数学符号m
⑴ 数学符号意思
∈属于符号,表示元素与集合之间的一种从属关系
∏求积符号
∑求和符号
∕相当于除号÷
√算术平方根,如±2的平方是4,那么4的算术平方根是2
∝正比于,常见于物理学,如a∝b说明当a增加,b也增加
∞无穷
表示一种趋向,+∞表示不断变大的趋势
∟直角符号
∠角符号
∣绝对值符号与除号
‖平行
刻画两直线的关系
∧交符号
逻辑基本符号,表示两个命题同时发生则命题成立
∨并符号
逻辑基本符号,表示两个命题有一个发生则命题成立
∩交符号
集合基本符号,表示两个集合同时满足
∪并符号
集合基本符号,表示至少满足一个集合
∫不定积分符号
微积分基本符号
∮积分符号
微积分基本符号
∴所以
∵因为
∶比例符号
∷比例
∽属于符号
集合基本符号
刻画两个集合间的从属关系
≈约等于符号
≌相似符号
刻画集合图形的基本特征
≈约等号
刻画两个关系式之间的关系
≠不等号
两者存在差异的地方
≡同余符号
数论基本符号,表示两个整数除以同一个特定的整数余数相等,例如5=2×2+1,7=2×3+1,那么5≡7
(mod
2)
≤不大于
关系符号
前者小于或者等于后者
≥不小于
关系符号
前者大于或者等于后者
≤远小于等于
关系符号
前者远小于后者或与后者相等
≥远大于等于
关系符号
前者远大于后者或与后者相等
≮非小于
同≥
≯非大于
同≤
⊙圆
⊙O表示圆心为O的圆
⊥垂直
刻画两直线或空间间关系
⊿三角形
⌒反三角函数
sin正弦函数
Cos余弦函数
tan正切函数
cot余切函数
sec正割函数
csc余割函数
log对数
ln自然对数
lg常用对数
+加法
-减法
×乘法
÷除法
⑵ 数学中⊂是什么符号
数学中⊂是集合符号包含于。
包含关系(inclusionr relotion)是概念外延间关系的一种,通常即指属种关系。有时也仅仅作为真包含关系和真包含于关系的统称。一说包含关系还包括溉念外延问(或类与类间)的全同关系。
在一个随机现象中有两个事件A与B。若事件A中任一个样本点必在B中,则称A被包含在B中,或B包含A,记为“A包含于B”:A⊂B或“B包含A”:B⊃A,这时事件A的发生必导致事件B发生。
(2)数学符号m扩展阅读:
常见的数学符号:
1、大于号
表示左边的数量大于右边数量的符号。记作“>”,读作“大于”。例如9>8,表示9大于8。
2、小于号
表示左边的数量小于右边的数量的符号。记作“<”,读作“小于”。例如:8<9,表示8小于9。
3、运算符号
表示属于某一种运算的符号。例如:加号“+”,减号“一”,乘号“×”,除号“÷”。,
4、运算顺序符号
表示运算顺序的符号。例如:小括号“( )”,中括号“[ ],大括号“{ }”。运用这些符号能改变正常的运算顺序,还能表示几个数或几种运算结合在一起,所以也叫做结合符号。
5、元素与集合的关系
元素与集合的关系是属于(∈)不属于(∉)的关系。
集合与集合的关系是包含(⊂,=,⊃)不包含(⊄,⊅)。
⑶ 数学符号△是什么意思
数学符号△是根的判别式。
根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“△”表示(读做“delta”)。
(3)数学符号m扩展阅读:
数学符号△的应用:
1、解方程,判别一元二次方程根的情况,它有两种不同层次的类型:系数都为数字;系数中含有字母;系数中的字母人为地给出了一定的条件。
2、根据一元二次方程根的情况,确定方程中字母的取值范围或字母间关系。
3、应用判别式证明方程根的情况(有实根、无实根、有两不等实根、有两相等实根)。
4、解一元二次方程,判断根的情况。根据方程根的情况,确定待定系数的取值范围。
5、证明字母系数方程有实数根或无实数根。应用根的判别式判断三角形的形状。
参考资料来源:网络—△
⑷ “±”这个数学符号是什么意思
“±” 表示正或负,正负号在数学中可以用来表示有理数的正负或者对数进行四则运专算中的加减属运算。正负号在中学物理中不是单一的概念,它有的等同于数学中有理数的正负,有的则用来表示物理量的性质、方向,情况较为复杂。具体有以下三种情况:
1、“±”这个数学符号表示正、负如±1:表示+1、-1。
2、表示加、减如3±1:表示3+1=4、3-1=2。
3、表示误差:如10±1:表示这个数在10-1与10+1即9与11之间。
(4)数学符号m扩展阅读
输入的方法
1、wps 正负号输入
WPS2003为例:单击:“插入”、“符号”、“拉丁语-1”,然后找到正负号,单击就输入文档里了。
2、在word中输入正负号
菜单栏、插入、特殊符号、数学符号,第一排最后一个就是了。
3、可以把输入法调整到智能ABC状态,然后输入V1,翻页查找。
4、按住ALT 然后按0177,松开ALT,就是“±”
5、用搜狗输入法或网络输入法输入“zhengfu”即可。
参考资料来源:网络-正负号
⑸ 数学符号
序号 大写 小写 英文注音 国际音标注音 中文读音 意义
1 Α α alpha a:lf 阿尔法 角度;系数
2 Β β beta bet 贝塔 磁通系数;角度;系数
3 Γ γ gamma ga:m 伽马 电导系数(小写)
4 Δ δ delta delt 德尔塔 变动;;屈光度
5 Ε ε epsilon ep`silon 伊普西龙 对数之基数
6 Ζ ζ zeta zat 截塔 系数;方位角;阻抗;相对粘度;原子序数
7 Η η eta eit 艾塔 磁滞系数;效率(小写)
8 Θ θ thet θit 西塔 温度;相位角
9 Ι ι iot aiot 约塔 微小,一点儿
10 Κ κ kappa kap 卡帕 介质常数
11 ∧ λ lambda lambd 兰布达 波长(小写);体积
12 Μ μ mu mju 缪 磁导系数微(千分之一)放大因数(小写)
13 Ν ν nu nju 纽 磁阻系数
14 Ξ ξ xi ksi 克西 随机变量
15 Ο ο omicron omik`ron 奥密克戎 无穷小量:ο(x)
16 ∏ π pi pai 派 圆周率=圆周÷直径=3.14159 2653589793
17 Ρ ρ rho rou 肉 电阻系数(小写)密度(小写)
18 ∑ σ sigma `sigma 西格马 总和(大写),表面密度;跨导(小写)
19 Τ τ tau tau 套 时间常数
20 Υ υ upsilon jup`silon 宇普西龙 位移
21 Φ φ phi fai 佛爱 磁通;黄金分割符号;空集(大写);工程学中表示直径
22 Χ χ chi phai 西 卡方分布;电感
23 Ψ ψ psi psai 普西 角速;介质电通量(静电力线);角
24 Ω ω omega o`miga 欧米伽 欧姆(大写);角速(小写);角
⑹ 数学符号“|”是什么意思
“|数学符号“|”是离散数学符号的一种,限制[xₛ]集合关于关系s的等价类。数学表达式{A|内B}的意思是:表示集合容A,A的取值表达式为B。
所以例4的第2小题中的{x|x²-5x+6=0}意思是集合{x},x的取值范围是x²-5x+6=0,也就是{x=-3或x=-2}。
(6)数学符号m扩展阅读:
数学符号的意义:
人类的一切智力活动认识活动,都直接或间接地建立在符号的基础上。当代数学符号是经历了漫长的历史而形成和发展起来的。借助于符号使数学更加简便了数学符号使数学发展的速度加快了。可以说,数学是数学符号的学问。
当代数学符号大致分为4类:用符号表示数与量;用符号表示某种运算,即运算符号;用符号表示某种关系,即关系符号;仅仅作为记号的一种符号。
研究数学问题的方法之一是明白数学符号的含义,灵活运用数学符号。这样,就能更有效地从实际问题中概括出变量之间的关系,并用数学符号来表示。用数学符号代表数量关系和变化规律,是用抽象的方法进一步表明数学问题的内部联系。
⑺ 数学符号都有哪些
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
1.运算符号:
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。
2.关系符号:
如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”,即不小于),“≤”是小于或等于符号(也可写作“≯”,即不大于),“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是正比例符号(表示反比例时可以利用倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表示“能整除”(例如a|b表示“a能整除b”),x,y等任何字母都可以代表未知数。
3.结合符号:
如小括号“()”,中括号“[ ]”,大括号“{ }”,横线“—”
4.性质符号:
如正号“+”,负号“-”,正负号“
5.省略符号:
∵因为
∴所以
6.排列组合符号:
C组合数
A (或P)排列数
n元素的总个数
r参与选择的元素个数
!阶乘,如5!=5×4×3×2×1=120,规定0!=1
7.离散数学符号
∀全称量词
∃存在量词
其他:
在Microsoft Word中可以插入一般应用条件下的所有数学符号,以Word2010软件为例介绍操作方法:第1步,打开Word2010文档窗口,单击需要添加数学符号的公式,并将插入条光标定位到目标位置。第2步,在“公式工具/设计”功能区的“符号”分组中,单击“其他”按钮打开符号面板。默认显示的“基础数学”符号面板。用户可以在“基础数学”符号面板中找到最常用的数学符号。同样地,Alt+41420(即压下Alt不放,依次按41420(小键盘),最后放开Alt 就可以打出 √。
⑻ 数学符号,所有的
1、几何符号
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2、代数符号
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号
∪ ∩ ∈
5、特殊符号
∑ π(圆周率)
6、推理符号
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
11、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住) 总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘 ,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列
⑼ 数学中的特殊符号怎么输
1、直接在抄电脑上打开任一WORD文档袭或者WPS。