小学数学奥林匹克试题
A. 2002小学数学奥林匹克预赛A卷试题答案及过程
2002年小学数学奥林匹克试题及答案
预赛A卷
1.(10.5×11.7×57×85)÷(1.7×1.9×3×5×7×8×11×13×15)= 。
2. 。
3.把 表示成最少的几个分子为1、分母尽可能小且互不相同的和,
则 = 。
4.a,b,c,d,e分别是5个人的年龄,已知a是b的2倍,c的3倍,d的4倍,e的6倍,则a+b+c+d+e最小为 。
5.一件工作,甲、乙合作需4小时完成,乙、丙合作需5小时完成,乙单独做这件工作需 个小时完成。
6.在下页左上图中,阴影部分的周长是 厘米。(π取3.14)
7.在右上方的算式中,只有四个4是已知的,则被除数为 。
8.用甲乙两种糖配成什锦糖,如果用3份甲种糖和2份乙种糖配成什锦糖,比用2份甲种糖和3份乙种糖配成的什锦糖每千克贵1.32元,那么1千克甲种糖比1千克乙种糖贵 元。
9.将右图分成两块,然后拼成一个正方形。
10.某商品按定价出售,每个可获利润45元。如果按定价的70%出售10件,与按定价每个减价25元出售12件所获的利润一样多,那么这种商品每件定价 元。
11.有一类自然数,从第三个数字开始,每个数字都恰好是他前面两个数字之和,直到不能再写为止,如257,1459等等,这类数共有 个。
12.绕湖的一周是22千米,甲、乙二人从湖边某一地点同时出发反向而行,甲以4千米/小时的速度每走一小时后休息5分钟,乙以6千米/小时的速度每走50分钟休息10分钟,则两人从出发到第一次相遇用 分钟。
参考答案
A卷
1. 2. 245 3.
4.27 5. 20 6. 111.36
7.38766 8. 6.60
9.
10. 70 11. 45 12. 148
B. 奥数题(小学数学奥林匹克模拟试题)
同意楼上的解题思路,但过程太繁
可以这样考虑,
共有6个位置,
(1)排0,共有5个位置可选
(2)选两个位置排1 ,共有C(5,2)=10种
(3)其余位置排2 ,就1种
由乘法原理(分步计数原理)
共有 5*10=50个六位数
C. 小学数学奥林匹克决赛试题(要过程和讲解)
步骤如下:
1、先对17597125作分解,除5除5再除5,得到140777,然后除7再除7,得到2873,然后除13再除13,得17,于是17597125=5*5*5*7*7*13*13*17
2、同一天出生,且都属猴,意味着6个人相互之间的年龄差总是12的倍数
3、注意17,乘7的话就是119岁,不太实际,故要么有个人17岁,要么有个人17*5=85岁
4、如果有个人17岁,那么对17迭加(减)12,得到一串可能的年龄:5,17,29,41,53,65,77,89,101
唯一一个7的倍数是77,但77=7*11,而11不整除17597125,这样的话说明这6个人的年龄都不可能是7的倍数,这就和17597125的分解中有7矛盾了。所以不可能有人17岁
5、必有个人85岁,一样的,对85迭加(减)12,得到一串可能的年龄:1,13,25,37,49,61,73,85,97,109,发现只有一个7的倍数49,所以必有一个人 49岁,而49=7*7,已经能分解出两个7了,所以不可能再有人49岁。同样的道理,只有一个13的倍数,就是13本身,那么说明有两个人都是13岁。
这是已经确定4个人的年龄了:13,13,49,85
再回到17597125的分解,发现还有两个5没有用到,而不可能再有人85岁(否则又多分出一个17了),所以只可能是25,而25正好能分成两个5,于是第六个人只能是1岁了
这时,6个人的年龄分别为:1,13,13,25,49,85 ,确实满足题意
所以这年他们岁数和为:1+13+13+25+49+85=186 ,且答案唯一
(回到第3步,若真有人119岁高龄,那用和上面类似的讨论,也可以得出矛盾的)
D. 小学数学奥林匹克决赛试题
分解质因数:17597125=5*5*5*7*7*13*13*17,因为都属猴,所以年龄差为12的整数倍
我只能分成1*13*13*25*49*85
和186
E. 小学数学奥林匹克竞赛试题与答案
1.一个三位数除以9余7,除以5余2,除以4余3。这样的三位数共有________个。
2.每千克价分别为2元、3元、2元4角、4元的桔子、苹果、香蕉、柿子四种水果共买了83千克,用去228元。已知买桔子用去的前与买苹果用去的钱一样多,买柿子用去的钱是买香蕉所用的钱的2倍。那么桔子买了________千克,苹果买了________千克,香蕉买了________千克,柿子买了________千克。
3.税法规定,一次性劳务收入若低于800原,免交所得税。若超过800元,需教所得税,具体标准为:800~2000的部分按10%计,2000~5000元部分按15%计,5000~10000元部分安20%计。某人一次劳务收入上税1300元,他在这次劳务中税后的净收入为________元。
4.八进制加法是逢八进一,例如:13+6=21,77+4=103。在下面的八进制加法竖式中,a、b、c、d、e、f这六个数恰好由1、2、3、4、5、6这六个数组成,那么满足题中条件的加法式子共有________个。
5.下图的正六边形是由24个边长为1的小等边三角形组成的。在以格点为顶点、面积与阴影部分相同的三角形中,边长都不是1的三角形共有________个。
6.1到2000这2000个数中,最大可取出________个数,使得这些数中任意三个数的和都不能被7整除。
7.某商品成本为每个80原,如果按每个100卖,可卖出1000个。当这种商品每个涨价1元,销售量就减少20个。为了赚取最多的利润,售价应定为每个________元。
8.一只小虫从A处爬到B处。如果它的速度每分增加1米,可提前15分到达。如果它的速度每分再增加2米,则又可提前15分到达。A处到B处之间的路程是________米。
9.甲瓶中酒精浓度为70%,乙瓶中酒精的浓度为60%,两瓶酒精混合后的浓度为66%。如果两瓶酒精各用去5升后再混合,则混合后的浓度为66.25%。问:原来甲、乙两瓶酒精分别有________升与________升。
10.用1、2、3、4、5、6、7、8、9这9个数字排成一个最小的能被11整除的九位数,这个九位数是________。
11.把1~625这625个自然数按顺时针方向依次排列成一个圆圈。从1开始顺时针方向擦去1,保留2,再擦去3、4,保留5,擦去6,保留7,再擦去8、9,保留10……这样擦去一个数,保留一个数,擦去两个数,保留一个数;再擦去一个数,保留下一个数,擦去两个数,保留一个数……一直转圈擦下去,最后剩下的数是________。
12、一根钢条截下全长的1/8,再接上15米,结果比原来的长度多1/2,求钢条原来的长度?(接头不计算)
13、食堂有大小两堆煤,一共重24吨。大堆煤中用去1/4后,还比小堆煤多4吨。这两堆煤原来各有多少吨?
F. 哪里有历年来的小学数学奥林匹克试题
1.六年级有3个班,一班人数占三个班总人数的25%,二班和三班人数比是7:8,一班比三班人数少24人。六年级有学生多少人?三班占总人数的:8/7+8×(1-25%)=8/15×3/4=2/524÷(2/5-25%)=24÷3/20=160(人) 答:六年级有学生160人。2.快车从甲站开往乙站需要6小时,慢车从乙站开往甲站需要10小时,两车同时从两站相向而行,相遇时快车行了225km,两站相距多少千米?1÷(1/6+1/10)=1÷4/15=15/4(小时)225÷(1/6×15/4)=225÷5/8=360(千米) 答:两站相距360千米。3.火车站新运来一批钢材,其中的80%将储存在甲,乙两个仓库,还有145吨直接运往钢材市场。已知甲乙两个仓库储存的吨数是2:3,两个仓库各储存了多少吨?145÷(1-80%)=145÷20%=725(吨) 725-145=580(吨) 2+3=5 580×2/5=232(吨) 580×3/5=348(吨) 答:甲仓库储存232吨,乙仓库各储存了348吨。4.五六年级同学合种一批树苗。当五年级种了总棵树的25%时,六年级比他们多种了90棵。这时已种的与剩下的棵树的比是5:2。已种了多少棵?90÷(5/2+5-25%-25%)=90÷(5/7-1/4-1/4)=90÷3/14=420(棵) 420×5/2+5=420×5/7=300(棵) 答:已种了300棵。(较简单的题,不附答案:1、一个数学兴趣小组,女生占全组人数的1/4,后来又吸收了4名女生参加,这时女生人数占全组人数的1/3,男生有多少人?2、甲乙两桶油,甲桶油比乙桶油重4.8千克,从两桶油中各倒出1.2千克,这时甲桶的5/21等于乙桶的1/3,甲乙两桶油原来各重多少千克?3、甲乙两个粮仓共存粮380吨,甲仓运出存粮的2/5,乙仓运出存粮的1/3,这时两仓剩下的存粮正好同样多,甲乙两仓原来各存粮多少吨?4、某车间生产一批零件,第一次检测不合格产品是合格产品的1/14,后来又从合格的产品中发现有12个不合格的,这时不合格的产品是合格产品的1/12,这一天共生产了多少个机器零件?5、李明骑摩托车从甲地到乙地,要行432千米,开始时以每小时48千米的速度行驶,途中因故停驶2小时,为按时到达乙地,他必须把以后的速度比原来加快1/2,问他是在离甲地多远的地方停车的?6、甲乙丙丁四人合作一批零件,甲做的是其它三人工作总量的一半,乙做的是其它三人工作总量的1/3,丙做的是其它三人工作总量的1/4,丁做了390个,求这四个人的工作总量。7、一批货物运出的比剩下的1/4多24吨,剩下的与运出的比是4:5,这堆货物有多少吨?8、甲乙两个车间,共有工人180名,如果把乙车间人数的1/5调到甲车间,甲车间正好等于乙车间人数的2倍,甲乙两车间原来各有多少人?9、学校图书馆的文艺书占总数的40%,最近又买来120本文艺书,这样文艺书的本数就占总数的48%,学校现在有图书多少本?10、家药厂原计划24天生产一批农药,实际每天的生产量比计划多20%,实际提前几天完成了计划?11、小强读一本书,已知第一周读了全书的2/7,第二周读了全书的5/14,这时已读的比未读的多36页,这本书共有多少页?12、某工厂第一车间原有工人240名,现在调出1/8给第二车间,这时第一车间的人数比第二车间人数的8/9还多2名,第二车间现在有工人多少名?13、一份文件,甲乙二人合抄,甲抄3页与乙抄4页所有原时间相同,两人合抄3天后,共抄了总页数的7/9,余下的由乙1人抄写,6小时抄完,问前3天甲乙两人每天抄写几小时?14、某商店有每千克12元的甲种糖、每千克8元的乙种糖和每千克6元的丙种糖,有一天卖出甲乙两种糖千克数之比是3:8,卖出乙丙两种糖的千克数之比是2:1,共收入2170元,问这一天甲、乙、丙三种糖各卖出多少千克?15、六年级两个班同学参加植树劳动,一班植树的棵数比总数的3/10多100棵,二班植树的棵数比总数的3/5少50棵,求两班共植树多少棵?16、甲走完一段路需6小时,乙的速度比甲快20%,乙走完这段路需几小时?17、一筐苹果连筐重122千克,第一天卖出一半,第二天又卖出剩下的一半,这时连筐还有44千克,原来这筐苹果净重多少千克?18、一筐苹果,先拿出140个,又拿出余下的60%,这时剩下的苹果正好是原来总数的1/6,这筐苹果原来有多少个?)
G. 2010小学数学奥林匹克试题(
2010小学数学奥林匹克试题
预赛(A)卷
1.计算: 12-22+32-42+52-62+…-1002+1012=________。
2.一个两位数等于其个位数字的平方与十位数字之和,这个两位数是________。
3.五个连续自然数,每个数都是合数,这五个连续自然数的和最小是________。
4.有红、白球若干个。若每次拿出一个红球和一个白球,拿到没有红球时,还剩下50个白球;若每次拿走一个
红球和
3个白球,则拿到没有白球时,红球还剩下50个。那么这堆红球、白球共有________个。
5.一个年轻人今年(2000年)的岁数正好等于出生年份数字之和,那么这位年轻人今年的岁数是________。
6.如下图, ABCD是平行四边形,面积为
72平方厘米,E,F分别为AB,BC的中
点,则图中阴影部分的面积为_____平
方厘米。
7.a是由2000个9组成的2000位整数,b是由2000个8组成的2000位整数,则a×b的各位数字之和为________。
8.四个连续自然数,它们从小到大顺次是3的倍数、5的倍数、7的倍数、9的倍数,这四个连续自然数的和最小
是____。
9.某区对用电的收费标准规定如下:每月每户用电不超过10度的部分,按每度0.45元收费;超过10度而不超过
20度的部分,按每度0.80元收费;超过20度的部分,按每度1.50元收费。某月甲用户比乙用户多交电费7.10元
,乙用户比丙用户多交3.75元,那么甲、乙、丙三用户共交电费________元(用电都按整度数收费)。
10.一辆小汽车与一辆大卡车在一段9千米长的狭路上相遇,必须倒车,才能继续通行。已知小汽车的速度是大
卡车的速度的3倍,两车倒车的速度是各自速度的;小汽车需倒车的路程是大卡车需倒车的路程的4倍。如果
小汽车的速度是50千米/时,那么要通过这段狭路最少用________小时。
11.某学校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组。已知参加语文小组的
有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人;参加数学小组的有63
人,只参加数学小组的有21人。那么三组都参加的有________人。
12.有8级台阶,小明从下向上走,若每次只能跨过一级或两级,他走上去可能有________种不同方法。
预赛(B)卷
1.计算: =________。
2.1到2000之间被3,4,5除余1的数共有________个。
3.已知从1开始连续n个自然数相乘,1×2×3×…×n,乘积的尾部恰有25 个连续的0,那么n的最大值是____
。
4.若今天是星期六,从今日起102000天后的那一天是星期________。
5.如右图,在平行四边形ABCD中,AB=16,
AD=10,BE=4,则FC=________。
6.所有适合不等式 的自然数n
之和为________。
7.有一钟表,每小时慢2分钟,早上8点时,把表对准了标准时间,当中午钟表走到12点整的时候,标准时间为
_____。
8.地震时,地震中心同时向各个方向传播出纵波和横波,纵波的传播速度是3.96千米/秒,横波的传播速度是
2.58千米/秒。某次地震,地震检测点用地震仪接受到地震的纵波之后,隔了18.5秒钟,接受到这个地震的横
波,那么这次地震的地震中心距离地震检测点________千米(精确到个位)。
9.一块冰,每小时失去其重量的一半,八小时之后其重量为5/16千克,那么一开始这块冰的重量是________千克
。
10.五年级一班有32人参加数学竞赛,有27人参加英语竞赛,有22人参加语文竞赛,其中参加了数学和英语两
科的有12人,参加了语文和英语的有14人,参加了数学和语文两科的有10人,那么五年级一班至少有________
人。
11.有2000盏亮着的电灯,各有一个拉线开关控制着。现按其顺序编号为1,2,3,…,2000,然后将编号为2
的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完之后
,亮着的电灯有________盏。
12.有25张纸片,每张纸片的正面用红色铅笔任意写上一个不超过5的自然数,反面用蓝色铅笔任意写上一个也
是不超过5的自然数,唯一的限制是:红色数字相同的任何两张纸片上,所写的蓝色数字一定不能相同。现在
把每张纸片上的红、蓝两个整数相乘,这25个积的和为________。
决赛(A)卷
1.计算: =________。
2.原有男、女同学325人,新学年男生增加25人;女生减少5%,总人数增加16人,那么现有男同学________人
。
3.一商店以每3盘16元的价格购进一批录音带,又从另一处以每4盘21元的价格购进比前一批加倍的录音带。如
果以每3盘K元的价格全部出售可得到所投资的20%的收益,则K值是________。
4.在除13511,13903及14589时能剩下相同余数的最大整数是________。
5.试将20表示成一些合数的和,这些合数的积最大是________。
6.在1×2×3×...×100的积中,从右边数第25个数字是___。
7.如右图所示, 角AOB=90o,C为AB弧的中点,已知阴影甲的面积为
16平方厘米,则阴影乙的面积为________平方厘米。
8.各数位上数码之和是15的三位数共有_____个。
9.若有8分和15分的邮票可以无限制地取用,但某些邮资如:7分、29分等不能刚好凑成,那么只用8分和15分
的邮票
不能凑成的最大邮资是________。
10. 的末两位数是________。
11.4只小鸟飞入4个不同的笼子里去,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不相同),每个笼子
只能飞进一只鸟。若都不飞进自己的笼子里去,有________种不同的飞法。
12.甲、乙两船分别在一条河的A,B两地同时相向而行,甲顺流而下,乙逆流而行。相遇时,甲、乙两船行了
相等的航程,相遇后继续前进,甲到达B地,乙到达A地后,都立即按原来路线返航,两船第二次相遇时,甲船
比乙船少行1千米。如果从第一次相遇到第二次相遇时间相隔1小时20分,则河水的流速为每小时_______千米
。
决赛(B)卷
1.计算: =________。
2.一个千位数字是1的四位数,当它分别被四个不同的质数相除时,余数都是1,满足这些条件的最大的偶数是
____。
3.有两个三位数,它们的和是999,如把较大数放在较小数的左边,点一个小数点在两数之间所成的数,正好
等于把较小数放在较大数的左边,点一个小数点在两数之间所成的数的6倍,那么这两个数的差(大减小)是
________。
4.一千个体积为1立方厘米的小立方体合在一起成为一个边长为10厘米的大立方体,表面涂油漆后再分开为原
来的小立方体,这些小立方体中至少有一面被油漆涂过的数目是_______。
5.某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人至多参加
两科,那么参加两科的最多有_______人。
6.甲、乙两人进行百米赛跑,当甲到达终点时,乙在甲后面20米处;如果两人各自的速度不变,要使甲、乙两
人同时到达终点,甲的起跑线应比原来的起跑线后移_______米。
7.一水池有一根进水管不断地进水,另有若干根相同的抽水管。若用24根抽水管抽水,6小时即可把池中的水
抽干;若用21根抽水管抽水,8小时可将池中的水抽干。若用16根抽水管抽水,_______小时可将池中的水抽干
。
8.如右图, P为平行四边形ABCD外一点,已知三角
形PAB与三角形PCD的面积分别为7平方厘米和3平
方厘米,那么平行四边形ABCD的面积为_______平方厘米。
9.甲、乙、丙三人跑步锻炼,都从A地同时出发,分别跑到B,C,D三地,然后立即往回跑,跑回A地再分别跑
到B,C,D,再立即跑回A地,这样不停地来回跑。B与A相距1/10千米,C与A相距1/8 千米,D与A相距 3/16千米,甲
每小时跑3.5千米,乙每小时跑4千米,丙每小时跑5千米。问:若这样来回跑,三人第一次同时回到出发点需
用_______小时。
10.一个盒子里面装有标号为1到100的100张卡片,某人从盒子里随意抽卡片,如果要求取出的卡片中至少有两
张标号之差为5,那么此人至少需要抽出_______张卡片。
11.8点10分,有甲、乙两人以相同的速度分别从相距60米的A,B两地顺时针方向
沿着长方形ABCD(见下图)的边走向D点,甲8点20分到D后,丙、丁两人立即
以相同的速度从D点出发,丙由D向A走去,8点24分与乙在E点相遇,丁由D向C
走去,8点30分在F点被乙追上,则连接三角形BEF的面积为________平方米。
12.今有长度分别为1厘米、2厘米、3厘米、...、9厘米长的木棍各一根(规定不许折断),从中选用若干根组
成正方形,可有_______种不同方法。