七年级数学定义
Ⅰ 初一数学定义
初一数学概念
实数:
—有理数与无理数统称为实数。
有理数:
整数和分数统称为有理数。
无理数:
无理数是指无限不循环小数。
自然数:
表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:
规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:
符号不同的两个数互为相反数。
倒数:
乘积是1的两个数互为倒数。
绝对值:
数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
数学定理公式
有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
这是我好不容易打出来的哦!希望对你有帮助!
回答者:HTQDG - 千总 四级 9-21 21:49
1、 整数包括哪些数?自然数是什么?什么叫有理数?
答:整数包括正整数、零、负整数。正整数又叫自然数。正整数、零、负整数、正分数、负分数统称为有理数。
2、 什么叫数轴?在数轴上如何表示数?
答:数轴是一条带有方向、原点和规定长度单位的直线。一个有理数在数轴上总可以找出一点和它对应。表示方向的箭头在直线的右端。数轴上方或右方是正数、原点的左方或下方是负数、原点是零。
3、 什么叫相反数?什么是绝对值?如何判定有理数的大小?
答:到原点距离相等的两个数叫互为相反的数。零的相反数是零。数轴上表示的数a到原点的距离叫数a的绝对值。一个正数的绝对值是它本身、一个负数的绝对值是它相反数、零的绝对值是它本身。正数大于零,零大于负数,正数大于负数、两个负数绝对值大的反而小。
4、 有理数加法法则是什么?
答:符号相同的两数相加,和的符号与加数的符号相同,并把它们的绝对值相加;绝对值不等符号相异的两数相加,和的符号取绝对值较大的那个加数的符号,并把较大的绝对值减去较小的绝对值;互为相反的数相加,和为零;任何数与零相加,和就是这个数。
5、 有理数的减法法则是什么?
答:减去一个数等于加上这个数相反的数。
6、 什么是加法的交换律?什么是加法的分配律?
答:两个数相加,交换它们的位置,其和不变,这是加法的交换律;三个数相加,先把前两个数相加,或者先把后两个数相加,其值不变,这是加法的结合律。
7、 有理数的乘法法则是什么?
答:两数相乘,同号相乘得正,异号相乘得负,并把绝对值相乘;任何数同零相乘,积为零。
8、 什么是倒数?
答:两个数相乘,如果乘积等于1,那么这两个数互为倒数。
9、 什么是乘法的交换律?什么是乘法的结合律?什么是乘法的分配律?
答:两个数相成,交换因数位置积相等,如:ab=ba,这叫乘法交换律;三个数相乘,先把前两个相乘或先把后两个数相乘,积相等,如:(ab)c=a(bc),这叫乘法结合律;一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,在把积相加,如:a(b+c)=ab+ac,这叫乘法的分配律。
10、加括号和去括号时各项的符号的变化规律是什么?
答:去(加)括号时如果括号外的因数是正数,去(加)括号后式子各项的符号与原括号内的式子相应各项的符号相同;括号外的因数是负数去(加)括号后式子各项的符号与原括号内式子相应各项的符号相反。
11、有理数除法运算法则就什么?
答:两理数除法运算法则可用两种方式来表述:第一,除以一个不等于零的数,等于乘以这个数的倒数;第二,两数相除,同号得正,异号得负,并把绝对值相除。零除以任何一个不为零的数,商都是零。
12、什么叫有理数的乘方?幂?底数?指数?
答:相同因数相乘积的运算叫乘方,乘方的结果叫幂,相同因数的个数叫指数,这个因数叫底数。记作an。
13、有理数乘方运算的法则是什么?
答:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数。零的任何正整数幂都是零。
14、有理数混合运算时,对于运算顺序有什么规定?
答:在有理数混合运算时,将运算分为三级,加减为一级运算,乘除为二能为运算,乘方为三级运算。同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行。
15、什么叫科学记数法?
答:将一个数用a×10n表示,这样的记数方法叫科学记数法。这里的a必须是整数位只有一位的数。n必须是正整数。读作a乘10的n次方(或a乘10的n次幂)。
16、什么叫近似数?近似数是怎样获得的?什么是近似数的精确度?
答:近似数是接近准确数,但和准确数有差别的数。在现行的教科书中近似数是通过四舍五入法获得的。近似数与准确数的接近程度叫精确度。
17、什么叫有效数字?
答:一个数从左边第一个不为零的数起,到末位数字止都叫这个数的有效数字,有效数字有几个,就叫这个数有几个有效数字。如:0.01350叫这个数有四个有效数字。
18、什么叫等式?什么叫方程?
答:表示相等关系的式子叫等式。含有未知数的等式叫方程。
19、等式的性质是什么?什么叫移项?
答:等式有两个性质,1、等式两边加(或减)同一个数(或式子),结果仍相等;2、等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。将等式一边的某项改变符号后移到另一边叫移项。
20、什么叫方程的解?
答:能够使方程两边相等的未知数的值叫方程的解(或叫方程的苦根)。
21、什么是一元一次方程?如何解一元一次方程?
答:含有一个未知数,而且未知数的次数是一的方程,叫一元一次方程。解一元一次方程的步骤是:去分母;去括号;移项(一般将含有未知数的项移至左端,常数项移至右端);合并同类项;方程两边同除以未知数的系数。
22、如何解应用题?
答:第一步,设未知数;第二步,分析题意,找出等量关系,列出方程;第三步,解所列出的方程;第四步,验算;第五步,写出答案。
23、几何图形的基本元素是什么?什么是点、线、面、体?
答:几何图形中的基本元素是点。在几何图形中,只有位置,没有长度、宽度和厚度的图形叫点。比如,两条直线相交的地方就是点。移动点所形成的几何图形叫线。移动线所形成的图形叫面。移动面所形成的图形叫做体。
24、直线的性质是什么?
答:过两点有一条直线,并且只有一条直线。(两点决定一条直线)
25、什么是线段?线段的端点?中点?线段的性质?什么是两点的距离?
答:直线上两点间的部分叫线段,这两点叫线段的端点,距两端点距离相等的点叫线段的中点。线段性质是:两点之间,线段最短。连接两点间线段的长度,叫线段的距离。
26、什么是射线?
答:一条直线被一个点所截,剩余的部分叫射线。换句话说,有一 个端点另一端可无限延长的直线叫射线。
27、什么叫角?度量角的单位叫什么?角的平分线?
答:具有公共端点的两条射线所组成的图形叫角。角的单位是“度”、“分”、“秒”,“秒”到“分”,“分”到“度”的进率都是60。把角分成相等的两部分的射线叫角的平分线。
28、什么是直角、平角、周角、余角、补角?余角和补角的性质是什么?
答:90°的角叫直角,180°的角叫平角,360°的角叫周角。如果两角之和等于90°,那么我们称这两个角互为余角。余角的性质是:等角的余角相等。如果两角之和等于180°,那么就称这两角互为补角。补角的性质是:等角的补角相等。
29、两条直线相交可以形成哪些角?它们的关系如何?
答:两条直线相交根据位置关系可以形成邻补角、对顶角。有一条公共边另一边互为沿长线的两个角叫互为邻补角。有一个公共顶点,另两边互为沿长线的两个角叫对顶角。对顶角相等。
30、什么叫两条直线垂直?什么叫垂线?什么叫垂足?
答:两条直线相交成90°叫这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。
31、垂线的性质是什么?什么叫点到直线的距离?
答:垂线的性质是过一点有且只有一条直线和已知直线垂直。点到直线的距离是指直线外的一点到这条直线的垂线段的长度。直线外一点连接直线上所有点的线段中,垂线段最短。
32、什么是平行线?有关平行线的公理是什么?
答:在一个平面内,如果两条直线永不相交,我们就称这两条直线互相平行。平行线的公理是:1、过直线外一点,有且只有一条直线与这条直线平行;2、如果两条直线与第三条直线平行,那么,这两条直线也平行。
33、两条直线被一条直线所截,可形成那些角?
答:可形成同位角、同旁内角、内错角。
34、试叙述判断两条直线平行的判断定理?
答:1、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;3、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
35、平行线的性质是什么?
答:1、两条平行直线被第三条直线所截,同位角相等;2、两条平行直线被第三条直线所截,同旁内角互补;3、两条平行直线被第三条直线所截,内错角相等。
36、什么是平行线间的距离?
答:如果一条直线垂直于两条平行的直线,这条直线被这两条平行线所截的线段长度,叫这两条平行线的距离。
37、什么叫命题?一个命题由哪两部分组成?一般形式是什么?
答:判断一个事物的语句叫命题。一个命题由题设和结论两部分组成。一般都写成“如果……,那么……”的形式。
38、什么叫图形的平移?平移图形有什么特征?
答:将一个图形整体沿某一方向移动,会得到一个新的图形,新图形同原有图形大小和形状完全相同,这种方法叫图形的平移变换。简称平移。平移图形的特征是:新图形上任一点在旧图形上总可找出一点与其对应,连接所有对应点的线段相互平行。
39、如何建立平面直角坐标系?什么叫横轴?纵轴?原点?
答:在一个平面内画出两条互相垂直的数轴,且使两个数轴的原点重合,这样就建立了一个平面直角坐标系。平面直角坐标系中,水平的那个数轴叫横轴或X轴,垂直的那个轴叫纵轴或Y轴。两个数轴的交点叫原点。
40、如何用平面直角坐标系中的一点来表示一个有序数?
答:过平面上一点P作X轴(横轴)的垂线,垂足是M,过P点作Y轴(纵轴)的垂线,垂足是N,如果M在X轴是所表示的值是a,N所表示的值是b,那么P这一点就表示一个有序数对(a,b),这对有序数就叫P点的坐标,记作P(a,b)。
41、什么是象限?每一个象限中坐标值有什么特点?
答:平面直角坐标系将平面分成四个部分,每个部分都叫象限。X轴正方向和Y轴正方向所围成的部分叫第一象限,按逆时针方向分别为第二象限,第三象限,第四象限。第一象限X,Y坐标都是正值;第二象限X为负值,Y为正值;第三象限X,Y都为负值;第四象限X为正值,Y为负值。
42、什么是三角形?三角形边的关系是什么?角有什么关系?
答:不在同一直线上的三条线段首尾相接所组成的图形叫三角形。三角形中任两边之和大于第三边。三角形三内角和等于180°。三角形中任两边之差小于第三边
43、什么是三角形高、中线、角平分线?
答:过三角形一个顶点作所对边的垂线,交对边于一点(即垂足),连接顶点和这点的线段叫三角形这个边上的高。三角形有三个边,故三角形有三条高线。
连接三角形一个顶点和它所对边的中点的线段叫三角形这个边上的中线。三角形有三个边,故三角形有三条中线。
做三角形的一个内角的平分线,交这个角所对边于一点,连接这点和这个内角顶点的线段叫三角形的角平分线。三角形有三个角,故三角形有三条角平分线。
44、什么是三角形的外角?外角有什么性质?
答:三角形的一边与另一边的延长线所组成的角叫三角形的外角。外角等于不相邻的两内角和。由是可推知:三角形外角大于与它不相邻的任何一个内角。
45、什么是多边形?多边形是如何命名的?什么是正多边形?
答:在平面内,由一些线段顺次首尾相接所组成的图形叫多边形。多边形是按边的数量命名的,几条边就叫几边形,N条边就N边形。如果多边形所有边都相等,所有内角也都相等,那么这个多边形就叫正多边形。如正五边形、正六边形等。
46、什么是凸多边形?多边形内角?对角线?
答:如果多边形在其任一边延长线的一侧,那么这个多边形就叫凸多边形。初中数学研究的是凸多边形。多边形相邻两边的夹角叫多边形的内角。不相邻两顶点的连线是多边形的对角线。
47、多边形内角的是多少?外角的是多少?
答:多边形内角的等于(n-2)×180°。多边形的外角和是360°。
48、什么叫二元一次方程?什么叫二元一次方程组?
答:含有两个未知数且未知数的次数都是一的方程叫二元一次方程。由两个二元一次方程组合在一起就叫二元一次方程组。
49、什么叫二元一次方程的解?什么叫二元一次方程组的解?
答:使二元一次方程两边相等的两个未知数的值叫二元一次方程的解。二元一次方程组中,两个方程的公共解,叫二元一次方程组的解。
50、什么叫消元?解二元一次方程组时,有哪几种消元法?
答:解二元一次方程组时,由于有两个未知数,所以我们常常消去其中的一个未知数,将二元一次方程变为一元一次方程,这样的方法叫消元。我们用的是代入消元法和加减消元法。
51、如何用代入消元法解二元一次方程组?
答:1、在二元一次方程组中选取一个方程,并将这个方程中的一个未知数(比如X)用另一个未知数(比如Y)的代数式来表示;2、将代数式代入另一个方程中去,使其变为一元一次方程,解这个方程,得出一个未知数的解;3、将2中解的结果代入到方程组中的一个方程,并解这个方程,得出另一个未知数的解。
52、如何用加减消元法解二元一次方程组?
答:1、将方程变形,使两个方程中的一个未知数的系数相等或相反(如果原方程中已有一个未知数系数相等或相反可省去这一步);2、将方程的两边相加减(系数相反相加,系数相同相减),消去一个未知数,并解这个一元一次方程,得出一个未知数的解;3、将2中解的结果代入到方程组中的一个方程,并解这个方程,得出另一个未知数的解。
53、什么是不等式?不等式的解?不等式的解集?
答:用>或<号连起来的式子叫不等式。不等式中如果有未知数,那么使不等式成立的未知数的值叫不等式的解。能使不等式成立的解不止一个,这些解的集合叫不等式的解集。
54什么叫一元一次不等式?什么叫一元一次不等式组?不等式组的解集?
答:不等式中含有一个未知数且未知数的次数为一的不等式叫一元一次不等式。将两个以上的一元一次不等式组成一组,叫不等式组。不等式组中所有一元一次不等式解的公共部分,叫不等式组的解集。
55、什么是不等式的性质?
答;不等式的性质是:1、不等式两边加上(或减去)同一个数(或代数式),不等号的方向不变;2、不等式两边同乘(或除以)同一个正数,不等式号的方向不变;3、不等式两边同乘(或除以)同一个负数,不等式号的方向改变
56、什么叫平方根?什么是被开方数?开平方中,对被平方数有什么要求?
答:如果一个数的平方是a,那么,这个数就在于叫a的平方根(或叫二次方根)。a叫被开方数。开平方中被开方数a必须大于等于零。
57、正数的平方根有几个?什么叫算术平方根?零的算术平方根是什么?负数有平方根吗?
答:正数的平方根有两个,它们的绝对值相等,符号相反(它们是互为相反的数)。这两个根中的正数根,叫做算术平方根。零的算术平方根是零。负数没有平方根。
58、什么叫立方根?什么叫根指数?正数、负数和零都能开立方吗?
答:如果一个数的立方等于a,那么这个数就叫a的立方根。3开立方的根指数。正数、负数和零都能开立方,正数的立方根是正数;负数的立方根是负数;零的立方根是零
59、什么叫开方?
答;开平方、开立方都叫开方,开方是乘方的逆运算。
60、什么叫无理数?什么叫实数?
答:无限不循环小数叫无理数。有理数和无理数统称为实数。
Ⅱ 七年级数学概念
七年级上
1.这种将图形上的所有点都按照某个方向做相同距离的位置移动,叫做图形的平移移动,简称为平移。
2.平移后各对应点之间的距离叫做图形平移的距离。
3.在平面内,将一个图形上的所有点绕一个定点按照某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。
4.把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形。这个定点叫做旋转对称中心
5.如果把一个图形绕着一个定点旋转180°后,与初始图新重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
6.把一个图形绕着一个顶点旋转180°后,和另一个图形重合,那么叫做这两个图形关于这点对称,也叫做这两个图形成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
7.把一个图形沿某一条直线翻折过来,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线就是它的轴对称。
8.如果把一个图形沿某一条直线翻折,能与另一个图形重合,那么叫做这两个图形关于这条直线成轴对称,这条直线叫做对称轴,这两个图形中的对应点叫做关于这条直线的对称点。
七年级下
1.两条直线相交形成四个小于平角的角,其中不大于直角的角叫做两条直线的夹角。
2。如果两条直线的夹角是锐角,那么就说这两条直线互相斜交,其中一条直线叫做另一条直线的斜线。
3.如果两条直线的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
4.在平面内经过直线上或直线外的一点作已知直线的垂线可以做一条,并且只能做一条。
5.连接直线外一点与直线上各点的所有线段中,垂线段最短。
6.直线外的一点到这条直线的垂线段的长度,叫做这个点到直线的距离。
7.同一平面内不相交的两条直线叫做平行线。
8.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
9.经过直线外的一点,有且只有一条直线于已知直线平行。
10.内错角相等,两直线平行。
同旁内角互补,两直线平行。
11.两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
12.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。
13.两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离。
14.三角形的任何两边的和一定大于第三。
15.在三角形中,从一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16.三角形可以按角来分类,分为锐角三角形,直角三角形,钝角三角形。
17.三角形按边来分类,可分为不等边三角形和等腰三角形。
18.三角形3个内角的和等于180°
19.三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于任何一个与它不相邻的内角。
20.任意多边形的外角和等于360°
21. (1)能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。
22.全等三角形的判定
1.三条边对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
23.等腰三角形的两个底角相等。(简称 等边对等角)
24.等腰三角形的顶角平分线,底边上的中线,底边上的高互相重合(简称 等腰三角形的三线合一)
25.等边三角形的每个内角等于60°
三个内角都相等的三角形是等边三角形。
有一个内角等于60°的等腰三角形是等边三角形。
都我自己打的,很辛苦的!楼主给分啊~~
Ⅲ 初一数学基本概念哪些
1、实数的分类
正有理数
有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如 等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8等;
(3)有特定结构的数,如0.1010010001…等;
(4)某些三角函数,如sin60o等
考点二、实数的倒数、相反数和绝对值 (3分)
1、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立.
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0.零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.
3、倒数
如果a与b互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.零没有倒数.
考点三、平方根、算数平方根和立方根 (3—10分)
1、平方根
如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟).
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根.
正数a的平方根记做“ ”.
2、算术平方根
正数a的正的平方根叫做a的算术平方根,记作“ ”.
正数和零的算术平方根都只有一个,零的算术平方根是零.
很高兴为你解答有用请采纳
Ⅳ 七年级上册数学全部概念
1.1 数字与字母的乘积,这样的代数式叫做单项式。
几个单项似的和叫做多项式。
一个单项式中,所有字母的指数和叫做这个单向式的次数。
一个多项式中,次数最高的项的次数,叫做这个多项式的次数。
1.3 同敌数幂相乘,底数不变,指数相加。
1.4幂的乘方,底数不变,指数相乘。
积的乘方等于每个因数成方的积。
1.4同底数幂相除,底数不变,指数相减。
任何非0数的0次方,等于1
1.6 单项式与单项式相乘,把他们的系数、相同字母的幂分别相乘,其余字母连同他们的指数不变,作为积的因式。
单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相称,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
1.7 两数和与这两数差的积,等于他们的平方差
1.9 单项式相除,把系数、同底数幂分别相除后,作为上的因式;对于只在被除式里含有的字母,则连同他的直树一起作为上的一个因式。
多项式除以单项式,先把这个多项式的每一项分别除以单项式,,再把所得的商相加。
2.1 补角
互为补角的定义 :如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
补角的性质:
同角的补角相等。比如:∠A+∠B=180°,∠A+∠C=180°,则:∠C=∠B。
等角的补角相等。比如:∠A+∠B=180°,∠D+∠C=180°,∠A=∠D则:∠C=∠B。
余角
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角. ∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
余角的性质:
同角的余角相等。比如:∠A+∠B=90°,∠A+∠C=90°,则:∠C=∠B。
等角的余角相等。比如:∠A+∠B=90°,∠D+∠C=90°,∠A=∠D则:∠C=∠B。
对顶角相等
2.2
同位角 定义
如图,两个都在截线的同旁,又分别处在另两条直线相同的一侧位置。具有这样位置关系的一对角叫做同位角
内错角的定义
两条直线AB和CD被第三条直线EF所截,构成了八个角,如果两个角都在两直线的内侧,并且在第三条直线的两侧,那么这样的一对角叫做内错角。
同旁内角定义
同旁内角,“同旁”指在第三条直线的同侧;“内”指在被截两条直线之间。
两条直线被第三条直线所截所形成的八个角中,有四对同位角,两对内错角,两对同旁内角。
【平行线的特征】
1.两条直线平行,同旁内角互补。
2.两条直线平行,内错角相等。
3.两条直线平行,同位角相等。
【平行线的判定】
1.同旁内角互补,两直线平行。
2.内错角相等,两直线平行。
3.同位角相等,两直线平行。
4.如果两条直线同时与第三条直线平行,那么这两条直线互相平行。
3.2
有效数字
一般而言,对一个数据取其可靠位数的全部数字加上第一位可疑数字,就称为这个数据的有效数字。
4.1
☆可能性★,是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。
必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.
第五章
三角形
三条线段首尾顺次连结所组成的封闭图形叫做三角形。
三角形的性质
1.三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2.三角形内角和等于180度
3.等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
三角形的三条高交于一点.
三角形的三内角平分线交于一点.
三角形一内角平分线和另外两顶点处的外角平分线交于一点.
等腰三角形
等腰三角形的性质:
(1)两底角相等;
(2)顶角的角平分线、底边上的中线和底边上的高互相重合;
(3)等边三角形的各角都相等,并且都等于60°。
.直角三角形(简称RT三角形):
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形.
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。
(3)全等三角形的判定
组对应边分别相等的两个三角形全等(简称SSS或“边边边”),这一条也说明了三角形具有稳定性的原因。
2、有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3、有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
由3可推到
4、有两角及一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5、直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
所以,SSS,SAS,ASA,AAS,HL均为判定三角形全等的定理。
第七章
轴对称
如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形。 对称轴:折痕所在的这条直线叫做对称轴。
性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线
(3)中心对称图形一定是轴对称图形,而轴对称图形不一定是中心对称图形。
Ⅳ 七年级数学定义与公式
一、 有理数
(一)有理数
1、 有理数的分类:
按有理数的定义分类: 按有理数的性质符号分类:
正整数 正整数
整数 零 正有理数
有理数 负整数 正分数
正分数 有理数 0
分数 负整数
负整数 负有理数
负分数
2、 正数和负数用来表示具有相反意义的数。
(二)数轴
1、定义:规定了原点、正方向和单位长度的直线叫做数轴。
2、数轴的三要素是:原点、正方向、单位长度。
(三)相反数
1、定义:只有符号不同的两个数互为相反数。
2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫
做互为相反数。
3、代数定义: 只有符号不同的两个数叫做互为相反数,0的相反数是0。
(四)绝对值
1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值。
2、几何定义: 一个数a的绝对值就是数轴上表示数a的点与原点的距离。
3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值
是0。
a (a>0),
即对于任何有理数a,都有|a|= 0(a=0)
–a(a<0)
4、绝对值的计算规律:
(1)互为相反数的两个数的绝对值相等.
(2)若|a|=|b|,则a =b或a =-b.
(3)若|a|+|b|=0,则|a|=0,且|b|=0.
相关结论:
(1)0的相反数是它本身。
(2)非负数的绝对值是它本身。
(3)非正数的绝对值是它的相反数。
(4)绝对值最小的数是0。
(5)互为相反数的两个数的绝对值相等。
(6)任何数的绝对值都是它的正数或0,即|a|≥0。
(五)倒数
1、定义:乘积为“1”的两个数互为倒数。
2、求法:颠倒这个数的分子和分母。
3、a(a≠0)的倒数是 1a .
有理数的运算
一、有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
3、 一个数同零相加,仍得这个数;
4、两个互为相反数的两个数相加得0。
二、有理数的减法法则:
减去一个数,等于加上这个数的相反数。
三、有理数的乘法法则:
1、两数相乘,同号得正,异号得负,并把绝对值相乘;
2、任何数同0相乘,都得0;
3、乘积是1的两个数互为倒数。
四、有理数的除法法则:
1、除以一个不等于0的数,等于乘以这个数的倒数;
2、两个有理数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的
数,都得0。
五、乘方
1、定义:求n个相同因数的积的运算,叫做乘方。
2、幂的符号法则:
正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数;
0的任何次正整数次幂都是0。
六、有理数的混合运算顺序:
1. 先乘方,再乘除,最后加减;
2. 同级运算,从左到右进行;
3. 如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
七、科学计数法、有效数字、近似数
1、科学计数法
(1)定义:
把一个绝对值大于10的数表示成 a×10n 的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n是正整数),这种计数方法叫做科学计数法。
(2)用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。
2、有效数字的定义:
四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数
字,都叫做这个数的有效数字。
3、近似数的定义:
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。
整式的加减
一、单项式、多项式、整式的概念
单项式:由数与字母的乘积组成的代数式叫做单项式。单独的一个数或一个字母也是单项式。
多项式:几个单项式的和叫做多项式。
整式:单项式与多项式统称整式。
二、单项式的系数和次数
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。
三、多项式的项、常数项、次数
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中
次数最高项的次数,就是这个多项式的次数。
四、同类项的概念:
所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。
五、合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
六、合并同类项步骤:
⑴.准确的找出同类项。
⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
⑶.写出合并后的结果。
七、升幂排列与降幂排列
为便于多项式的运算,可以用加法的交换律将多项式各项的位置按某一字母指数大小顺序重新排列。
若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。
若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。
八、去括号的法则
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
九、整式加减的一般步骤是:
(1)如果遇到括号.按去括号法则先去括号:
括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号;
括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号。
(2)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。
一元一次方程
一、一元一次方程的概念
定义: 方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是
整式,这样的方程叫做一元一次方程。
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a = b , 那么a±c = b±c
等式的性质2:等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b ,那么ac = bc;如果a = b(c≠0),那么ac = bc
移项 :把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种
变形叫做移项。
解一元一次方程的一般步骤:
1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x = ba
图形认识初步
一、常见的立体图形:柱形、锥体、球体
1、柱体中有①圆柱:底面是圆,侧面是曲面;②棱柱:底面是多边形,侧面是长方形;
2、锥体中有①圆锥:底面是圆,侧面是曲面;②棱锥:底面是多边形,侧面是三角形;
二、几何图形都是由点、线、面、体组成的
包围着体的是面,面与面相接的地方是线,线和线相交的地方是点。点动成线,线动成面,面动成体,体、面、线、点都是几何图形。
三、直线、射线、线段
1、直线
(1)概念:向两方无限延伸的的一条笔直的线。
如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。
(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定
一条直线”。
(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;
④两条直线相交有唯一一个交点。
2、射线
(1)概念:直线上一点和它一旁的部分叫做射线。
(2)特点:只有一个端点,向一方无限延伸,无法度量。
3、线段
(1)概念:直线上两点和它们之间的部分叫做线段。线段有两个端点,有长度。
(2)基本性质:两点之间线段最短。
(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。
4、线段的中点:把一条线段分成两条相等线段的点。
四、角
1、角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两
条射线是角的两条边。
3、角度制及换算
(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。
(2)角度制的换算:
1°=60′ 1′=60″ 1周角=360° 1平角=180° 1直角=90°
(3)换算方法:
把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;
转化时必须逐级进行,“越级”转化容易出错。
4、角的大小的比较:
(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;
(2)度量法。
5、角的平分线:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
6、余角和补角:
(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另
一个角的余角;
(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;
(3)余角的性质:等角的余角相等;
等角的性质:同角的补角相等。
相交线
1. 相交线的定义:
在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线。
2. 对顶角的定义:
一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3. 对顶角的性质:对顶角相等。
4. 邻补角的定义:
有公共顶点和一条公共边,并且互补的两个角称为邻补角。
5. 邻补角的性质:邻补角互补。
6、垂线的定义:
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
7、垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:垂线段最短。
8、 点到直线的距离:
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
9、 同位角:
两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角。
10、 内错角:
两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做内错角。
11、 同旁内角:
两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做同旁内角。
12、 平行线的概念
在同一平面内,不相交的两条直线叫做平行线。
13、平行公理:经过直线外一点,有且只有一条直线与已知直线平行。
14、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。
15、平行线的判定方法:
(1)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等,两直线平行。
(2)判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简单说成:内错角相等,两直线平行。
(3)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简单说成:同旁内角互补,两直线平行。
(4)两条直线都和第三条直线平行,那么这两条直线平行。
(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。
16、命题的概念:判断一件事情的语句叫做命题。
17、命题的形式:
命题由题设和结论两部分组成,通常可以写成“如果……那么……”的形式。“如
果”后面的部分是题设,“那么”后面的部分是结论。
18、命题包括两种:判断为正确的命题称为真命题;判断为错误的命题称为假命题。
19、平移的定义:把一个图形整体沿某一方向移动一定的距离,叫做平移变换,简称平移。
20、平移的性质:
(1)平移后的图形与原图形的形状和大小完全相同;
(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,
连接各组对应点的线段平行且相等。
21、有序数对的定义:有顺序的两个数a与b组成的数对叫做有序数对。
22、平面直角坐标系:
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称
为x轴(或横轴),习惯上取向右为正方向;竖直的数轴为y轴(或纵轴),取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点(坐标轴上的点不属于任何象限,原点既在x轴上,又在y轴上)。
23、点的坐标
有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,a点对应x轴的
数值为横坐标,b点对应y轴的数值为纵坐标,有序数对就叫做点A的坐标,记作(a,b)。
24、坐标平面图
坐标平面图是由两条坐标轴和四个象限构成的,也可以说坐标平面内的点可以分为
六个区域:x轴上,y轴上,第一象限,第二象限,第三象限,第四象限。在这六个区域中,除x轴与y轴的一个公共点(原点)之外,其他区域之间都没有公共点。
25、点的平移
在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a ,y);
将点(x,y)向左平移a个单位长度,可以得到对应点(x-a,y);
将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);
将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。
三角形
1、三角形定义:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的分类:
三角形按边分类如下:
不等边三角形
三角形 底和腰不相等的等腰三角形
等腰三角形
等边三角形
直角三角形
三角形 锐角三角形
斜三角形
钝角三角形
3、 三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
4、 三角形的高:
从三角形的一个顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高。
5、 三角形的中线:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
三角形的每一条中线将三角形分成两个面积相等的三角形。
6、三角形的角平分线:
在三角形中,一个内角的平分线和对边相交,这个角的顶点与交点之间的线段叫做
三角形的角平分线。
7、三角形的内角定义:三角形中相邻两边组成的角,叫做三角形的内角。
8、三角形内角和定理:三角形三个内角的和等于180°。
9、三角形的外角定义:
三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的外角和为360°。
10、三角形的性质:①三角形的一个外角等于与它不相邻的两个内角的和。
②三角形的一个外角大于与它不相邻的任何一个内角。
11、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
12、正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形。
13、多边形的内角和公式:n 边形的内角和等于 ( n - 2 ) •180°
14、三角形外角和定理:三角形的外角和为360°。
15、平面镶嵌的定义:
用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(或
平面镶嵌)。
16、镶嵌的条件:
当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个平面图形。
二元一次方程组
1、二元一次方程的定义:
含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的方程叫做
二元一次方程。
2、二元一次方程的解定义:
使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解。
3、二元一次方程组的定义:
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
4、二元一次方程组的解定义:
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
5、代入消元法的定义:
把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消
元法,简称代入法。
6、加减消元法
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加
或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简
称加减法。
7、三元一次方程组的概念:
含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组。
8、三元一次方程组的解法思路:
解三元一次方程组的基本思想仍是消元,一般地,其基本方法是代入法和加减法。一般地,应利用代入法或加减法消去一个未知数,从而变二元一次方程组,求出两个未知数,最后求出另一个未知数。
三元一次方程组 二元一次方程组 一元一次方程。
9、三元一次方程组的解题步骤:
① 利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
② 解这个二元一次方程组,求得两个未知数的值;
③ 将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把
这三个数写在一起的就是所求的三元一次方程组的解。
解题策略:
(1)有表达式,用代入法; (2)缺某元,消某元。
灵活运用加减消元法,代入消元法解简单的三元一次方程组。
不等式与不等式组
1、不等式的概念:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解:
对于一个含有未知数的不等式,任何一个使这个不等式成立的未知数的值,都叫
做这个不等式的解。
3、不等式的解集:
一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。求不等式
的解集的过程叫做解不等式。
4、不等式的性质
不等式的性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变。
用式子表示:如果a > b,那么a ±c > b ± c .
不等式的性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
用式子表示:如果a > b,c>0,那么a c > b c (或 ac >bc ).
不等式的性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
用式子表示:如果a > b,c<0,那么a c < b c (或 ac < bc ).
5、不等式解集的数轴表示
为了更清楚、直观地表示出不等式的解集,我们常常利用数轴,在数轴上把解集表
示出来,需要注意的地方是,大于向右画,小于向左画,包括端点用“实心圆点”,不
包括端点用“空心圆圈”。
6、解一元一次不等式的步骤
⑴ 去分母:不等式中有分母的,要通过不等式两边都乘以分母的最小公倍数去分母;
⑵ 去括号:不等式中有括号的要按照有理数中去括号的法则去括号,在去括号过程中
要注意符号的变化(注意分数线有括号的作用);
⑶ 移项:将不等式中右边含有未知数的项变号后移到左边,将左边的常数项变号移到右边;
⑷ 合并同类项:把不等式整理成x>a或x<a的形式;
⑸ 化系数为1:把不等式两边都除以同一个正数时,不等号的方向不变,而都除以同一个
负数时,不等号的方向必须改变。
7、一元一次不等式组的意义:
类似于方程组,把几个具有相同未知数的一元一次不等式合起来,就组成一元
一次不等式组。
8、一元一次不等式组的解集:
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。
9、一元一次不等式组的解集:
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。
10、确定一元一次不等式组解集的常用方法有两种:一是数轴法,二是口诀法。
① 数轴法:
利用数轴法确定不等式组的解集,就是将不等式组中的每个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是这个不等式组的解集,无公共部分就说这个不等式组无解。
② 口诀法:
求不等式组的解集时,可记住以下规律“同大取大,同小取小,大小小大中间找,
大大小小没得找”。这种方法容易理解,便于记忆,使用十分方便。
; ; ;
11、列一元一次不等式组解应用题的步骤为:
审题 → 设未知数 → 找不等关系 → 列不等式组 → 解不等式组 → 检验 → 答
(关键是找不等关系)
数据的收集、整理与描述
1、数据处理的过程:包括收集数据、整理数据、描述数据和分析数据等过程。
2、统计调查的方式:全面调查和抽样调查。
3、考察全体对象的调查叫做全面调查。
4、只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种方法是抽样
调查。
5、要考察的全体对象称为总体;组成总体的每一个考察对象称为个体;被抽取的那些个体
组成一个样本;样本中个体的数目叫做样本容量。
6、数据的表示方法有两种:一是利用统计表,另一种是利用统计图,统计图有条形统计图、
扇形统计图和折线统计图。
7、常见的统计图及其特点:
(1)折线统计图:反映事物的变化情况;
(2)条形统计图:反映每个项目的具体数据;
(3)扇形统计图:反映各部分在总体中所占的百分比。
8、频数:一组数据中重复出现的次数叫做频数。
9、频率:某个数据的频数m与数据总个数n的比叫做这个数据的频率。
10、频数、频率与总数之间的关系是:
频数=频率×总数
频率=频数m÷数据总个数n。
11、频数分布表
在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以
得到频数分布表。
12、频数分布直方图
为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制频数分布直方图。
(1)频数分布直方图简称直方图,它是条形统计图的一种。
(2)直方图的结构:直方图由横轴、纵轴、条形图三部分组成。
横轴:直方图的横轴表示分组情况;
纵轴:直方图的纵轴表示频数;
条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形,底边长
是这个组的组距,高为频数。
13、画频数分布直方图可按以下步骤:
①计算最大值与最小值的差;
②确定组距与组数:把所有数据分成若干组,每个小组的两个端点之间的距离(组内
数据的取值范围)称为组距。
组数 = 最大值-最小值组距
③列频数分布表;
④画频数分布直方图:
小长方形面积 = 组距 × 频数组距 = 频数
Ⅵ 七年级数学定义总结
初一数学下册知识点总结:第五章 三角形
一、三角形及其有关概念
1、三角形:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:
三角形用符号“ ”表示,顶点是A、B、C的三角形记作“ ABC”,读作“三角形ABC”。
3、三角形的三边关系:
(1)三角形的两边之和大于第三边。
(2)三角形的两边之差小于第三边。
(3)作用:
①判断三条已知线段能否组成三角形
②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:
(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:
(1)三角形按边分类:
不等边三角形
三角形 底和腰不相等的等腰三角形
等腰三角形
等边三角形
(2)三角形按角分类:
直角三角形(有一个角为直角的三角形)
三角形 锐角三角形(三个角都是锐角的三角形)
斜三角形
钝角三角形(有一个角为钝角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:
(1)三角形的角平分线:
定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。交点在三角形的内部。
(2)三角形的中线:
定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:
定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
性质:三角形的三条高所在的直线交于一点。锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;
8、三角形的面积:
三角形的面积= ×底×高
二、全等图形:
定义:能够完全重合的两个图形叫做全等图形。
性质:全等图形的形状和大小都相同。
三、全等三角形
1、全等三角形及有关概念:
能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
2、全等三角形的表示:
全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。
注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。
3、全等三角形的性质:全等三角形的对应边相等,对应角相等。
4、三角形全等的判定:
(1)边边边:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)
(4)边角边:两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
Ⅶ 初一的数学定义
一、\x09 有理数
(一)有理数
1、\x09有理数的分类:
按有理数的定义分类: 按有理数的性质符号分类:
正整数 正整数
整数 零 正有理数
有理数 负整数 正分数
正分数 有理数 0
分数 负整数
负整数 负有理数
负分数
2、\x09正数和负数用来表示具有相反意义的数.
(二)数轴
1、定义:规定了原点、正方向和单位长度的直线叫做数轴.
2、数轴的三要素是:原点、正方向、单位长度.
(三)相反数
1、定义:只有符号不同的两个数互为相反数.
2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫
做互为相反数.
3、代数定义: 只有符号不同的两个数叫做互为相反数,0的相反数是0.
(四)绝对值
1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值.
2、几何定义: 一个数a的绝对值就是数轴上表示数a的点与原点的距离.
3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值
是0.
a (a>0),
即对于任何有理数a,都有|a|= 0(a=0)
–a(a<0)
4、绝对值的计算规律:
(1)互为相反数的两个数的绝对值相等.
(2)若|a|=|b|,则a =b或a =-b.
(3)若|a|+|b|=0,则|a|=0,且|b|=0.
相关结论:
(1)0的相反数是它本身.
(2)非负数的绝对值是它本身.
(3)非正数的绝对值是它的相反数.
(4)绝对值最小的数是0.
(5)互为相反数的两个数的绝对值相等.
(6)任何数的绝对值都是它的正数或0,即|a|≥0.
(五)倒数
1、定义:乘积为“1”的两个数互为倒数.
2、求法:颠倒这个数的分子和分母.
3、a(a≠0)的倒数是 1a .
有理数的运算
一、有理数的加法法则:
1、同号两数相加,取相同的符号,并把绝对值相加;
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
3、 一个数同零相加,仍得这个数;
4、两个互为相反数的两个数相加得0.
二、有理数的减法法则:
减去一个数,等于加上这个数的相反数.
三、有理数的乘法法则:
1、两数相乘,同号得正,异号得负,并把绝对值相乘;
2、任何数同0相乘,都得0;
3、乘积是1的两个数互为倒数.
四、有理数的除法法则:
1、除以一个不等于0的数,等于乘以这个数的倒数;
2、两个有理数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的
数,都得0.
五、乘方
1、定义:求n个相同因数的积的运算,叫做乘方.
2、幂的符号法则:
正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数;
0的任何次正整数次幂都是0.
六、有理数的混合运算顺序:
1.\x09先乘方,再乘除,最后加减;
2.\x09同级运算,从左到右进行;
3.\x09如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
七、科学计数法、有效数字、近似数
1、科学计数法
(1)定义:
把一个绝对值大于10的数表示成 a×10n 的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n是正整数),这种计数方法叫做科学计数法.
(2)用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1.
2、有效数字的定义:
四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数
字,都叫做这个数的有效数字.
3、近似数的定义:
一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数.
整式的加减
一、单项式、多项式、整式的概念
单项式:由数与字母的乘积组成的代数式叫做单项式.单独的一个数或一个字母也是单项式.
多项式:几个单项式的和叫做多项式.
整式:单项式与多项式统称整式.
二、单项式的系数和次数
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和.
三、多项式的项、常数项、次数
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中
次数最高项的次数,就是这个多项式的次数.
四、同类项的概念:
所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项.
五、合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变.
六、合并同类项步骤:
⑴.准确的找出同类项.
⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变.
⑶.写出合并后的结果.
七、升幂排列与降幂排列
为便于多项式的运算,可以用加法的交换律将多项式各项的位置按某一字母指数大小顺序重新排列.
若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列.
若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列.
八、去括号的法则
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;
括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号.
九、整式加减的一般步骤是:
(1)如果遇到括号.按去括号法则先去括号:
括号前是“十”号,把括号和它前面的“+”号去掉.括号里各项都不变符号;
括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号.
(2)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.
一元一次方程
一、一元一次方程的概念
定义: 方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是
整式,这样的方程叫做一元一次方程.
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.
如果a = b , 那么a±c = b±c
等式的性质2:等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等.
如果a = b ,那么ac = bc;如果a = b(c≠0),那么ac = bc
移项 :把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种
变形叫做移项.
解一元一次方程的一般步骤:
1.去分母:在方程两边都乘以各分母的最小公倍数;
2.去括号:先去小括号,再去中括号,最后去大括号;
3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;
4.合并同类项:把方程化成ax=b(a≠0)的形式;
5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解x = ba
图形认识初步
一、常见的立体图形:柱形、锥体、球体
1、柱体中有①圆柱:底面是圆,侧面是曲面;②棱柱:底面是多边形,侧面是长方形;
2、锥体中有①圆锥:底面是圆,侧面是曲面;②棱锥:底面是多边形,侧面是三角形;
二、几何图形都是由点、线、面、体组成的
包围着体的是面,面与面相接的地方是线,线和线相交的地方是点.点动成线,线动成面,面动成体,体、面、线、点都是几何图形.
三、直线、射线、线段
1、直线
(1)概念:向两方无限延伸的的一条笔直的线.
如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位).
(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定
一条直线”.
(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;
④两条直线相交有唯一一个交点.
2、射线
(1)概念:直线上一点和它一旁的部分叫做射线.
(2)特点:只有一个端点,向一方无限延伸,无法度量.
3、线段
(1)概念:直线上两点和它们之间的部分叫做线段.线段有两个端点,有长度.
(2)基本性质:两点之间线段最短.
(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短.
4、线段的中点:把一条线段分成两条相等线段的点.
四、角
1、角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两
条射线是角的两条边.
3、角度制及换算
(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制.
(2)角度制的换算:
1°=60′ 1′=60″ 1周角=360° 1平角=180° 1直角=90°
(3)换算方法:
把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;
转化时必须逐级进行,“越级”转化容易出错.
4、角的大小的比较:
(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;
(2)度量法.
5、角的平分线:
从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.
6、余角和补角:
(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另
一个角的余角;
(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;
(3)余角的性质:等角的余角相等;
等角的性质:同角的补角相等.
相交线
1. 相交线的定义:
在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线.
2. 对顶角的定义:
一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角.
3. 对顶角的性质:对顶角相等.
4. 邻补角的定义:
有公共顶点和一条公共边,并且互补的两个角称为邻补角.
5. 邻补角的性质:邻补角互补.
6、垂线的定义:
垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足.
7、垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直.
性质2:垂线段最短.
8、 点到直线的距离:
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.
9、 同位角:
两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角.
10、 内错角:
两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做内错角.
11、 同旁内角:
两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做同旁内角.
12、 平行线的概念
在同一平面内,不相交的两条直线叫做平行线.
13、平行公理:经过直线外一点,有且只有一条直线与已知直线平行.
14、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行.
15、平行线的判定方法:
(1)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行.
(2)判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
(3)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
简单说成:同旁内角互补,两直线平行.
(4)两条直线都和第三条直线平行,那么这两条直线平行.
(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.
16、命题的概念:判断一件事情的语句叫做命题.
17、命题的形式:
命题由题设和结论两部分组成,通常可以写成“如果……那么……”的形式.“如
果”后面的部分是题设,“那么”后面的部分是结论.
18、命题包括两种:判断为正确的命题称为真命题;判断为错误的命题称为假命题.
19、平移的定义:把一个图形整体沿某一方向移动一定的距离,叫做平移变换,简称平移.
20、平移的性质:
(1)平移后的图形与原图形的形状和大小完全相同;
(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,
连接各组对应点的线段平行且相等.
21、有序数对的定义:有顺序的两个数a与b组成的数对叫做有序数对.
22、平面直角坐标系:
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称
为x轴(或横轴),习惯上取向右为正方向;竖直的数轴为y轴(或纵轴),取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点(坐标轴上的点不属于任何象限,原点既在x轴上,又在y轴上).
23、点的坐标
有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,a点对应x轴的
数值为横坐标,b点对应y轴的数值为纵坐标,有序数对就叫做点A的坐标,记作(a,b).
24、坐标平面图
坐标平面图是由两条坐标轴和四个象限构成的,也可以说坐标平面内的点可以分为
六个区域:x轴上,y轴上,第一象限,第二象限,第三象限,第四象限.在这六个区域中,除x轴与y轴的一个公共点(原点)之外,其他区域之间都没有公共点.
25、点的平移
在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x+a ,y);
将点(x,y)向左平移a个单位长度,可以得到对应点(x-a,y);
将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);
将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b).
三角形
1、三角形定义:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.
2、三角形的分类:
三角形按边分类如下:
不等边三角形
三角形 底和腰不相等的等腰三角形
等腰三角形
等边三角形
直角三角形
三角形 锐角三角形
斜三角形
钝角三角形
3、\x09三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边.
4、\x09三角形的高:
从三角形的一个顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高.
5、\x09三角形的中线:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.
三角形的每一条中线将三角形分成两个面积相等的三角形.
6、三角形的角平分线:
在三角形中,一个内角的平分线和对边相交,这个角的顶点与交点之间的线段叫做
三角形的角平分线.
7、三角形的内角定义:三角形中相邻两边组成的角,叫做三角形的内角.
8、三角形内角和定理:三角形三个内角的和等于180°.
9、三角形的外角定义:
三角形的一边与另一边的延长线组成的角,叫做三角形的外角.
三角形的外角和为360°.
10、三角形的性质:①三角形的一个外角等于与它不相邻的两个内角的和.
②三角形的一个外角大于与它不相邻的任何一个内角.
11、多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.
12、正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形.
13、多边形的内角和公式:n 边形的内角和等于 ( n - 2 ) •180°
14、三角形外角和定理:三角形的外角和为360°.
15、平面镶嵌的定义:
用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(或
平面镶嵌).
16、镶嵌的条件:
当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角时,就能拼成一个平面图形.
二元一次方程组
1、二元一次方程的定义:
含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的方程叫做
二元一次方程.
2、二元一次方程的解定义:
使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解.
3、二元一次方程组的定义:
把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.
4、二元一次方程组的解定义:
一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
5、代入消元法的定义:
把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消
元法,简称代入法.
6、加减消元法
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加
或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简
称加减法.
7、三元一次方程组的概念:
含有三个未知数,每个方程的未知项的次数都是1,并且共有三个方程,这样的方程组叫做三元一次方程组.
8、三元一次方程组的解法思路:
解三元一次方程组的基本思想仍是消元,一般地,其基本方法是代入法和加减法.一般地,应利用代入法或加减法消去一个未知数,从而变二元一次方程组,求出两个未知数,最后求出另一个未知数.
三元一次方程组 二元一次方程组 一元一次方程.
9、三元一次方程组的解题步骤:
① 利用代入法或加减法,消去一个未知数,得出一个二元一次方程组;
② 解这个二元一次方程组,求得两个未知数的值;
③ 将这两个未知数的值代入原方程中较简单的一个方程,求出第三个未知数的值,把
这三个数写在一起的就是所求的三元一次方程组的解.
解题策略:
(1)有表达式,用代入法; (2)缺某元,消某元.
灵活运用加减消元法,代入消元法解简单的三元一次方程组.
不等式与不等式组
1、不等式的概念:用不等号表示不等关系的式子,叫做不等式.
2、不等式的
对于一个含有未知数的不等式,任何一个使这个不等式成立的未知数的值,都叫
做这个不等式的解.
3、不等式的解集:
一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集.求不等式
的解集的过程叫做解不等式.
4、不等式的性质
不等式的性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.
用式子表示:如果a > b,那么a ±c > b ± c .
不等式的性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.
用式子表示:如果a > b,c>0,那么a c > b c (或 ac >bc ).
不等式的性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变.
用式子表示:如果a > b,c<0,那么a c < b c (或 ac < bc ).
5、不等式解集的数轴表示
为了更清楚、直观地表示出不等式的解集,我们常常利用数轴,在数轴上把解集表
示出来,需要注意的地方是,大于向右画,小于向左画,包括端点用“实心圆点”,不
包括端点用“空心圆圈”.
6、解一元一次不等式的步骤
⑴ 去分母:不等式中有分母的,要通过不等式两边都乘以分母的最小公倍数去分母;
⑵ 去括号:不等式中有括号的要按照有理数中去括号的法则去括号,在去括号过程中
要注意符号的变化(注意分数线有括号的作用);
⑶ 移项:将不等式中右边含有未知数的项变号后移到左边,将左边的常数项变号移到右边;
⑷ 合并同类项:把不等式整理成x>a或x<a的形式;
⑸ 化系数为1:把不等式两边都除以同一个正数时,不等号的方向不变,而都除以同一个
负数时,不等号的方向必须改变.
7、一元一次不等式组的意义:
类似于方程组,把几个具有相同未知数的一元一次不等式合起来,就组成一元
一次不等式组.
8、一元一次不等式组的解集:
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
9、一元一次不等式组的解集:
一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.
10、确定一元一次不等式组解集的常用方法有两种:一是数轴法,二是口诀法.
①\x09数轴法:
利用数轴法确定不等式组的解集,就是将不等式组中的每个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是这个不等式组的解集,无公共部分就说这个不等式组无解.
②\x09口诀法:
求不等式组的解集时,可记住以下规律“同大取大,同小取小,大小小大中间找,
大大小小没得找”.这种方法容易理解,便于记忆,使用十分方便.
; ; ;
11、列一元一次不等式组解应用题的步骤为:
审题 → 设未知数 → 找不等关系 → 列不等式组 → 解不等式组 → 检验 → 答
(关键是找不等关系)
数据的收集、整理与描述
1、数据处理的过程:包括收集数据、整理数据、描述数据和分析数据等过程.
2、统计调查的方式:全面调查和抽样调查.
3、考察全体对象的调查叫做全面调查.
4、只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种方法是抽样
调查.
5、要考察的全体对象称为总体;组成总体的每一个考察对象称为个体;被抽取的那些个体
组成一个样本;样本中个体的数目叫做样本容量.
6、数据的表示方法有两种:一是利用统计表,另一种是利用统计图,统计图有条形统计图、
扇形统计图和折线统计图.
7、常见的统计图及其特点:
(1)折线统计图:反映事物的变化情况;
(2)条形统计图:反映每个项目的具体数据;
(3)扇形统计图:反映各部分在总体中所占的百分比.
8、频数:一组数据中重复出现的次数叫做频数.
9、频率:某个数据的频数m与数据总个数n的比叫做这个数据的频率.
10、频数、频率与总数之间的关系是:
频数=频率×总数
频率=频数m÷数据总个数n.
11、频数分布表
在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以
得到频数分布表.
12、频数分布直方图
为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制频数分布直方图.
(1)频数分布直方图简称直方图,它是条形统计图的一种.
(2)直方图的结构:直方图由横轴、纵轴、条形图三部分组成.
横轴:直方图的横轴表示分组情况;
纵轴:直方图的纵轴表示频数;
条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形,底边长
是这个组的组距,高为频数.
13、画频数分布直方图可按以下步骤:
①计算最大值与最小值的差;
②确定组距与组数:把所有数据分成若干组,每个小组的两个端点之间的距离(组内
数据的取值范围)称为组距.
组数 = 最大值-最小值组距
③列频数分布表;
④画频数分布直方图:
小长方形面积 = 组距 × 频数组距 = 频数
Ⅷ 初一下册数学定义
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
Ⅸ 初一所有数学定义
初一数学概念
实数: —有理数与无理数统称为实数。
有理数: 整数和分数统称为有理数。
无理数: 无理数是指无限不循环小数。
自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。
相反数: 符号不同的两个数互为相反数。
倒数: 乘积是1的两个数互为倒数。
绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
数学定理公式 有理数的运算法则
⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。