当前位置:首页 » 语数英语 » 数学名题

数学名题

发布时间: 2021-08-06 06:49:38

❶ 名题数学答案

和尚吃馒头(中国古题)
大和尚每人吃4个,小和尚4人吃1个。有大小和尚100人,共吃了100个馒头。大 小和尚各几人?各吃 多少馒头?

洗碗(中国古题
有一位妇女在河边洗碗,过路人问她为什么洗这么多碗?她回答说:家中来了很多客人,他们每两人合用一只饭 碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只。你能从她家的用碗情况,算出她家来了多少客人吗?

《算法统宗》是中国古代数学著作之一。书里有 这样一题:甲牵一只肥 羊走过来问牧羊人:“你赶的这群羊大概有100只 吧”,牧羊人答:“如果这群羊加上一倍,再 加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百 只。”请您算算这只牧羊人赶的这群羊共有多少只?

《张立建算经》是中国古代算书。书中有这样一题:公鸡每只值5元, 母鸡每只值3元,小鸡每三只值1元。现在用100元钱买100只鸡。问这100只鸡中,公鸡 母鸡 小鸡各有多少只?
《九章算术》是我国最古老的数学著作之一,全书共分九章,有246个 题目。其中一道是这样的:一个人用车装米,从甲地运往乙地,装米的车曰行25千米,不装米的空车曰行35千米,5日往返三次,问二地相距多少千米?

共有多少个桃子

著名美籍物理学家李政道教授来华讲学时,访问了中国科技大学,会见了少年班的部分同学。在会见时,给少年班 同学出了一道题:“有五只猴子,分一堆桃子,可是怎么也平分不了。于是大家同意先去睡觉,明天再 说。夜里一只猴子偷偷起来,把一个桃子扔到山下后,正好可以分成五份,它就把自己的一份藏起来,又睡觉去了。第二只猴子爬起来也扔了一个桃子,刚好分成五 份,也把自己那一份收起来了。第三 第四 第五只猴子都是这样,扔了一个也刚好可以分成五份,也把自己那一份收起来了。问一共有多少个桃子?注:这道题,小朋友们可能算不出来,如果我给增 加一个条件,最后剩下1020个桃子,看谁能算出来。

❷ 摘录十道古代数学名题

摘自九章算术:1、竹原高一丈,末节着地,去本三尺,竹海高几何 答案:竹海高7尺 一〕今有田广十五步,从十六步。问为田几何?
答曰:一亩。

〔二〕又有田广十二步,从十四步。问为田几何?

答曰:一百六十八步。

方田术曰:广从步数相乘得积步。

以亩法二百四十步除之,即亩数。百亩为一顷。

〔三〕今有田广一里,从一里。问为田几何?

答曰:三顷七十五亩。

〔四〕又有田广二里,从三里。问为田几何?

答曰:二十二顷五十亩。

里田术曰:广从里数相乘得积里。以三百七十五乘之,即亩数。 九章算术——勾股 〔一〕今有句三尺,股四尺,问为弦几何?荅曰:五尺。〔二〕今有弦五尺,句三尺,问为股几何?荅曰:四尺。〔三〕今有股四尺,弦五尺,问为句几何?荅曰:三尺。句股术曰:句股各自乘,并,而开方除之,即弦。又股自乘,以减弦自乘,其余开方除之,即句。又句自乘,以减弦自乘,其余开方除之,即股。〔四〕今有圆材径二尺五寸,欲为方版,令厚七寸。问广几何?荅曰:二尺四寸。术曰:令径二尺五寸自乘,以七寸自乘减之,其余开方除之,即广。〔五〕今有木长二丈,围之三尺。葛生其下,缠木七周,上与木齐。问葛长几何?荅曰:二丈九尺。术曰:以七周乘三尺为股,木长为句,为之求弦。弦者,葛之长。〔六〕今有池方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?荅曰:水深一丈二尺;葭长一丈三尺。术曰:半池方自乘,以出水一尺自乘,减之,余,倍出水除之,即得水深。加出水数,得葭长。〔七〕今有立木,系索其末,委地三尺。引索却行,去本八尺而索尽。问索长几何?荅曰:一丈二尺、六分尺之一。术曰:以去本自乘,令如委数而一,所得,加委地数而半之,即索长〔八〕今有垣高一丈。倚木于垣,上与垣齐。引木却行一尺,其木至地。问木几何?荅曰:五丈五寸。术曰:以垣高十尺自乘,如却行尺数而一,所得,以加却行尺数而半之,即木长数。〔九〕今有圆材,埋在壁中,不知大小。以鐻鐻之,深一寸,鐻道长一尺。问径几何?荅曰:材径二尺六寸。术曰:半鐻道自乘,如深寸而一,以深寸增之,即材径。〔一0〕今有开门去阃一尺,不合二寸。问门广几何?荅曰:一丈一寸。术曰:以去阃一尺自乘,所得,以不合二寸半之而一,所得,增不合之半,即得门广。〔一一〕今有户高多于广六尺八寸,两隅相去适一丈。问户高、广各几何?荅曰:广二尺八寸;高九尺六寸。术曰:令一丈自乘为实。半相多,令自乘,倍之,减实,半其余。以开方除之,所得,减相多之半,即户广。加相多之半,即户高。〔一二〕今有户不知高广,竿不知长短。横之不出四尺,从之不出二尺,邪之适出。问户高、广、袤各几何?荅曰:广六尺,高八尺,袤一丈。术曰:从、横不出相乘,倍,而开方除之。所得加从不出即户广,加横不出即户高,两不出加之,得户袤。〔一三〕今有竹高一丈,末折抵地,去本三尺。问折者高几何?荅曰:四尺、二十分尺之十一。术曰:以去本自乘,令如高而一,所得,以减竹高而半其余,即折者之高也。〔一四〕今有二人同所立。甲行率七,乙行率三。乙东行。甲南行十步而邪东北与乙会。问甲乙行各几何?荅曰:乙东行一十步半;甲邪行一十四步半及之。术曰:令七自乘,三亦自乘,并而半之,以为甲邪行率。邪行率减于七自乘,余为南行率。以三乘七为乙东行率。置南行十步,以甲邪行率乘之,副置十步,以乙东行率乘之,各自为实。实如南行率而一,各得行数。〔一五〕今有句五步,股十二步。问句中容方几何?荅曰:方三步、十七分步之九。术曰:并句、股为法,句股相乘为实,实如法而一,得方一步。〔一六〕今有句八步,股十五步。问句中容圆,径几何?荅曰:六步。术曰:八步为句,十五步为股,为之求弦。三位并之为法,以句乘股,倍之为实。实如法得径一步。〔一七〕今有邑方二百步,各中开门。出东门十五步有木。问出南门几何步而见木?荅曰:六百六十六步、太半步。术曰:出东门步数为法,半邑方自乘为实,实如法得一步。〔一八〕今有邑,东西七里,南北九里,各中开门。出东门十五里有木。问出南门几何步而见木?荅曰:三百一十五步。术曰:东门南至隅步数,以乘南门东至隅步数为实。以木去门步数为法。实如法而一。〔一九〕今有邑方不知大小,各中开门。出北门三十步有木,出西门七百五十步见木。问邑方几何?荅曰:一里。术曰:令两出门步数相乘,因而四之,为实。开方除之,即得邑方。〔二0〕今有邑方不知大小,各中开门。出北门二十步有木。出南门十四步,折而西行一千七百七十五步见木。问邑方几何?荅曰:二百五十步。术曰:以出北门步数乘西行步数,倍之,为实。并出南门步数为从法,开方除之,即邑方。〔二一〕今有邑方十里,各中开门。甲乙俱从邑中央而出。乙东出;甲南出,出门不知步数,邪向东北磨邑,适与乙会。率甲行五,乙行三。问甲、乙行各几何?荅曰:甲出南门八百步,邪东北行四千八百八十七步半,及乙。乙东行四千三百一十二步半。术曰:令五自乘,三亦自乘,并而半之,为邪行率。邪行率减于五自乘者,余,为南行率。以三乘五,为乙东行率。置邑方半之,以南行率乘之,如东行率而一,即得出南门步数。以增邑方半,即南行。置南行步求弦者,以邪行率乘之,求东者以东行率乘之,各自为实。实如南行率得一步。〔二二〕有木去人不知远近。立四表,相去各一丈,令左两表与所望参相直。从后右表望之,入前右表三寸。问木去人几何?荅曰:三十三丈三尺三寸、少半寸。术曰:令一丈自乘为实,以三寸为法,实如法而一。〔二三〕有山居木西,不知其高。山去木五十三里,木高九丈五尺。人立木东三里,望木末适与山峰斜平。人目高七尺。问山高几何?荅曰:一百六十四丈九尺六寸、太半寸。术曰:置木高减人目高七尺,余,以乘五十三里为实。以人去木三里为法。实如法而一,所得,加木高即山高。〔二四〕今有井径五尺,不知其深。立五尺木于井上,从木末望水岸,入径四寸。问井深几何?荅曰:五丈七尺五寸。术曰:置井径五尺,以入径四寸减之,余,以乘立木五尺为实。以入径四寸为法。实如法得一寸。

❸ 数学历史名题有哪些

中国古代:勾股定理,赵爽炫图,鸡兔同笼,韩信点兵……
世界:棋盘麦粒(国王的重赏),奇特的墓志铭,化圆为方,三等分角,哥德巴赫猜想,霍奇猜想,黎曼假设,托尔斯泰的算术题……

❹ 关于数学的名题,要带答案的

问:黄阿姨买了一双100元的鞋,后来她又卖出去售价120元,买的人给两百元假币,请问黄阿姨损失多少元?
①120—100=20(元)②200—20=180(元)
答:黄阿姨损失180元。

❺ 世界数学名题

数学三大难题

在20世纪八十年代初,我们这代“知青”为了多学点知识,纷纷进“五大”学习,然后又进“成人自考”深造。我在“西南财经大学”攻读经济专业时,一次高等数学的面授课上,一位德高望重的导师给我们讲到:人类文明的进步,与数学的发展成正比;人类数学的发展,中国亦有卓越的贡献,古有祖冲之,今有华罗庚。21世纪,还有在坐的各位及全国各地的有志之青年。

导师接着讲到:古代数学史上有世界三大难题(倍立方体、方圆、三分角)。近代数学史又有第五公设、费马大定理、任一大偶数表两素之和。这些都已为前人攻破的攻破,将突破的将突破。现代发达国家的数学家们又在钻研什么呢?21世纪数学精英们又攻什么呢?

这位导师继续讲了现代数学上的三大难题:一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?

二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者。

三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。

归纳为20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。

当年的大学生一学期中能亲聆导师教诲不到十次。数学三大难题是我们学子在课堂上最难忘最精彩的一课。光阴荏苒,时光如白驹过隙,弹指之间,今已是21世纪第一个年代了(以区别下一年代—— 一十年代),在此将我在大学学习中最精彩最难忘的一课奉献,以飨不同层次、不同爱好的读者。

❻ 数学名题

楼上是错的

8个人在割草
大草地上全体人一上午+一半人一下午割完,把地分成6份,专半天的时间全属体人割了2\3块地,另外半天只有一半人只能割了1\3块地,加起来正好为1块地。

小草地为大草地的1\2(也就是1\2块大草地面积),半天的时间一半的人也是割了1\3块大草地的面积,还剩下1\2-1\3块大草地的面积,也就是1\6块大草地面积。

第二天由一个人全天完成1\6块大草地。

再看大草地,全体人半天能割2\3块大草地面积,那全体人一天就能割4\3块大草地面积。

计算:全体人÷一个人=3\4÷1\6
全体人=3\4×1÷1\6
=8

验算:8个人半天2\3,4个人半天1\3,两个人半天1\6,一个人一天1\6 满足第二天一个人把1\6正好割完。

此类题主要是注意把其他的对象按照比例换算成一个对象就很容易计算了。

❼ 古今中外的数学名题有哪些 急急急

现代数学上的三大难题:一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?

二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者。

三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。

归纳为20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。

❽ 数学 世界名题

1、几何尺规作图问题

这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。“几何尺规作图问题”包括以下四个问题

1.化圆为方-求作一正方形使其面积等於一已知圆;

2.三等分任意角;

3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

4.做正十七边形。

以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

2、蜂窝猜想

四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。他的这一猜想称为蜂窝猜想,但这一猜想一直没有人能证明。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。

3、孪生素数猜想

1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。孪生素数即相差2的一对素数。例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数。1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积。孪生素数猜想至今仍未解决,但一般人都认为是正确的。

4、费马最后定理

在三百六十多年前的某一天,费马突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn +yn = zn

的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理)。

费马声称当n>2时,就找不到满足

xn +yn = zn

的整数解,例如:方程式

x3 +y3 = z3

就无法找到整数解。

始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最后定理也就成了数学界的心头大患,极欲解之而后快。

不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。

5、四色猜想

1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。

6、哥德巴赫猜想

公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:

(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

❾ 世界上著名的数学题

现代数学上的三大难题:一是有20棵树,每行四棵,古罗马、古希腊在16世纪专就完成属了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?

二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者。

三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。

归纳为20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。

❿ 世界数学经典名题有哪些

1.不说话的学术报告1903年10月,在美国纽约的一次数学学术会议上,请科尔教内授作学术报告。他走到黑板前,容没说话,用粉笔写出2^67-1,这个数是合数而不是质数。接着他又写出两组数字,用竖式连乘,两种计算结果相同。回到座位上,全体会员以暴风雨般的掌声表示祝贺。证明了2自乘67次再减去1,这个数是合数,而不是两百年一直被人怀疑的质数。有人问他论证这个问题,用了多长时间,他说:“三年内的全部星期天”。请你很快回答出他至少用了多少天?

2.国王的重赏传说,印度的舍罕国王打算重赏国际象棋的发明人——大臣西萨

热点内容
兰州市教育 发布:2025-07-10 04:28:12 浏览:486
常州一女教师与男 发布:2025-07-10 04:08:29 浏览:752
生物质热电厂 发布:2025-07-10 03:37:47 浏览:304
历史民权 发布:2025-07-10 03:34:51 浏览:53
tea化学 发布:2025-07-10 03:06:29 浏览:355
漫画题师德 发布:2025-07-09 23:54:29 浏览:211
使某人做某事的英语 发布:2025-07-09 23:36:43 浏览:82
视频直播哪个好 发布:2025-07-09 22:55:16 浏览:851
生物科幻 发布:2025-07-09 22:20:43 浏览:133
英语在线翻译中文 发布:2025-07-09 20:39:43 浏览:738