数学公式题
❶ 数学公式题
162÷(10-1)=18
因为一个整数后面加上一个零,这个数就是原数的10倍
❷ 数学公式题
加油,你可以套套公式就可以了。
❸ 数学应用题公式
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-5%)
❹ 求一道数学公式题
40%是一个未知数,先假设未知数是x,所以公式的步骤就是
1.a=100/x
2.b=a-a*10%
现在b=2.25 所以2.25=a-a*10% 所以a=2.5
又因为a=100/x 即2.5=100/X 所以x=40 所以最初的概率为40%
❺ 数学一到六年级的数学公式题(全部)
小学一到六年级所有数学公式
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr
10、圆的面积=圆周率×半径×半径 ?=πr
11、长方体的表面积=(长×宽+长×高+宽×高)×2
12、长方体的体积 =长×宽×高 V =abh
13、正方体的表面积=棱长×棱长×6 S =6a
14、正方体的体积=棱长×棱长×棱长 V=a.a.a= a
15、圆柱的侧面积=底面圆的周长×高 S=ch
16、圆柱的表面积=上下底面面积+侧面积
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a
2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a
3 、长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 、长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
时间单位换算
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒积=底面积×高 V=Sh
第一部分: 概念
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
22、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
24、比例的基本性质:在比例里,两外项之积等于两内项之积。
25、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
26、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
27、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
28、百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32、把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
33、要学会把小数化成分数和把分数化成小数的化发。
34、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
35、互质数: 公约数只有1的两个数,叫做互质数。
36、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
37、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
38、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
39、最简分数:分子、分母是互质数的分数,叫做最简分数。
40、分数计算到最后,得数必须化成最简分数。
41、个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
42、约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
44、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
45、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
46、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
47、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
48、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
49、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
50、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如圆周率:3. 141592654
51、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
52、什么叫代数? 代数就是用字母代替数。
53、什么叫代数式?用字母表示的式子叫做代数式。如:3x =ab+c
第二部分:定义定理
一、算术方
1.加法交换律:两数相加交换加数的位置,和不变。
2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第
三个数相加,和不变。
3.乘法交换律:两数相乘,交换因数的位置,积不变。
4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。
6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。
7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8.方程式:含有未知数的等式叫方程式。
9.一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15.分数除以整数(0除外),等于分数乘以这个整数的倒数。
16.真分数:分子比分母小的分数叫做真分数。
17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18.带分数:把假分数写成整数和真分数的形式,叫做带分数。
19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20.一个数除以分数,等于这个数乘以分数的倒数。
21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
第三部分:几何体
1.正方形
正方形的周长=边长×4 公式:C=4a
正方形的面积=边长×边长 公式:S=a×a
正方体的体积=边长×边长×边长 公式:V=a×a×a
2.正方形
长方形的周长=(长+宽)×2 公式:C=(a+b)×2
长方形的面积=长×宽 公式:S=a×b
长方体的体积=长×宽×高 公式:V=a×b×h
3.三角形
三角形的面积=底×高÷2。 公式:S= a×h÷2
4.平行四边形
平行四边形的面积=底×高 公式:S= a×h
5.梯形
梯形的面积=(上底+下底)×高÷2 公式:S=(a+b)h÷2
6.圆
直径=半径×2 公式:d=2r
半径=直径÷2 公式:r= d÷2
圆的周长=圆周率×直径 公式:c=πd =2πr
圆的面积=半径×半径×π 公式:S=πrr
7.圆柱
圆柱的侧面积=底面的周长×高。 公式:S=ch=πdh=2πrh
圆柱的表面积=底面的周长×高+两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的总体积=底面积×高。 公式:V=Sh
8.圆锥
圆锥的总体积=底面积×高×1/3 公式:V=1/3Sh
三角形内角和=180度。
平行线:同一平面内不相交的两条直线叫做平行线
垂直:两条直线相交成直角,像这样的两条直线,
我们就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
第四部分:计算公式
数量关系式:
1、 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数
3、 速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、 单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率
6、 加数+加数=和 和-一个加数=另一个加数
7、 被减数-减数=差 被减数-差=减数 差+减数=被减数
8、 因数×因数=积 积÷一个因数=另一个因数
9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
植树问题:
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
浓度问题:
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
利润与折扣问题:
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)
利息=本金×利率×时间
税后利息=本金×利率×时间×(1-20%)
面积,体积换算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1公顷=10000平方米 1亩=666.666平方米
(5)1升=1立方分米=1000毫升 1毫升=1立方厘米
重量换算:
1吨=1000 千克
1千克=1000克
1千克=1公斤
人民币单位换算
1元=10角
1角=10分
1元=100分
时间单位换算:
1世纪=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天
平年全年365天, 闰年全年366天
1日=24小时 1时=60分
1分=60秒 1时=3600秒
❻ 世界上最难的数学公式题目
^n%6=1 1/9*(100^(n-1)-1)
n%6=2 3/9*(100^(n-1)-1)
n%6=3 6/9*(100^(n-1)-1)
n%6=4 9/9*(100^(n-1)-1)
n%6=5 6/9*(100^(n-1)-1)
n%6=0 3/9*(100^(n-1)-1)
❼ 数学公式答题
多看答案,熟悉公式的适用题目,然后多做题加深对公式的理解
❽ 数学的公式的题
长方形的面积等于长和宽的乘积.如用a表示长方形的长,b表示宽,S表示长方形的面积,则长方形的面积公式为S=ab.
❾ 高中数学公式及例题
16.充要条件
(1)充分条件:若 ,则 是 充分条件.
(2)必要条件:若 ,则 是 必要条件.
(3)充要条件:若 ,且 ,则 是 充要条件.
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.
函数
17.函数的单调性
(1)设 那么
上是增函数;
上是减函数.
(2)设函数 在某个区间内可导,如果 ,则 为增函数;如果 ,则 为减函数.
如果函数 和 都是减函数,则在公共定义域内,和函数 也是减函数; 如果函数 和 在其对应的定义域上都是减函数,则复合函数 是增函数.
18.奇偶函数的图象特征
奇函数的图象关于原点对称,偶函数的图象关于y轴对称;在对称区间上,奇函数的单调性相同,欧函数相反;如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数,如果一个奇函数的定义域包括0,则必有f(0)=0;
(1)若函数 是偶函数,则 ;若函数 是偶函数,则 .
(2)对于函数 ( ), 恒成立,则函数 的对称轴是函数 ;两个函数 与 的图象关于直线 对称.
(3)若 ,则函数 的图象关于点 对称; 若 ,则函数 为周期为 的周期函数.
19.多项式函数 的奇偶性
多项式函数 是奇函数 的偶次项(即奇数项)的系数全为零.
多项式函数 是偶函数 的奇次项(即偶数项)的系数全为零.
20.函数 的图象的对称性
(1)函数 的图象关于直线 对称 .
(2)函数 的图象关于直线 对称
.
21.两个函数图象的对称性
(1)函数 与函数 的图象关于直线 (即 轴)对称.
(2)函数 与函数 的图象关于直线 对称.
(3)函数 和 的图象关于直线y=x对称.
22.若将函数 的图象右移 、上移 个单位,得到函数 的图象;若将曲线 的图象右移 、上移 个单位,得到曲线 的图象.
23.互为反函数的两个函数的关系
.
若函数 存在反函数,则其反函数为 ,并不是 ,而函数 是 的反函数.
24.几个常见的函数方程
(1)正比例函数 , .
(2)指数函数 , .
(3)对数函数 , .
(4)幂函数 , .
(5)余弦函数 ,正弦函数 , ,
.
25.几个函数方程的周期(约定a>0)
(1) ,则 的周期T=a;
(2) ,或 ,
或 ,或 ,则 的周期T=2a;
(3) ,则 的周期T=3a;
(4) 且 ,则 的周期T=4a;
(5)
,则 的周期T=5a;
(6) ,则 的周期T=6a.
指数与对数
47.实数与向量的积的运算律
设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.
48.向量的数量积的运算律
(1) a•b= b•a (交换律);(2)( a)•b= (a•b)= a•b= a•( b);
(3)(a+b)•c= a •c +b•c.
49.平面向量基本定理
如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
50.向量平行的坐标表示
设a= ,b= ,且b 0,则a b(b 0) .
51.a与b的数量积(或内积)
a•b=|a||b|cosθ.
52.a•b的几何意义
数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
53.平面向量的坐标运算
(1)设a= ,b= ,则a+b= .
(2)设a= ,b= ,则a-b= .
(3)设A ,B ,则 .
(4)设a= ,则 a= .
(5)设a= ,b= ,则a•b= .
54.两向量的夹角公式
(a= ,b= ).
55.平面两点间的距离公式
= (A ,B ).
56.向量的平行与垂直
设a= ,b= ,且b 0,则
A||b b=λa .
a b(a 0) a•b=0 .
57.线段的定比分公式
设 , , 是线段 的分点, 是实数,且 ,则
( ).
58.三角形的重心坐标公式
△ABC三个顶点的坐标分别为 、 、 ,则△ABC的重心的坐标是 .
59.点的平移公式
.
注:图形F上的任意一点P(x,y)在平移后图形 上的对应点为 ,且 的坐标为 .
60.“按向量平移”的几个结论
(1)点 按向量a= 平移后得到点 .
(2) 函数 的图象 按向量a= 平移后得到图象 ,则 的函数解析式为 .
(3) 图象 按向量a= 平移后得到图象 ,若 的解析式 ,则 的函数解析式为 .
(4)曲线 : 按向量a= 平移后得到图象 ,则 的方程为 .
(5) 向量m= 按向量a= 平移后得到的向量仍然为m= .
61.三角形五“心”向量形式的充要条件
设 为 所在平面上一点,角 所对边长分别为 ,则
(1) 为 的外心 .
(2) 为 的重心 .
(3) 为 的垂心 .
(4) 为 的内心 .
(5) 为 的 的旁心 .
不等式
62.常用不等式:
(1) (当且仅当a=b时取“=”号).
(2) (当且仅当a=b时取“=”号).
(3)
(4)柯西不等式
(5) .
63.极值定理
已知 都是正数,则有
(1)若积 是定值 ,则当 时和 有最小值 ;
(2)若和 是定值 ,则当 时积 有最大值 .
推广 已知 ,则有
(1)若积 是定值,则当 最大时, 最大;
当 最小时, 最小.
(2)若和 是定值,则当 最大时, 最小;
当 最小时, 最大.
64.一元二次不等式 ,如果 与 同号,则其解集在两根之外;如果 与 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.
;
.
65.含有绝对值的不等式
当a> 0时,有
.
或 .
66.无理不等式
(1) .
(2) .
(3) .
67.指数不等式与对数不等式
(1)当 时,
;
.
(2)当 时,
;
直线方程
68.斜率公式
① ( 、 ).② k=tanα(α为直线倾斜角)
69.直线的五种方程
(1)点斜式 (直线 过点 ,且斜率为 ).
(2)斜截式 (b为直线 在y轴上的截距).
(3)两点式 ( )( 、 ( )).
(4)截距式 ( 分别为直线的横、纵截距, )
(5)一般式 (其中A、B不同时为0).
70.两条直线的平行和垂直
(1)若 ,
① ;
② .
(2)若 , ,且A1、A2、B1、B2都不为零,
① ;
②两直线垂直的充要条件是 ;即:
71.夹角公式
(1) .
( , , )
(2) .
( , , ).
72. 到 的角公式
(1) .
( , , )
(2) .
( , , ).
直线 时,直线l1到l2的角是 .
73.四种常用直线系方程
(1)定点直线系方程:经过定点 的直线系方程为 (除直线 ),其中 是待定的系数; 经过定点 的直线系方程为 ,其中 是待定的系数.
(2)共点直线系方程:经过两直线 , 的交点的直线系方程为 (除 ),其中λ是待定的系数.
(3)平行直线系方程:直线 中当斜率k一定而b变动时,表示平行直线系方程.与直线 平行的直线系方程是 ( ),λ是参变量.
(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是 ,λ是参变量.
74.点到直线的距离
(点 ,直线 : ).
75. 或 所表示的平面区域
设直线 ,若A>0,则在坐标平面内从左至右的区域依次表示 , ,若A<0,则在坐标平面内从左至右的区域依次表示 , ,可记为“x 为正开口对,X为负背靠背“。(正负指X的系数A,开口对指”<>",背靠背指"><")
76. 或 所表示的平面区域
设曲线 ( ),则
或 所表示的平面区域是:
所表示的平面区域上下两部分;
所表示的平面区域上下两部分.
圆
77.圆的四种方程
(1)圆的标准方程 .
(2)圆的一般方程 ( >0).
(3)圆的参数方程 .
(4)圆的直径式方程 (圆的直径的端点是 、 ).
78.圆系方程
(1)过点 , 的圆系方程是
,其中 是直线 的方程,λ是待定的系数.
(2)过直线 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数.
(3) 过圆 : 与圆 : 的交点的圆系方程是 ,λ是待定的系数.
79.点与圆的位置关系
点 与圆 的位置关系有三种
若 ,则
点 在圆外;
点 在圆上;
点 在圆内.
80.直线与圆的位置关系
直线 与圆 的位置关系有三种:
;
;
.
其中 .
81.两圆位置关系的判定方法
设两圆圆心分别为O1,O2,半径分别为r1,r2,
;
;
;
;
.
82.圆的切线方程
(1)已知圆 .
①若已知切点 在圆上,则切线只有一条,其方程是
.
当 圆外时, 表示过两个切点的切点弦方程.
②过圆外一点的切线方程可设为 ,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③斜率为k的切线方程可设为 ,再利用相切条件求b,必有两条切线.
(2)已知圆 .
①过圆上的 点的切线方程为 ;
②斜率为 的圆的切线方程为 .
椭圆
83.椭圆 的参数方程是 .
84.椭圆 焦半径公式
, ,
85.焦点三角形:P为椭圆 上一点,则三角形 的面积S= 特别地,若 此三角形面积为 ;
86.在椭圆 上存在点P,使 的条件是c≥b,即椭圆的离心率e的范围是 ;
87.椭圆的的内外部
(1)点 在椭圆 的内部 .
(2)点 在椭圆 的外部 .
88.椭圆的切线方程
(1)椭圆 上一点 处的切线方程是 .
(2)过椭圆 外一点 所引两条切线的切点弦方程是 .
(3)椭圆 与直线 相切的条件是 .
双曲线
89.双曲线 的焦半径公式
, .
90.双曲线的内外部
(1)点 在双曲线 的内部 .
(2)点 在双曲线 的外部 .
91.双曲线的方程与渐近线方程的关系
(1)若双曲线方程为 渐近线方程: .
(2)若渐近线方程为 双曲线可设为 .
(3)若双曲线与 有公共渐近线,可设为 ( ,焦点在x轴上, ,焦点在y轴上).
92.双曲线的切线方程
(1)双曲线 上一点 处的切线方程是 .
(2)过双曲线 外一点 所引两条切线的切点弦方程是
.
(3双曲线 与直线 相切的条件是 .
93.到渐近线的距离等于虚半轴的长度(即b值)
抛物线
94.焦点与半径
95.焦半径公式
抛物线 ,C 为抛物线上一点,焦半径 .
96.过焦点弦长 .
对焦点在y轴上的抛物线有类似结论。
97.设点方法
抛物线 上的动点可设为P 或 P ,其中 .
二次函数
98. 的图象是抛物线:
(1)顶点坐标为 ;
(2)焦点的坐标为 ;
(3)准线方程是 .
99.抛物线的内外部
(1)点 在抛物线 的内部 .
点 在抛物线 的外部 .
(2)点 在抛物线 的内部 .
点 在抛物线 的外部 .
(3)点 在抛物线 的内部 .
点 在抛物线 的外部 .
(4) 点 在抛物线 的内部 .
点 在抛物线 的外部 .
100.抛物线的切线方程
(1)抛物线 上一点 处的切线方程是 .
(2)过抛物线 外一点 所引两条切线的切点弦方程是 .
(3)抛物线 与直线 相切的条件是 .
101.过抛物线 (p>0)的焦点F的直线与抛物线相交于
圆锥曲线共性问题
120.两个常见的曲线系方程
(1)过曲线 , 的交点的曲线系方程是
( 为参数).
(2)共焦点的有心圆锥曲线系方程 ,其中 .当 时,表示椭圆; 当 时,表示双曲线.
103.直线与圆锥曲线相交的弦长公式
或
(弦端点A
由方程 消去y得到 , , 为直线 的倾斜角, 为直线的斜率).
104.涉及到曲线上的点A,B及线段AB的中点M的关系时,可以利用“点差法:
比如在椭圆中:
105.圆锥曲线的两类对称问题
(1)曲线 关于点 成中心对称的曲线是 .
(2)曲线 关于直线 成轴对称的曲线是
.
106.“四线”一方程
对于一般的二次曲线 ,用 代 ,用 代 ,用 代 ,用 代 ,用 代 ,即得方程
,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.
立体几何
107.证明直线与直线的平行的思考途径
(1)转化为判定共面二直线无交点;
(2)转化为二直线同与第三条直线平行;
(3)转化为线面平行;
(4)转化为线面垂直;
(5)转化为面面平行.
108.证明直线与平面的平行的思考途径
(1)转化为直线与平面无公共点;
(2)转化为线线平行;
(3)转化为面面平行.
109.证明平面与平面平行的思考途径
(1)转化为判定二平面无公共点;
(2)转化为线面平行;
(3)转化为线面垂直.
110.证明直线与直线的垂直的思考途径
(1)转化为相交垂直;
(2)转化为线面垂直;
(3)转化为线与另一线的射影垂直;
(4)转化为线与形成射影的斜线垂直.
111.证明直线与平面垂直的思考途径
(1)转化为该直线与平面内任一直线垂直;
(2)转化为该直线与平面内相交二直线垂直;
(3)转化为该直线与平面的一条垂线平行;
(4)转化为该直线垂直于另一个平行平面;
(5)转化为该直线与两个垂直平面的交线垂直.
112.证明平面与平面的垂直的思考途径
(1)转化为判断二面角是直二面角;
(2)转化为线面垂直.
113.空间向量的加法与数乘向量运算的运算律
(1)加法交换律:a+b=b+a.
(2)加法结合律:(a+b)+c=a+(b+c).
(3)数乘分配律:λ(a+b)=λa+λb.
114.平面向量加法的平行四边形法则向空间的推广
始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.
115.共线向量定理
对空间任意两个向量a、b(b≠0 ),a‖b 存在实数λ使a=λb.
三点共线 .
、 共线且 不共线 且 不共线.
116.共面向量定理
向量p与两个不共线的向量a、b共面的 存在实数对 ,使 .
推论 空间一点P位于平面MAB内的 存在有序实数对 ,使 ,
或对空间任一定点O,有序实数对 ,使 .
117.对空间任一点 和不共线的三点A、B、C,满足 ( ),则当 时,对于空间任一点 ,总有P、A、B、C四点共面;当 时,若 平面ABC,则P、A、B、C四点共面;若 平面ABC,则P、A、B、C四点不共面.
四点共面 与 、 共面
( 平面ABC).
118.空间向量基本定理
如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p=xa+yb+zc.
推论 设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的三个有序实数x,y,z,使 .
119.射影公式
已知向量 =a和轴 ,e是 上与 同方向的单位向量.作A点在 上的射影 ,作B点在 上的射影 ,则
〈a,e〉=a•e
120.向量的直角坐标运算
设a= ,b= 则
(1)a+b= ;
(2)a-b= ;
(3)λa= (λ∈R);
(4)a•b= ;
121.设A ,B ,则
= .
122.空间的线线平行或垂直
设 , ,则
;
.
123.夹角公式
设a= ,b= ,则
cos〈a,b〉= .
推论 ,此即三维柯西不等式.
124.四面体的对棱所成的角
四面体 中, 与 所成的角为 ,则
.
125.异面直线所成角
=
(其中 ( )为异面直线 所成角, 分别表示异面直线 的方向向量)
126.直线 与平面所成角
( 为平面 的法向量).
127.若 所在平面若 与过若 的平面 成的角 ,另两边 , 与平面 成的角分别是 、 , 为 的两个内角,则
.
特别地,当 时,有
.
128.若 所在平面若 与过若 的平面 成的角 ,另两边 , 与平面 成的角分别是 、 , 为 的两个内角,则
.
特别地,当 时,有
.
129.二面角 的平面角
或 ( , 为平面 , 的法向量).
130.三余弦定理
设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为 ,AB与AC所成的角为 ,AO与AC所成的角为 .则 .
131.三射线定理
若夹在平面角为 的二面角间的线段与二面角的两个半平面所成的角是 , ,与二面角的棱所成的角是θ,则有 ;
(当且仅当 时等号成立).
132.空间两点间的距离公式
若A ,B ,则
= .
133.点 到直线 距离
(点 在直线 上,直线 的方向向量a= ,向量b= ).
134.异面直线间的距离
( 是两异面直线,其公垂向量为 , 分别是 上任一点, 为 间的距离).
135.点 到平面 的距离
( 为平面 的法向量, 是经过面 的一条斜线, ).
136.异面直线上两点距离公式
.
.
( ).
(两条异面直线a、b所成的角为θ,其公垂线段 的长度为h.在直线a、b上分别取两点E、F, , , ).
137.三个向量和的平方公式
138.长度为 的线段在三条两两互相垂直的直线上的射影长分别为 ,夹角分别为 ,则有
.
(立体几何中长方体对角线长的公式是其特例).
139.面积射影定理
.
(平面多边形及其射影的面积分别是 、 ,它们所在平面所成锐二面角的为 ).
140.斜棱柱的直截面
已知斜棱柱的侧棱长是 ,侧面积和体积分别是 和 ,它的直截面的周长和面积分别是 和 ,则
① .
② .
141.作截面的依据
三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行.
142.棱锥的平行截面的性质
如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.
143.欧拉定理(欧拉公式)
(简单多面体的顶点数V、棱数E和面数F).
(1) =各面多边形边数和的一半.特别地,若每个面的边数为 的多边形,则面数F与棱数E的关系: ;
(2)若每个顶点引出的棱数为 ,则顶点数V与棱数E的关系: .
144.球的半径是R,则
其体积 ,
其表面积 .
145.球的组合体
(1)球与长方体的组合体:
长方体的外接球的直径是长方体的体对角线长.
(2)球与正方体的组合体:
正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长.
(3) 球与正四面体的组合体:
棱长为 的正四面体的内切球的半径为 ,外接球的半径为 .
146.柱体、锥体的体积
( 是柱体的底面积、 是柱体的高).
( 是锥体的底面积、 是锥体的高).
排列组合
147.分类计数原理(加法原理)
.
148.分步计数原理(乘法原理)
.
149.排列数公式
= = .( , ∈N*,且 ).
注:规定 .
150.排列恒等式
(1) ;
(2) ;
(3) ;
(4) ;
(5) .
(6) .
151.组合数公式
= = = ( ∈N*, ,且 ).
152.组合数的两个性质
(1) = ;
(2) + = .
注:规定 .
153.组合恒等式
(1) ;
(2) ;
(3) ;
(4) = ;
(5) .
(6) .
(7) .
(8) .
(9) .
(10) .
154.排列数与组合数的关系
.
155.单条件排列
以下各条的大前提是从 个元素中取 个元素的排列.
(1)“在位”与“不在位”
①某(特)元必在某位有 种;②某(特)元不在某位有 (补集思想) (着眼位置) (着眼元素)种.
(2)紧贴与插空(即相邻与不相邻)
①定位紧贴: 个元在固定位的排列有 种.
②浮动紧贴: 个元素的全排列把k个元排在一起的排法有 种.
注:此类问题常用捆绑法;
③插空:两组元素分别有k、h个( ),把它们合在一起来作全排列,k个的一组互不能挨近的所有排列数有 种.
(3)两组元素各相同的插空
个大球 个小球排成一列,小球必分开,问有多少种排法?
当 时,无解;当 时,有 种排法.
(4)两组相同元素的排列:两组元素有m个和n个,各组元素分别相同的排列数为 .
156.分配问题
(1)(平均分组有归属问题)将相异的 、 个物件等分给 个人,各得 件,其分配方法数共有 .
(2)(平均分组无归属问题)将相异的 • 个物体等分为无记号或无顺序的 堆,其分配方法数共有
.
(3)(非平均分组有归属问题)将相异的 个物体分给 个人,物件必须被分完,分别得到 , ,…, 件,且 , ,…, 这 个数彼此不相等,则其分配方法数共有 .
(4)(非完全平均分组有归属问题)将相异的 个物体分给 个人,物件必须被分完,分别得到 , ,…, 件,且 , ,…, 这 个数中分别有a、b、c、…个相等,则其分配方法数有 .
(5)(非平均分组无归属问题)将相异的 个物体分为任意的 , ,…, 件无记号的 堆,且 , ,…, 这 个数彼此不相等,则其分配方法数有 .
(6)(非完全平均分组无归属问题)将相异的 个物体分为任意的 , ,…, 件无记号的 堆,且 , ,…, 这 个数中分别有a、b、c、…个相等,则其分配方法数有 .
(7)(限定分组有归属问题)将相异的 ( )个物体分给甲、乙、丙,……等 个人,物体必须被分完,如果指定甲得 件,乙得 件,丙得 件,…时,则无论 , ,…, 等 个数是否全相异或不全相异其分配方法数恒有
.
157.“错位问题”及其推广
贝努利装错笺问题:信 封信与 个信封全部错位的组合数为
.
推广: 个元素与 个位置,其中至少有 个元素错位的不同组合总数为
.
158.不定方程 的解的个数
(1)方程 ( )的正整数解有 个.
(2) 方程 ( )的非负整数解有 个.
(3) 方程 ( )满足条件 ( , )的非负整数解有 个.
(4) 方程 ( )满足条件 ( , )的正整数解有 个.
159.二项式定理 ;
二项展开式的通项公式
.
概率
160.等可能性事件的概率
.
161.互斥事件A,B分别发生的概率的和
P(A+B)=P(A)+P(B).
162. 个互斥事件分别发生的概率的和
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An).
163.独立事件A,B同时发生的概率
P(A•B)= P(A)•P(B).
164.n个独立事件同时发生的概率
P(A1• A2•…• An)=P(A1)• P(A2)•…• P(An).
165.n次独立重复试验中某事件恰好发生k次的概率
期望与方差
166.离散型随机变量的分布列的两个性质
(1) ;
(2) .
167.数学期望
168.数学期望的性质
(1) .
(2)若 ~ ,则 .
(3) 若 服从几何分布,且 ,则 .
169.方差
170.标准差
= .
171.方差的性质
(1) ;
(2)若 ~ ,则 .
(3) 若 服从几何分布,且 ,则 .
172.方差与期望的关系
.
173.正态分布密度函数
,式中的实数μ, ( >0)是参数,分别表示个体的平均数与标准差.
174.标准正态分布密度函数
.
175.对于 ,取值小于x的概率
.
.
176.回归直线方程
,其中 .
177.相关系数
.
|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小.
极限
178.特殊数列的极限
(1) .
(2) .
(3) ( 无穷等比数列 ( )的和).
179.函数的极限定理
.
180.函数的夹逼性定理
如果函数f(x),g(x),h(x)在点x0的附近满足:
(1) ;
(2) (常数),
则 .
本定理对于单侧极限和 的情况仍然成立.
181.几个常用极限
(1) , ( );
(2) , .
182.两个重要的极限
(1) ;
(2) (e=2.718281845…).
183.函数极限的四则运算法则
若 , ,则
(1) ;
(2) ;
(3) .
184.数列极限的四则运算法则
若 ,则
(1) ;
(2) ;
(3)
(4) ( c是常数).
导数
185. 在 处的导数(或变化率或微商)
.
186.瞬时速度
.
187.瞬时加速度
.
188. 在 的导数
.
189.函数 在点 处的导数的几何意义
函数 在点 处的导数是曲线 在 处的切线的斜率 ,相应的切线方程是 .
190.几种常见函数的导数
(1) (C为常数).
(2) .
(3) .
(4) .
(5) ; .
(6) ; .
191.导数的运算法则
(1) .
(2) .
(3) .
192.复合函数的求导法则
设函数 在点 处有导数 ,函数 在点 处的对应点U处有导数 ,则复合函数 在点 处有导数,且 ,或写作 .
193.常用的近似计算公式(当 充分小时)
(1) ; ;
(2) ; ;
(3) ;
(4) ;
(5) ( 为弧度);
(6) ( 为弧度);
(7) ( 为弧度)
194.判别 是极大(小)值的方法
当函数 在点 处连续时,
(1)如果在 附近的左侧 ,右侧 ,则 是极大值;
(2)如果在 附近的左侧 ,右侧 ,则 是极小值.
复数
195.复数的相等
.( )
196.复数 的模(或绝对值)
= = .
197.复数的四则运算法则
(1) ;
(2) ;
(3) ;
(4) .
198.复数的乘法的运算律
对于任何 ,有
交换律: .
结合律: .
分配律: .
199.复平面上的两点间的距离公式
( , ).
200.向量的垂直
非零复数 , 对应的向量分别是 , ,则
的实部为零 为纯虚数
(λ为非零实数).
❿ 数学公式题
1; 【【2+4】【10-11】+12】【-7+9】=12