
音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。
艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。
艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。
(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。
(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情
感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。
艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。
在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维
的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材
四,数学韵味——数学的美
说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……
数学美可以分为形式美和内在美。
数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。
数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。
美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加
深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。
数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。
③ 求一篇关于数学文化的论文,谢谢,很急
数学类论文感想类的比较好写,
巴巴适适论文吧
全博士专业论文辅导团队,提供课程论文、毕业论文、硕士论文、博士论文,数学论文发表、数学教学论文发表
④ 数学文化论文怎么写
不太好写啊!
也许你可以参照一些高中的论文,这样思路会好很多
不过我不敢肯定你看完就能够写得出来,因为论文要是这么好写就不叫论文了吗!
⑤ 求数学文化欣赏相关论文
数学作为一种文化现象,早已是人们的常识。历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。最著名的如柏拉图和达·芬奇。晚近以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。
数学文化的存在价值
在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(L.A.White)的数学文化论力图把数学回归到文化层面。克莱因(M.Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。
国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。
以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。
认识和实施数学文化教育
进入21世纪之后,数学文化的研究更加深入。一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。
那么,如何在中小学数学教学中进行数学文化教育呢?笔者认为应该从以下几个方面加以认识和实施。
认识数学文化的民族性和世界性
每个民族都有自己的文化,也就一定有属于这个文化的数学。古希腊的数学和中国传统数学都有辉煌的成就、优秀的传统。但是,它们之间有着明显的差异。古希腊和古代中国的不同政治文明孕育了不同的数学。
古希腊是奴隶制国家。当时希腊的雅典城邦实行奴隶主的民主政治(广大奴隶不能享受这种民主)。男性奴隶主的全体大会选举执政官,对一些战争、财政大事实行民主表决。这种政治文明包含着某些合理的因素。奴隶主之间讲民主,往往需要用理由说服对方,使学术上的辩论风气浓厚。为了证明自己坚持的是真理,也就需要证明。先设一些人人皆同意的“公理”,规定一些名词的意义,然后把要陈述的命题,称为公理的逻辑推论。欧氏的《几何原本》正是在这样的背景下产生的。
中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度。春秋战国时期,也是知识分子自由表达见解的黄金年代。当时的思想家和数学家,主要目标是帮助君王统治臣民、管理国家。因此,中国的古代数学,多半以“管理数学”的形式出现,目的是为了丈量田亩、兴修水利、分配劳力、计算税收、运输粮食等国家管理的实用目标。理性探讨在这里退居其次。因此,从文化意义上看,中国数学可以说是“管理数学”和“木匠数学”,存在的形式则是官方的文书。
古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标。因此,“对顶角相等”这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明。在中国的数学文化里,不可能给这样的直观命题留下位置。
同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展。负数的运用、解方程的开根法,以及杨辉(贾宪)三角、祖冲之的圆周率计算、天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视。
我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统。当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来。
揭示数学文化内涵,走出数学孤立主义的阴影
数学的内涵十分丰富。但在中国数学教育界,常常有“数学=逻辑”的观念。据调查,学生们把数学看作“一堆绝对真理的总集”,或者是“一种符号的游戏”。“数学遵循记忆事实-运用算法-执行记忆得来的公式-算出答案”的模式[1],“数学=逻辑”的公式带来了许多负面影响。正如一位智者所说,一个充满活力的数学美女,只剩下一副X光照片上的骨架了!
数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流。通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。
半个多世纪以前,著名数学家柯朗(R.Courant)在名著《数学是什么》的序言中这样写道:“今天,数学教育的传统地位陷入严重的危机。数学教学有时竟变成一种空洞的解题训练。数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础。”
2002年8月20日,丘成桐接受《东方时空》的采访时说:“我把《史记》当作歌剧来欣赏”,“由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样。” 这是一位数学大家的数学文化阐述。
《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:“这使我明白了:数学本身很美,然而不要被它迷了路。应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的。从这一观点上讲,我们应该是解决实际问题的优秀‘屠夫’,而不是制刀的‘刀匠’,更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠。”这是一个力学家的数学文化观。
和所有文化现象一样,数学文化直接支配着人们的行动。孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成“怪人”。学校里的数学,原本是青少年喜爱的学科,却成为过滤的“筛子”、打人的“棒子”。优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。
多侧面地开展数学文化研究
谈到数学文化,往往会联想到数学史。确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径。但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念、数学方法、数学思想中揭示数学的文化底蕴。以下将阐述一些新视角,力求多侧面地展现数学文化。
1. 数学和文学。数学和文学的思考方法往往是相通的。举例来说,中学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么对仗是什么?无非是上联变成下联,但是字词句的某些特性不变。王维诗云:“明月松间照,清泉石上流”。这里,明月对清泉,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变。其余各词均如此。变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。
2.欧氏几何和中国古代的时空观。初唐诗人陈子昂有句云:“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下。”这是时间和三维欧几里得空间的文学描述。在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线。天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千。数学正是把这种人生感受精确化、形式化。诗人的想象可以补充我们的数学理解。
3. 数学与语言。语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。再如“万无一失”,在中国语言里比喻“有绝对把握”,但是,这句成语可以联系“小概率事件”进行思考。“十万有一失”在航天器的零件中也是不允许的。此外,“指数爆炸”“直线上升”等等已经进入日常语言。它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。
4. 数学的宏观和微观认识。宏观和微观是从物理学借用过来的,后来变成一种常识性的名词。以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别。初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态。高中的对应则是微观的分析。在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行。政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的。是否要从这样的观点考察函数呢?
5. 数学和美学。“1/2+1/3=2/5 ?”是不是和谐美?二次方程的求根公式美不美?这涉及到美学观。三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上。欣赏艾舍尔(M.C.Escher)的画、计算机画出的分形图,也是数学美的表现。
总之,数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。
⑥ 跪求与生活有关的数学文化论文(原创)1500字左右
中国数学文化在教学中的应用
关键字:中国,数学,文化,学习,应用
不同的国家有不同的数学文化, 不同的时代也有不同的数学时尚, 就像我们穿衣服一样有时尚。 中国数学的传统的数学影子, 揭示数学文化底蕴和文化品位
一、深度挖掘数学教学素材,让学生感受数学文化的渊源
在现行的初中数学教材中,有好多内容蕴含着丰富的“数学文化”。例如有理数中负数的引入,可以给学生介绍海拔高度;学习有理数的加减时让学生了解“幻方”;在学习勾股定理以及神秘的数组时,让学生了解“勾股定理与费马大定理”以及古巴比伦泥板上神秘的数组揭示的秘密,在教学的过程中应积极向学生呈现丰盛的文化大餐。
二、积极创建和谐学习氛围,让学生体验数学文化的求真精神
传统的数学教学模式在一定程度上要么满堂灌,要么就是讲讲练练,鹦鹉学舌、填鸭式的,课堂上学生很少能通过自己的活动与实践来获取知识,得到发展。在课堂教学中要努力创设一种平等、宽容、尊重、理解、和谐的学习氛围,使学生在课堂上想说,敢说,爱说,能说,积极参与到课堂教学活动中来。例如在学习“圆锥体”时,让学生列举生活中的圆锥体;“必然事件”与“不可能事件”让学生多举生活中的实例。将相关的“数学文化”素材放置于平时的课堂教学之中,引导学生采用合作、平等、交流的形式开展学习。
三、高度关注师生情感互动,让学生感受数学文化的人文性
生活的实践告诉我们:在富有情感交流的活动过程中,人的行为是主动的,有激情的,而且是会激起一定创造潜能的。学习知识也是如此。比如我们都有这种感受:有些学生只在某个学科上成绩很好,而其他学科却很差,究其原因结果发现,这些学生很喜欢教这科的老师。如果每个教师都能用心关注学生,发现学生的闪光点,切实走进学生的内心世界,因势利导,我们的教育就会更上一个台阶。为此,在数学课堂学习的过程中,教师应努力创设学习的外部环境,激起学生学习情感的参与。教师通过培养学生的友情感、亲情感来感染学生,引起师生之间感情上的沟通和共鸣,使学生在心理上产生对教师的亲切感、信任感,激发学生对数学的向往和追求。
四、灵活运用教学呈现方式,让学生触摸数学文化的魅力
在数学学习的过程中,不同的教学呈现方式往往会起到不同的教学效果。
美国文化学家A.Kroeber和C.Klukhohn认为,文化由外显和内隐的行为模式构成;这种行为模式通过象征符号获得和传递;
数学文化即是一种由职业因素联系起来的特殊群体(数学共同体)所特有的价值观念、思维方式、行为习惯等。
数学文化的价值也主要体现在数学对于人们观念、精神以及思维方式的养成所起的十分重要的影响。这种影响是潜移默化的,但又是确实存在的。
我们通过课题想达成以下一些目标:
(1)通过数学学习能培养学生理性精神。美国著名数学史家克莱因(M.Kline)认为,数学是一种精神,一种理性的精神。这种精神表现在学生的“求异、质疑、怀疑、批判”等思维方式上。
(2)感受数学的真善美。数学本身就是一种文化数学。数学是可以使人变得更聪明的科学;数学美具有科学美的一切特征,而且还具有艺术美的某些特征。关注数学的文化功能和人文价值,从而真正提高受教育者的数学素养乃至科学素养和人文素养,使得对学生的科学精神和人文素养的培育和谐地统一在了一起。
(3)在数学学习中锻炼学生思维训练能力。而这又不仅仅是指逻辑思维的训练,而是有着更为广泛的涵义。正如柏拉图所指出的“哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质······”
(4)通过数学学习培养学生创造性思维。由于数学的研究对象并不一定具有明显的直观背景,而是各种可能的量化模式,这也为人们创造性才能的充分发挥提供了最为理想的场所。所以在数学教育中我们要鼓励学生“异想天开、想入非非”。
(5)学会用数学语言来表达、交流、沟通。数学也是一种科学语言,一种世界语言,它还是自然、社会、人之间相互关系的一个重要尺度(如资源的合理配置、生态平衡与环境保护等)。
数学文化意义其核心是数学的观念、意识和思维方式。所谓数学的观念和意识,也就是人们常说的数学的头脑、数学的素养,准确地说是指推理意识、抽象意识、整体意识和化归意识。比如说推理意识,它体现了演绎逻辑的可靠性、严谨性和思维方式的广泛性、深刻性,这有助于学生不盲从、有条理、善思辩,在错综复杂的问题面前不被表面现象所迷惑,而能够透过现象,洞察事物的本质,揭示相互之间的关系,从而更有效地解决问题。
⑦ 求一篇数学文化的论文
赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。
刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/50和3927/1250。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926——3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。
据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久。
祖冲之之子祖(日恒)总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。
隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。
⑧ 数学文化论文
浅谈数学文化中的和合思想
和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调
的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质
世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的
优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化
中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰
富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。
一、整体系统性
1.数学公理系统的相容性
数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求
中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能
互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学
系统和谐的基础,也是基本要求。
除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支
之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在
不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式
几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何
的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛
盾的。
2.数学运算系统的完整性
数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数
学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体
中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系
时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运
算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。
3.数学推理系统的严密性
在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅
要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程
中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面
积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要
用到数“=”的超越性。
在数学上的等式、解析式中出现“=”是和谐的体现。
二、平衡稳定性
“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事
物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数
学的平衡稳定性很好地体现了和合思想。
1.数学发展的平衡稳定
数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展
的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的
基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的
理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒
子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学
从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在
大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个
人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这
一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。
2.数学学习过程的平衡稳定
人们对知识的学习过程都含有一定的认知结构。而学生学习数学知
识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就
是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰
富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进
行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一
个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学
知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发
展的。
3.数学方法的平衡稳定
数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用
于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的
数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的
数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射
反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还
是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,
始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。
几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其
相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,
从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规
则,化一般为特殊,化不利条件为有利条件。
三、有序对称性
“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,
而且阴阳和合的对称。
1.数学的有序对称美
在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个
部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着
数学中的对称美。
图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称
图形是图形位置的一种对称。显示一种对称的美。
在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一
种对称。
在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学
运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳
的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们
之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映
其对称性。
2.数学解题过程的有序结构
从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、
数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比
如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知
数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解
题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过
程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥
梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,
从而最终解决问题。
数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和
合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在
教学中的教育功能,就能有效地培养学生科学素养和文化素养。
参考文献:
[1]齐民友.数学文化[M].长沙:湖南教育出版社,1991.
[2]张维忠.数学文化与数学课程[M].上海:上海教育出版社,1999.
[3]郑毓信.数学文化学[M].成都:四川教育出版社,2001.
[4]李文林.数学史教程[M].高教出版社.
⑨ 急!!数学文化赏析 的论文
数学作为一种文化现象,早已是人们的常识.历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家.
进入21世纪之后,数学文化的研究更加深入.一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动.
中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度.春秋战国时期,也是知识分子自由表达见解的黄金年代.当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家.因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标.理性探讨在这里退居其次.因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书.
古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标.因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明.在中国的数学文化里,不可能给这样的直观命题留下位置.
同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展.负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视.
我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统.当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来.
揭示数学文化内涵,走出数学孤立主义的阴影。
数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流.通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美.
半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机.数学教学有时竟变成一种空洞的解题训练.数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系.教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础."
2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样." 这是一位数学大家的数学文化阐述.
《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路.应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的.从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠."这是一个力学家的数学文化观.
和所有文化现象一样,数学文化直接支配着人们的行动.孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人".学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子".优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物.伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人.
多侧面地开展数学文化研究
谈到数学文化,往往会联想到数学史.确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径.但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴.以下将阐述一些新视角,力求多侧面地展现数学文化.
1. 数学和文学.数学和文学的思考方法往往是相通的.举例来说,中学课程里有"对称",文学中则有"对仗".对称是一种变换,变过去了却有些性质保持不变.轴对称,即是依对称轴对折,图形的形状和大小都保持不变.那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变.王维诗云:"明月松间照,清泉石上流".这里,明月对清泉,都是自然景物,没有变.形容词"明"对"清",名词"月"对"泉",词性不变.其余各词均如此.变化中的不变性质,在文化中,文学中,数学中,都广泛存在着.数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现.文学意境也有和数学观念相通的地方.徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境.
2.欧氏几何和中国古代的时空观.初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下."这是时间和三维欧几里得空间的文学描述.在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线.天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千.数学正是把这种人生感受精确化,形式化.诗人的想象可以补充我们的数学理解.
3. 数学与语言.语言是文化的载体和外壳.数学的一种文化表现形式,就是把数学溶入语言之中."不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀.再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考."十万有一失"在航天器的零件中也是不允许的.此外,"指数爆炸""直线上升"等等已经进入日常语言.它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的."事业坐标""人生轨迹"也已经是人们耳熟能详的词语.
4. 数学的宏观和微观认识.宏观和微观是从物理学借用过来的,后来变成一种常识性的名词.以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别.初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态.高中的对应则是微观的分析.在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行.政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的.是否要从这样的观点考察函数呢
5. 数学和美学."1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观.三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上.欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现.
总之,数学文化离不开数学史,但是不能仅限于数学史.当数学文化的魅力真正渗入教材,到达课堂,