数学教学思想
数学教学内容从总体上可分为两个层次:一个称为表层知识,包含概念、性质、法则、公式、公理、定理等基本内容;另一个称为深层知识,主要指数学思想和方法.表层知识是深层知识的基础,具有较强的操作性,学生只有通过对教材的学习,在掌握与理解了一定的表层知识后,才能进一步学习和领悟相关的深层知识.而数学思想方法又是以数学知识为载体,蕴涵于表层知识之中,是数学的精髓,它支撑和统率着表层知识.因而教师在讲授概念、性质、公式的过程中应不断渗透相关的数学思想方法,让学生在掌握表层知识的同时,又能领悟到深层知识,从而使学生思维产生质的飞跃.只讲概念、定理、公式而不注重渗透数学思想、方法的教学,将不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高.在教学过程中要引导学生主动参与结论的探索、发现、推导过程,搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体验创造性思维活动中所经历和应用到的数学思想和方法.
我们平时的教学工作中一直存有这么一个难点:平时题目讲得不少,可只要条件稍稍一变,一些学生就会不知所措,总是停留在模仿型解题的水平上,很难形成较强解决问题的能力,更谈不上创新能力的形成.而培养学生解决问题的综合能力又是数学教学的核心目标.在解决问题的过程中,教师就应把最大的教学精力花在诱导学生怎样去想,怎样想到,到哪里去找解题的思路上,要置数学思想方法的运用于解题的中心位置,充分发挥数学思想的解题功能──定向功能、联想功能、构造功能和模糊延伸功能.若学生能在解决问题的过程中充分发挥数学思想方法的解题功能,不仅可少走弯路,而且还可大大提高学生的数学能力与综合素质.
数学思想方法贯穿在整个中学数学教材的知识点中,以内隐的方式溶于数学知识的体系中,要使学生把这种思想内化成自己的观点并应用它来解决问题,就要努力把各种知识所表现出来的数学思想方法表层化,这符合未来数学教育改革的趋势.
作为教师,我们首先弄清楚教材中所反映的数学思想方法以及它与数学相关知识之间的联系,并适时作出归纳和概括,在具体的授课活动中,以适当的方式将数学思想方法加以揭示,并使之表层化,使学生达到真正意义上的领会和掌握,增强学生对数学思想方法的应用意识.
② 小学数学教学设计的指导思想有哪些
一年级学生刚进入小学学习,新的学习和生活对孩子们来说充满了好奇和有趣,对学校、对环境、对老师、对同学、对课堂、对学习、对学校的要求都充满了新鲜感。同时他们年龄小,好动、易兴奋、易疲劳,注意力容易分散,尤其是刚入学时,40分钟的课堂学习对于他们来说真的很难!然而“学会倾听”是新课标中对一年级小学生提出的一项重要目标。现代心理学证明,注意力集中的学生,听课效率和学习水平远远高于注意力分散的学生。针对这些特点,我得想方设法运用各种手段来激发学生专心听讲的兴趣,从而培养好习惯。首先在课堂语言上要力求儿童化和趣味化。其次,让学生有尽可能多的回答问题的机会,促使他们始终处于积极主动的学习状态。对于学习有困难的学生及时个别辅导,对于优秀生尽量让他“吃得饱”。
二、本学期教学的指导思想
1、根据儿童发展的生理和心理特征培养学生自主探索的能力。重视以学生的已有经验知识和生活经验为基础,提供学生熟悉体情景,帮助学生理解数学知识。
2、增加联系实际的内容,为学生了解现实生活中的数学,感受数学与日常生活的密切联系。
3、注意选取富有儿童情趣的学习素材和活动内容,激发学生的学习兴趣,获得愉悦的数学学习体验。
4、重视引导学生自主探索,合作交流的学习方式,让学生在合作交流与自主探索的气氛中学习。
5、把握教学要求,促进学生发展适当改进评价学生的方法,比如建立学生课堂发言的“奇思妙语录”等。
三、教学内容
这一册教材包括下面一些内容:数一数,比一比,10以内数的认识和加减法,认识图形,分类,11~20各数的认识,认识钟表,20以内的进位加法,用数学,数学实践活动。这一册的重点教学内容是10以内的加减法和20以内的进位加法。这两部分内容和20以内的退位减法(一般总称一位数的加法和相应的减法)是学生学习认数和计算的开始,在日常生活中有广泛的应用,同时它们又是多位数计算的基础。因此,一位数的加法和相应的减法是小学数学中最基础的内容,是学生终身学习与发展必备的基础知识和基本技能,必须让学生切实掌握。
除了认数和计算以外,教材安排了常见几何图形的直观认识,比较多少、长短和高矮,简单的分类,以及初步认识钟面等。虽然每一单元的内容都不多,但是都很重要,有利于学生了解数学的实际应用,培养学生学习数学的兴趣。
四、本学期教学的主要目的要求
(一)、知识和技能方面
1、使学生正确地数出不同物体的个数。逐步抽象出数,能区分“几个”和“第几个”熟练地掌握10以内的组成,会正确,工整地书写数字。
2、使学生认识计数单位“一”和“十”,初步理解个位和十位上的数所表示的意义,能熟练地数出20以内的数,正确地读、写20以内的数,掌握20以内的数是由一个十和几个一组成的。掌握20以内的数的顺序,会比较20以内数的大小。
3、使学生初步认识=、>、<三种符号,会使用这些符号表示数的大小。
4、使学生初步知道加和减法的含义,直观地了解加法交换律和加法与减法的关系,能熟练地口算10以内的加减法和20以内的进位加法。能比较熟练地计算20以内的连加、连减和加减混合运算式题。
5、使学生会根据加、减法的含义解答比较容易的加减法一步计算的图文应用题。知道题目中的条件和问题。知道题目中的条件和问题,会列出算式,注明得数的单位名称,口述答案,能看实物或直观图口述题意,简单的讲述和与求剩余的数量关系。
6、使学生直观地认识长方体、正方体、圆柱和球。对这些图形有初步的了解。
7、结合主题图和插图及有关数据,对学生进行爱祖国、爱科学的教育,培养学生认真做题,正确计算,书写整洁的良好习惯,学会有条理,有根据地思考问题。
(二)、数学思考方面
1、能运用生活经验,对有关数学信息作出解释,并初步学会用具体的数据描绘现实世界中的简单现象。
2、能对简单物体和图形的形状、大小、位置关系、运动的探索过程中,发展空间观念。
3、在教师的帮助下,初步学会选择有用的信息进行简单的归纳和类比。
(三)、解决问题方面
1、经历从生活中发现并提出问题、解决问题的过程,体验数学与日常生活的密切联系,感受数学在日常生活中的作用。
2、了解同一问题可以有不同的解决办法。
3、有与同学合作解决问题的经验。
4、初步学会表达解决问题的大致过程和结果。
(四)、情感与态度方面
1、在他人的鼓励和帮助下,对身边与数学有关的某些事物有好奇心,能积极参与生动、直观的教学活动。
2、在他人的鼓励和帮助下,能克服在数学活动中遇到的某些困难,获得成功的体验,有学好数学的信心。
3、经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。
4、在他人的指导下,能够发现数学活动中的错误,并及时改正。
5、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
6、使学生从小养成认真学习、认真作业、书写整洁的良好习惯。
五、本学期提高教学质量的具体措施
1、从学生的年龄特点出发,多采取游戏式的教学,引导学生乐于参与数学学习活动。
2、在课堂教学中,注意多一些有利于孩子理解的问题,而不是一味的难、广。应该考虑学生实际的思维水平,多照顾中等生以及思维偏慢的学生。
3、布置一些比较有趣的作业,比如动手的作业,少一些呆板的练习。
4、加强家庭教育与学校教育的联系,适当教给家长一些正确的指导孩子学习的方法。
③ 数学思想方法教学主要有哪三个阶段
教学方法是指完成教学任务所使用的工作方法,它包括教师教的方法和学生学的方法。因此,教学方法应全面地理解为:是教与学的双边活动及其相互结合;是为完成教学任务和达到教学目的服务的;包括各种各样的具体方式和手段。作为数学教师,应当对主要的一些数学教学方法有一个全面、系统的了解。这样,才能根据具体的教学内容、教学对象和不同的课型合理地选用不同的教学方法,而且还可以在这些教学方法的基础上,自己去探索和创立一些新的教学方法。一般地认为,数学教学方法分为传统的教学方法和现代的教学方法两类,下面我们依据这种分法分别介绍主要的一些数学教学方法。一、传统的数学教学方法传统的数学教学方法,是指在长期的数学教学实践活动中形成的、至今仍行之有效的各种教学方法,其中包括讲解法、谈话法、演示法、讨论法等。1.讲解法讲解法是由教师对教学内容进行有系统地讲述的一种教学方法。其特点是以教师为主导,利用口头语言作为传递知识的基本工具,学生是知识信息的接受者。讲解法的基本要求:(1)科学性。讲解的内容要准确无误,即讲概念要清楚,把握好概念的内涵与外延;阐述命题证明、推理要合乎逻辑,思路和方法要明确、清晰。(2)系统性。讲解要条理清楚、层次分明,重点突出,注意学生理解问题的认识规律,使讲授内容系统化。(3)启发性。讲授中要引起学生的求知欲,激发学生思维活动。运用讲解法不等于“满堂灌”、注入式。教师的讲解要善于提出问题、创设问题情境,激发疑问,使学生与教师积极配合,主动参与学习活动。(4)艺术性。讲解的语言要清晰、洗炼、准确、生动,尽量做到深入浅出,通俗而不失严谨。讲解语言音量适当,抑扬顿挫,富有情趣,快慢适当。(5)情感性。讲授课容易让学生产生枯燥无味之感,因此,情感因素的注入和喧染是提高讲授效果的最佳方法。讲解法的优点:能够保持教师在教学中的主导地位,教学时间和进度便于教师控制,并且所授内容能保持流畅与连贯;便于重点内容的分析、难点的突破,易于帮助学生抓住问题的关键,节约教学时间。讲解法的缺点:教学中学生参与少,容易造成被动接受知识的状态,不利于能力的培养;不易照顾学生中思维反应快与慢的两端,只能面向中等学生。2.谈话法谈话法是教师根据教学内容和学生的实际情况,提出设计好的若干问题,用谈话的方式启发引导学生积极思考、探索,从而获得知识的一种教学方法。谈话法的主要特点是师生之间不像讲授法那样,教师讲,学生听,信息单项交流,而是信息的双向交流。在谈话中,师生之间都可以获得反馈信息,根据这些反馈信息可以及时地调整和改善教与学的活动。这种教学过程,既可以使学生融会贯通地掌握知识,又能发展学生的智力,而且,在经常问答的过程中还锻炼了学生的表达芰Α?/P> 谈话法的基本要求:对学生而言,要积极思维,主动参与;勇于发现,积极应答。对教师的要求有下面几点。(1)精心设计“问题系统”,对提问的对象及学生可能会怎样回答等要做到心中有数。教师在备课时应拟出提问的提纲、对谈话所需的时间、给学生能顺利地回答创造哪些条件等,都要做好准备。(2)提出的问题,要难易适度。对某些有困难的学生,要善于由浅入深、由易到难的逐步引导。提出的问题要明确,应是学生所能理解的。(3)要善于引导探讨、启发发现。对所提出的谈话内容,要具有启发性,教师要引导学生积极思考,层层深入,逐步地获得结论。(4)要面向全体学生,因材施教。在谈话中要面向全体学生提出问题,并给他们一定的思考时间,使全体学生都处于积极思维的参与状态。要照顾优生和差生,鼓励学生大胆回答问题。(5)及时小结。谈话中要对学生回答问题的情况及时小结,使学生明确是非,提高认识。谈话法的优点:突出课堂教学中师生的双边活动,有利于信息反馈;课堂气氛活跃,有利于促进学生积极思维,有利于对学生能力的培养。谈话法的缺点:教学组织比较困难,教学时间不易控制。3.演示法演示法是教师将教材内容用实物或教具演示出来,或做示范性实验来说明或印证所授知识的一种教学方法。在数学教学中,演示法主要用于概念(或部分命题)教学。演示法大体可分为四种:①图片、图画、挂图的演示;②教具、实物模型的演示;③幻灯、录音、录像、教学电影的演示;④实验演示。运用演示法教学,对教师有如下具体的要求。(1)演示要突出主题内容,尽量排除在演示过程中对学习内容产生干扰的无关因素。(2)在演示时要与教师的讲解和谈话相结合,通过教师语言的启发,使学生不是停留在事物的外部表象上,而要使学生的认识上升到理性阶段,形成概念。(3)教具的演示要适时、适当和适度。演示的目的在于帮助理解概念、掌握知识,但最终要逐步离开教具,上升为理性认识。因此,教学中演示教具要恰到好处,过多地依赖教具不利于学生数学思维的发展。演示法的优点:可以使学生获得丰富的感性材料,加深对概念本质的理解,有利于培养学生的形象思维能力;能够激发学生的学习兴趣,调动学生的学习积极性和主动性。演示法的缺点:实用范围受教学内容、教学设施所限。4.讨论法讨论法是学生根据教师所提出的问题,在集体中,相互交流个人的看法,相互启发、相互学习的一种教学方法。讨论法的主要特点是:信息交流既不同于讲解法的单向交流,也不同于谈话法的双向交流,而是讨论集体成员之间的多向信息交流。学生的发言可以及时获得反馈信息,调节自己的观点,课堂气氛活跃。讨论法的基本要求:(1)讨论前师生都要做好充分准备。教师要向学生提出讨论的课题,指出注意事项,布置一些阅读的参考资料,每个学生都应按要求做好讨论发言准备。(2)讨论题需简要明确,有具体的目标,问题深浅适当。(3)讨论中要鼓励学生大胆发言,勇于表达自己的观点。(4)每个问题讨论结束时,教师要作小结。讨论法的教学程序:(1)学生自学。教师指定自学内容,提出学习目标、并指出重、难点。(2)自行讲解。教师把要讨论的内容,按概念、命题、例题、习题等分成若干单元,把学生分成小组或全班一起进行讨论,讨论时可选出主讲人,以主讲人讲述为主,其余成员补充为辅。(3)相互讨论。在教师启发下,对主讲的结果正确与否?有无不同解法等进行讨论。(4)单元结论。在相互讨论之后,教师归纳出正确结论,进行单元小结。(5)全课总结。待所设计的每个单元都讨论结束后,教师对全课内容进行总结,布置相应的练习、作业。讨论法的优点:讨论活动是以学生自己的活动为中心,每个学生都有发言的机会,这对于培养学生的语言表达能力是十分有益的;讨论前需要学生自学并准备发言提纲,这既培养了学生的自学能力,又调动了学生学习的主动性和积极性;讨论中的发言固然要围绕讨论的中心,但又可以不受教材的限制,因而有利于发挥学生的独立思考和创造精神。讨论法的缺点:课堂组织教学不易控制;比较耗费教学时间。讨论法可使每个学生展示自己的思想,这样的交流可以促使他们认知结构的完善。另外,也可以发挥每个人的个性特征,增强他们的自信心和创造力。这种方法在国外是普遍采用的方法,而在我国却用之甚少,很值得深入研究。二、国外教改中的数学教学方法1.发现法发现法又称探索法、研究法、现代启发式或问题教学法。指教师在学生学习概念、命题时,只是给他一些事实(例)和问题,让学生积极思考,独立探究,自行发现并掌握相应的原理和结论的一种教学方法。它的指导思想是以学生为主体,独立实现认识过程,即在教师的启发下,使学生自觉地、主动地探索;科学认识解决问题的方法及步骤;研究对象的起因和内部联系,从中找出规律,形成概念或解决问题。发现法就其思想渊源来说,有着悠久历史,但是引起人们对发现法的重新关注和研究,是由于20世纪60年代布鲁纳的大力倡导。布鲁纳认为,要培养具有发明创造才能的科技人才,不但要使学生掌握学科的基本概念、基本原理,而且要发展学生对待学习的探索性态度,从而大力提倡广泛使用发现法。使用发现法教学的一般步骤:(1)创设问题情境,激发学生的兴趣和学习的主动性。(2)推测问题结论,探讨问题解法。在教师的启发下,学生积极思考,回忆有关知识和方法,进行分析、综合、猜测结论,探索解决问题的途径和方法。(3)验证结论。采用反驳或论证去验证所得猜想。(4)完善问题的解答,总结思路方法,并对获得的知识用于应用和巩固。发现法的教学过程可概括为如下框图模式。发现法教学的基本要求:(1)教师要发挥主导作用,精心创设情境,引导学生有目的、有步骤地去发现问题。(2)学生要发挥主体作用,积极主动地参与发现过程,充分运用观察、试验、联想、类比、分析、归纳等方法,积极提出猜想,进行论证。(3)教师要突出强调发现问题的思维过程,使学生逐步掌握数学的思想方法。发现法的优点:能使学生产生学习的内在动机,增强自信心;能使学生学会发现的试探方法,培养学生提出问题、解决问题的能力和创造发明的态度;利于学生自己将知识系统化和结构化,更好地理解和巩固知识。发现法的缺点:花费学时太多;受学生思维发展水平限制,很多内容不适宜发现法;对教师的要求较高,如果教师没有较高水平,那么采用发现法进行教学是难以取得好效果的。2.程序教学法程序教学法来源于美国的鲁莱西设计的一种进行自动教学的机器,企图利用这种机器,把教师从教学的具体事务中解脱出来,节省时间和精力。这种设想,当时没有引起重视和推广。直至1945年,美国心理学家斯金纳重新提出,才引起广大心理学和教育界人士的重视。程序教学法是指依靠教学机器和程序教材,呈现学习程序,包括问题的显示,学生的反映和将反映的正误情况,反馈给学生,使学习者进行个别学习的一种教学方法。程序教学主要有两类,即直线式的程序和分支式的程序。直线式程序是斯金纳首创的。其教学过程是:把学习材料由浅入深地分为若干“小单元”,以直线式的编排,每一个小单元内容写在一张卡片上,依次呈现给学生。在呈现每一个单元时,要求学生进行对答反应,如果答对了,机器就呈现出正确答案,然后进入下一步,否则,继续思考回答。其模式为:①→②→③→…→(n)。分支式程序是美国心理学家克洛德创立的。它是直线式程序的发展,采用多重选择反应,以适应个别差异的需要。其教学过程是:将教材内容依次分为若干单元呈现给学生,在学生阅读了一个单元的教材之后,立即对他进行测验(测验题有正、误的多项选择答案),如果选对了,就引进新的内容,进入下一单元的学习;如果选错了,便引向一个适宜的单元,再继续学习,或者回到先前的单元再学习一遍,然后又进行问题回答,直到回答正确后进入下一单元的学习。其模式如图5-1。分支式程序的进一步发展,是利用计算机进行辅助教学(CAI),这部分内容将在§ 5.4中作介绍。程序教学法的优点:由于要求学生自己动手、动脑去独立完成学习任务,因此有利于培养自学能力和养成自学习惯;有利于因材施教;可以排除师资条件对教学的影响,保证教学质量的提高。程序教学法的缺点:教学过程呆板、单调,缺乏灵活性,容易束缚学生创造思维的发展,不利于能力的培养;不利于发挥教师的主导作用,缺乏师生之间的情感交流;教师难以了解学生的学习心理过程,不能对学习障碍及时排除。3.范例教学法范例教学法是在德国教育家瓦·根舍于20世纪50年代创立的“范例教学”理论基础上发展起来的教学方法,指用典型范例去达到对事物一般属性认识和理解的教学方法。范例教学法要求教师在备课时对教学内容进行以下五个方面的分析。(1)基本原理分析。分析教材中哪些是带有普遍意义的内容,这些内容对今后教学起什么作用,选择哪些范例,通过探讨范例使学生掌握哪些原理、规律和方法。(2)智力作用分析。分析课题内容对学生智力活动所起的作用。(3)未来意义分析。分析课题内容对学生未来学习的意义。(4)内容结构分析。分析组成整个内容的基本要素,这些要素之间的关系在教材中所处的地位;分析课题内容的整个结构。(5)内容特点分析。分析这个课题有哪些特点,哪些内容能引起学生的兴趣,通过哪些直观手段引发学生提出问题,布置什么作业才能使学生有效地应用知识等。范例教学法的教学步骤分为下面四个阶段。(1)以典型范例说明事物的特征。(2)通过对范例的认识,归纳出一类对象的普遍特征和本质属性。(3)认识事物的发展规律,掌握方法。(4)个体体会,即通过知识应用去进一步理解和掌握所学习的基本理论和方法。范例教学法的优点:从个别到一般的认识过程,符合低年级学生的认知规律;能调动学生学习的主动性;有利于培养学生的概括能力。范例教学法的缺点:思维方式单一,容易造成思维定势,不利于学生思维能力的全面发展;过份强调归纳,会削弱对学生演绎推理的训练。并不是所有内容都能通过“范例”去教学,因为要受具体的内容和教学时间限制。三、国内教改中的几种数学教学方法1.自学辅导法自学辅导教学法是中国科学院心理研究所卢仲衡教授首先提出的。他运用有关学习的九条心理学原则,对初中数学自学辅导教学进行了深入研究,主编了初中数学自学辅导教材,从60年代起在全国许多地区展开了中学数学自学辅导的教学实验,取得了富有意义的成果。自学辅导教学就是在教师的指导和辅导下,以学生自学为主的一种教学方法。它的优点在于能更多地调动学生学习的主动性,并且能较好地发挥教师的主导作用,有利于培养学生独立思考、独立学习的能力。自学辅导教学法的运用,需要有专门编写的一套适合于自学的教材、练习册和测验本。教学过程分为下面四个阶段。(1)领读阶段。主要是教给学生阅读方法。阅读分粗读、细读、精读,粗读是浏览一遍教材,知其大意;细读是对教材逐字句地读,钻研教材的内容、概念、公式和法则;精读是要概括内容,在深入了解教材的基础上记忆。领读阶段约需一至两周的时间。
④ 为什么数学教学应该渗透数学思想
作为一名小学教师,每天的课堂教学我们总是在有意或无意的渗透着数学思想方法。美国教育心理家布鲁纳指出:掌握基本的数学思想方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在人的一生中,最有用的不仅是数学知识,更重要的是数学的思想方法和数学的意识,因此数学的思想方法是数学的灵魂和精髓。掌握科学的数学思想方法对提升学生的思维品质,对数学学科的后继学习,对其它学科的学习,乃至对学生的终身发展都具有十分重要的意义。在小学数学教学中,教师有计划、有意识地渗透一些数学思想方法非常重要。下面我就谈谈在小学数学教学中,我是如何渗透数学思想方法:
一、改变应试教育观念,创新数学思想方法。
数学思想方法隐含在数学知识体系里,是无“形”的,而数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的。作为教师首先要改变应试教育观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。在小学数学教学中,教师不能仅仅满足于学生获得正确知识的结论,而应该着力于引导学生对知识形成过程的理解。让学生逐步领会蕴涵其中的数学思想方法。也就是说,对于数学教学重视过程与重视结果同样重要。教师要站在数学思想方面的高度,对其教学内容,用恰当的语言进行深入浅出的分析,把隐蔽在知识内容背后的思想方法提示出来。例如,长方体和正方体的认识概念教学,可以按下列程序进行:(1)由实物抽象为几何图形,建立长方体和正方体的表象;(2)在表象的基础上,指出长方体和正方体特点,使学生对长方体和正方体有一个更深层次的认识;(3)利用长方体和正方体的各种表象,分析其本质特征,抽象概括为用文字语言表达的长方体和正方体的概念;(4)使长方体和正方体的有关概念符号化。显然,这一数学过程,既符合学生由感知到表象,再到概念的认知规律,又能让学生从中体会到教师是如何应用数学思想方法,对有联系的材料进行对比的,对空间形式进行抽象概括的,对教学概念进行形式化的。
二、课堂教学中及时渗透数学思想方法。
为了更好地在小学数学教学中渗透数学思想方法,教师不仅要对教材进行研究,潜心挖掘,而且还要讲究思想渗透的手段和方法。在教学过程中,我经常通过以下途径及时向学生渗透数学思想方法:(1)在知识的形成过程中渗透。如概念的形成过程,结论的推导过程等,这些都是向学生渗透数学思想和方法的极好机会。例如量的计量教学,首要问题是要合理引入计量单位。作为课本不可能花大气力去阐述这个过程。但是作为教师根据教学的实际情况,适当地展示它的简单过程和所运用的思想方法,有利于培养学生的创造性思维品质和为追求真理而勇于探索的精神。例如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块”大小必须统一的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。(2)在问题的解决过程中渗透。如:教学“鸡兔同笼” 这一课时,在解决问题的过程中,用图表、课件展示的方法让学生逐步领会“假设”这种策略的奥妙所在。(3)在复习小结中渗透。在章节小结、复习的数学教学中,我们要注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。如教学 “梯形面积”这一单元之后,我及时帮助学生依靠梯形面积的推导过程回忆平行四边形的面积、三角形的面积公式的推导方法,使学生能清楚地意识到:“转化”是解决问题的有效方法。
三、让学生学会自觉运用数学思想方法。
数学思想方法的教学,不仅是为了指导学生有效地运用数学知识、探寻解题的方向和入口,更是对培养人的思维素质有着特殊不可替代的意义。它在新授中属于“隐含、渗透”阶段,在练习与复习中进入明确、系统的阶段,也是数学思想方法的获得过程和应用过程。这是一个从模糊到清晰的飞跃。而这样的飞跃,依靠着系统的分析与解题练习来实现。学生做练习,不仅对已经掌握的数学知识以及数学思想方法会起到巩固和深化的作用,而且还会从中归纳和提炼出新的数学思想方法。数学思想方法的教学过程首先是从模仿开始的。学生按照例题师范的程序与格式解答和例题相同类型的习题,实际上是数学思想方法的机械运用。此时,并不能肯定学生已领会了所用的数学思想方法,只当学生将它用于新的情景,解决其他有关的问题并有创意时,才能肯定学生对这一教学本质、数学规律有了深刻的认识。
我们知道,最好的学习效果是主动参与,亲自发现,数学思想方法的学习也不例外。在教学中,通过数学思想方法的广泛应用,让学生从主观上重视数学思想方法的学习,进而增强自觉提炼数学思想方法的意识。教师对习题的设计也应该从数学思想方法的角度加以考虑,尽量多安排一些能使各种学习水平的学生深入浅出地作出解答的习题,它既有具体的方法或步骤,又能从一类问题的解法去思考或从思想观点上去把握,形成解题方法,进而深化为数学思想。例如;在教学完多边形面积的计算以后,可以由易到难,出几题运用移动、割补等方法解决的实际问题,这样做不仅可以让学生领会到转化的数学思想方法,对提高学生的学习兴趣也大有好处。让学生在操作中掌握,在掌握后领悟,使数学思想方法在知识能力的形成过程中共同生成。
我们小学数学教师只有重视对数学思想方法的学习研究,探讨其教学规律,才能适应新课改的需要。数学思想方法的渗透具有长期性、反复性。对学生进行数学思想方法的渗透必定要经历一个循环往复、螺旋上升的过程,往往是几种思想方法交织在一起,在教学过程中教师要依据具体情况,有效进行数学思想方法的渗透。
⑤ 小学数学教学中的思想有哪些
集合思想,函数思想,符号化思想,极限思想,化归思想,组合思想,假设思想,变换思想
⑥ 如何进行数学思想方法教学
数学教学内容从总体上可分为两个层次:一个称为表层知识,包含概念、性质、法则、公式、公理、定理等基本内容;另一个称为深层知识,主要指数学思想和方法。表层知识是深层知识的基础,具有较强的操作性,学生只有通过对教材的学习,在掌握与理解了一定的表层知识后,才能进一步学习和领悟相关的深层知识。而数学思想方法又是以数学知识为载体,蕴涵于表层知识之中,是数学的精髓,它支撑和统率着表层知识。因而教师在讲授概念、性质、公式的过程中应不断渗透相关的数学思想方法,让学生在掌握表层知识的同时,又能领悟到深层知识,从而使学生思维产生质的飞跃。只讲概念、定理、公式而不注重渗透数学思想、方法的教学,将不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高。在教学过程中要引导学生主动参与结论的探索、发现、推导过程,搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体验创造性思维活动中所经历和应用到的数学思想和方法。
我们平时的教学工作中一直存有这么一个难点:平时题目讲得不少,可只要条件稍稍一变,一些学生就会不知所措,总是停留在模仿型解题的水平上,很难形成较强解决问题的能力,更谈不上创新能力的形成。而培养学生解决问题的综合能力又是数学教学的核心目标。在解决问题的过程中,教师就应把最大的教学精力花在诱导学生怎样去想,怎样想到,到哪里去找解题的思路上,要置数学思想方法的运用于解题的中心位置,充分发挥数学思想的解题功能──定向功能、联想功能、构造功能和模糊延伸功能。若学生能在解决问题的过程中充分发挥数学思想方法的解题功能,不仅可少走弯路,而且还可大大提高学生的数学能力与综合素质。
数学思想方法贯穿在整个中学数学教材的知识点中,以内隐的方式溶于数学知识的体系中,要使学生把这种思想内化成自己的观点并应用它来解决问题,就要努力把各种知识所表现出来的数学思想方法表层化,这符合未来数学教育改革的趋势。
作为教师,我们首先弄清楚教材中所反映的数学思想方法以及它与数学相关知识之间的联系,并适时作出归纳和概括,在具体的授课活动中,以适当的方式将数学思想方法加以揭示,并使之表层化,使学生达到真正意义上的领会和掌握,增强学生对数学思想方法的应用意识。
⑦ 数学教育思想与数学教学思想有什么不同
数学教学思想是指有关教学方面的,如教学方法,教学方式,教学内容的理解等。数学教育思想只通过教学对学生进行育人方面的教育。