当前位置:首页 » 语数英语 » 初中数学应用题

初中数学应用题

发布时间: 2021-08-10 18:59:05

Ⅰ 初中数学应用题怎么

首先,你要明确,初中的应用题不管是关于哪个部分的知识点的,关键都是要列出方程,然后进行认真计算得出所设未知数的值。这样,你就会发现其实应用题的解题基本思路是这样了。

然后,如何列出方程呢?根据题目给你的已知条件,发现明显的或隐含的等量关系、倍数关系、或者利用一些比较明显的数学结论(例如三角形内角和是180度),列出方程。

如果是列一元一次方程解答,就要在题目中找出什么东西虽然经过了两种不同的途径但是却没有发生改变的?
如果是列二元一次方程组,设了两个未知数就要找出两个方程。

呵呵,希望你不要对数学失望,通过努力,数学也可以达到不错的成绩。而且一旦树立了信心掌握 的方法,它的效果是立杆见影的。

希望对你有帮助~!

Ⅱ 初中数学应用题该怎么做

把能从题目中找到的信息都挑出来,例如:路程啊,速度啊,时间啊,然后利用你所知道的公式,把它们都带入公式中就ok啦,很简单的。应用题看似是一大堆话,其实你只需要找到里面的实际信息就可以了,就是个数学题目给作文化了。加油啊!

Ⅲ 初中数学应用题

(1)6/75%= 8万人
(2)2014年末城镇人口为80000人,2015年城镇人口每增加1人,其增长的百分数是1/80000。2014年末城镇人口中小康人数为20000人,2015年城镇小康人口每增长1人,其增长的百分数是1/20000。每增加一个小康城镇人口的增加百分比(1/20000),正好是城镇人口增加百分比(1/80000)的4倍。观察到题中“城镇人口中达到小康水平人数增长的百分数是城镇人口增长百分数的4倍”,就说明城镇人口每增加一个,城镇中的小康人口数也必须增加一个。即:城镇人口增加数=小康人口增加数。
“达到小康水平的增长人数与城镇人口增长数之和是2014年底城镇人口数的一半。”可得知:小康增加数+城镇增加数=8万的一半=4万。再结合上面推出的结论“城镇人口增加数=小康人口增加数”,可得知:小康人口增加数=城镇人口增加数=2万。
2015年的城镇人口:8万+2万=10万。所以2015年末农村人口数:50-10=40万。
(3)2015年底:城镇总人口10万,其中4万为小康,6万为未达到小康人口。题目要求“2017年底未达到小康人数将比2015年减少1万”,即6-1=5万人。
由第一句“农村人口减少并转为城镇人口数相同。”得知每年农村人口都以相同的数量转为城镇人口,即每年农村人口减少2万。那么2017年末,农村人口应为40-2-2=36万
2017年城镇人口=50-36=14万,由于其中5万人为非小康人口,所以小康人口总数为14-5=9万

Ⅳ 初中数学应用题

Ⅳ 初一数学应用题60题

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。还要运几次才能完?
还要运x次才能完
29.5-3*4=2.5x
17.5=2.5x
x=7
还要运7次才能完

2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?
它的高是x米
x(7+11)=90*2
18x=180
x=10
它的高是10米

3、某车间计划四月份生产零件5480个。已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?
这9天中平均每天生产x个
9x+908=5408
9x=4500
x=500
这9天中平均每天生产500个

4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。甲每小时行45千米,乙每小时行多少千米?
乙每小时行x千米
3(45+x)+17=272
3(45+x)=255
45+x=85
x=40
乙每小时行40千米

5、某校六年级有两个班,上学期级数学平均成绩是85分。已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?
平均成绩是x分
40*87.1+42x=85*82
3484+42x=6970
42x=3486
x=83
平均成绩是83分

6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
平均每箱x盒
10x=250+550
10x=800
x=80
平均每箱80盒

7、四年级共有学生200人,课外活动时,80名女生都去跳绳。男生分成5组去踢足球,平均每组多少人?
平均每组x人
5x+80=200
5x=160
x=32
平均每组32人

8、食堂运来150千克大米,比运来的面粉的3倍少30千克。食堂运来面粉多少千克?
食堂运来面粉x千克
3x-30=150
3x=180
x=60
食堂运来面粉60千克

9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。平均每行梨树有多少棵?
平均每行梨树有x棵
6x-52=20
6x=72
x=12
平均每行梨树有12棵

10、一块三角形地的面积是840平方米,底是140米,高是多少米?
高是x米
140x=840*2
140x=1680
x=12
高是12米

11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。每件大人衣服用2.4米,每件儿童衣服用布多少米?
每件儿童衣服用布x米
16x+20*2.4=72
16x=72-48
16x=24
x=1.5
每件儿童衣服用布1.5米

12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁?
女儿今年x岁
30=6(x-3)
6x-18=30
6x=48
x=8
女儿今年8岁

13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车?
需要x时间
50x=40x+80
10x=80
x=8
需要8时间

14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵0.5元,苹果和梨每千克各多少元?
苹果x
3x+2(x-0.5)=15
5x=16
x=3.2
苹果:3.2
梨:2.7

15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。甲几小时到达中点?
甲x小时到达中点
50x=40(x+1)
10x=40
x=4
甲4小时到达中点

16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。如果甲从A地,乙从B地同时出发,同向而行,那么4小时后甲追上乙。已知甲速度是15千米/时,求乙的速度。
乙的速度x
2(x+15)+4x=60
2x+30+4x=60
6x=30
x=5
乙的速度5

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。问原来两根绳子各长几米?
原来两根绳子各长x米
3(x-15)+3=x
3x-45+3=x
2x=42
x=21
原来两根绳子各长21米

18.某校买来7只篮球和10只足球共付248元。已知每只篮球与三只足球价钱相等,问每只篮球和足球各多少元?
每只篮球x
7x+10x/3=248
21x+10x=744
31x=744
x=24
每只篮球:24
每只足球:8
小明家中的一盏灯坏了,现想在两种灯裏选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白灯,售价3元,两种灯的照明效果一样,使用寿命也相同。节能灯售价高,但是较省电;白灯售价低,但是用电多。如果电费是1元/(千瓦时),即1度电1元,试根据课本第三章所学的知识内容,给小明意见,可以根据什麼来选择买哪一种灯比较合理?
参考资料:
(1) 1千瓦=1000瓦
(2) 总电费(元)=每度电的电费(元/千瓦时)X灯泡功率(千瓦)X使用时间(小时)
(3) 1度电=1千瓦连续使用1小时
假设目前电价为1度电要3.5元
如果每只电灯泡功率为21瓦,每小时用电则为0.021度。
每小时电费= 3.5元 X 0.021 =0.0735元
每天电费=0.0735 X 24小时 =1.764元
每月电费=1.764 X 30天 =52.92元

这是一个简单的一元一次方程的求解平衡点问题,目标是从数个决策中找出各个平衡点,从不同的平衡点选择中来找出较优的决策。

解答过程:
设使用时间为A小时,
1*0.011*A+60=1*0.06*A+3
这个方程的意义就是,当使用节能灯和白灯的时间为A小时的时候,两种灯消耗的钱是相同的。解方程。
A=1163.265小时
也就是说当灯泡可以使用1163.265小时即48.47天的时候两个灯泡所花费的钱的一样多的。
那么如果灯泡寿命的时间是48.47天以下,那么白灯比较经济,寿命是48.47天以上,节能灯比较经济。
为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?

设总用电x度:[(x-140)*0.57+140*0.43]/x=0.5
0.57x-79.8+60.2=0.5x
0.07x=19.6
x=280
再分步算: 140*0.43=60.2
(280-140)*0.57=79.8
79.8+60.2=140

1)某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员?

设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/5
5*(X+22)=2*(8X-22)
5X+110=16X-44
11X=154

X=14

8X=8*14=112
这个商场家电部原来有14名送货人员,112名销售人员

现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?

设:增加x%
90%*(1+x%)=1
解得: x=1/9
所以,销售量要比按原价销售时增加11.11%

甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/

设甲商品原单价为X元,那么乙为100-X
(1-10%)X+(1+5%)(100-X)=100(1+2%)
结果X=20元 甲
100-20=80 乙

甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:
X+4/5X-30=X-10+3/4(X-10)
X=250
所以甲车间人数为250*4/5-30=170.
说明:
等式左边是调前的,等式右边是调后的

甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)

设A,B两地路程为X
x-(x/4)=x-72
x=288
答:A,B两地路程为288

1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。
二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。
1.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。

2.两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间.
注意:说明理由!!!
列一元一次方程解!!!

二车的速度和是:[180*2]/12=30米/秒
设甲速度是X,则乙的速度是30-X

180*2=60[X-(30-X)]

X=18

即甲车的速度是18米/秒,乙车的速度是:12米/秒

补充回答:
设停电的时间是X
设总长是单位1,那么粗的一时间燃1/3,细的是3/8
1-X/3=2[1-3X/8]

X=2。4
即停电了2。4小时。
1.再一次数学测验中,老师出了25道选择题,每个题都有四个选项,有且只有一个选项是正确的,老师的评分标准是:答对一道题给4分,不答或答错一题倒扣1分,问:
(1)一名同学得了90分,这位同学答对了几道题?
(2)一名同学得了60分,这位同学答对了几道题?

2.光明中学组织七年级师生春游,如果单租45座客车若干辆,则刚好坐满;如果单租60座的客车,可少租一辆,且余15个座位。
(1)求参加春游的师生总人数

(2)已知45座客车的租金为每天250元,60座客车的租金为每天300元,单
租哪种客车省钱?

(3)如果同时租用这两种客车,那么两种客车分别租多少辆最省钱?写出租车方案。

3.一张圆桌由一个桌面和四条腿组成,如果1m三次方,木料可制作圆桌的桌面50个,或制桌腿300条,现有5m三次方,木料,请你设计一下,用多少木料做桌腿,恰好配成圆桌多少张。

解答后请思考
(1)在建立一元一次方程模型解决实际问题的过程中要把握什么?

(2)解一元一次方程步骤有那些?

4.有一个三位数,其各数位的数字和是16,十位数字是个位数字和百位数字的和,如果把百位数字与个位数字对调,那么新数比原数大594,求原数。(一元一次解答)

5.把99拆成4个数,使第一个数加2,第二个数减2,第三个数乘2,第四个数除以2,得到结果都相等,应该怎样拆?

答案:
1.(1)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=90
4*X-25+X=90
5*X=115
X=23
(2)解:设该同学答对X道题,根据题意答错的为(25-X).
4*X-1*(25-X)=60
4*X-25+X=60
5*X=85
X=17
2.根据题意设租45座客车为X辆可坐满,则需X-1辆60座的可余15空座.
45*X=60*(X-1)-15
45*X=60*X-60-15
15*X=75
X=5
(1)参加春游的总人数为45人*5辆=225人.
(2)45座的每天需要钱为250元*5辆=1250元,60座的每天需要钱为300元*(5-1)辆=1200元,所以租60座的较省钱.
(3)租3辆60座的1辆45座最划算,3*300+1*250=1150

Ⅵ 一道初中数学应用题

解:(1)从宁波到杭州需要1个小时50分钟,宁波到杭州平均速度比苍南到宁波少54千米/时,则宁波到杭州的平均速度为X-54千米/时,则宁波至杭州段的里程是(X-54)*(1+5/6)千米。
(2)从苍南到宁波需要2小时20分钟,从杭州到上海需要1小时35分钟则(2+1/3+1+7/12)X+(X-54)*(1+5/6)=716得X=132.35千米/时

Ⅶ 初中数学应用题、

设原计划每天销售x台,则原计划用120/x天,后实际用了120/(x+4),则120/x-120/(x+4)=5,x=8或-12(舍去)

Ⅷ 初中数学应用题有几种

1.一项工程,甲乙两队合作需6天完成,现在乙队先做7天,然后甲队做4天,共完成这项工程的十五分之十三,如果把其余的工程交给乙队单独做,那还要几天完成?2.一项工程,甲队单独做15天完成,乙队单独做10天完成,甲乙两队合作若干天后,甲队因另有一项紧急任务,中间临时调走几天,因此完成任务用了8天,甲队中间调走了几天?3.一项工程单独做,甲要10天完成,乙要30天完成,两人合作期间甲休息2天,乙休息8天(不在同一天休息)。从开始到完工共用了几天?4.甲乙两人骑自行车,从环形公路上,同一地点同时出发,背向而行。现在已知甲队走一圈的时间是70分钟,如果再出发后第45分钟甲乙两人相遇,那么乙走一圈的时间是多少分钟?5.甲乙两人同时从两地出发,相向而行,走完全程甲需60分钟,乙需40分钟,出发后5分钟,甲因忘带东西而返回出发点,取东西又耽误了5分钟。甲再出发后多少时间两人相遇?相关说明:什么方法都行,方程也行1.甲乙两队效率之和为6分之1,题目条件相当于甲乙合作4天,乙再做3天6分之1×4=3分之215分之13-3分之2=5分之1——乙做3天5分之1÷3=15分之1——乙效(1-15分之13)÷15分之1=2天2.甲乙效率和:15分之1+10分之1=6分之18×6分之1=3分之4(3分之4-1)÷15分之1=5天3.2×10分之1+8×30分之1=15分之7(1+15分之7)÷(10分之1+15分之1)=11天4.相遇时甲还差25分钟走完全程乙走这一段要45分钟可知时间比,甲:乙=5:9所以甲走45分钟的路程,乙要走81分钟81+45=1265.等甲再出发时,乙已经走了15分钟40×15=8分之3,还剩8分之58分之5÷(60分之1+40分之1)=15

Ⅸ 初中数学应用题和答案

【预测题】1、已知,在平行四边形OABC中,OA=5,AB=4,∠OCA=90°,动点P从O点出发沿射线OA方向以每秒2个单位的速度移动,同时动点Q从A点出发沿射线AB方向以每秒1个单位的速度移动.设移动的时间为t秒.
(1)求直线AC的解析式;
(2)试求出当t为何值时,△OAC与△PAQ相似;
(3)若⊙P的半径为 ,⊙Q的半径为 ;当⊙P与对角线AC相切时,判断⊙Q与直线AC、BC的位置关系,并求出Q点坐标。

解:(1)
(2)①当0≤t≤2.5时,P在OA上,若∠OAQ=90°时,
故此时△OAC与△PAQ不可能相似.
当t>2.5时,①若∠APQ=90°,则△APQ∽△OCA,

∵t>2.5,∴ 符合条件.
②若∠AQP=90°,则△APQ∽△∠OAC,

∵t>2.5,∴ 符合条件.
综上可知,当 时,△OAC与△APQ相似.
(3)⊙Q与直线AC、BC均相切,Q点坐标为( )。
【预测题】2、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.

解:(1) ; .(2)在 中, ,

设点 的坐标为 ,其中 , 顶点 ,
∴设抛物线解析式为 .
①如图①,当 时, , .
解得 (舍去); . . .解得 .
抛物线的解析式为

②如图②,当 时, , .
解得 (舍去).

③当 时, ,这种情况不存在.
综上所述,符合条件的抛物线解析式是 .
(3)存在点 ,使得四边形 的周长最小.
如图③,作点 关于 轴的对称点 ,作点 关于
轴的对称点 ,连接 ,分别与 轴、 轴交于
点 ,则点 就是所求点.
, .
. .又 , ,此时四边形 的周长最小值是 .

【预测题】3、如图,在边长为2的等边△ABC中,AD⊥BC,点P为边AB 上一个动点,过P点作PF//AC交线段BD于点F,作PG⊥AB交AD于点E,交线段CD于点G,设BP=x.
(1)①试判断BG与2BP的大小关系,并说明理由;
②用x的代数式表示线段DG的长,并写出自变量x的取值范围;
(2)记△DEF的面积为S,求S与x之间的函数关系式,并求出S的最大值;
(3)以P、E、F为顶点的三角形与△EDG是否可能相似?如果能相似,请求出BP的长,如果不能,请说明理由。

解:(1)①在等边三角形ABC中,∠B=60°,∵PG⊥AB,
∴∠BGP=30°,∴BG=2BP.
②∵PF//AC,∴△PBF为等边三角形,∴BF=PF=PB=x.
又∵BG=2x,BD=1,∴DG=2x-1,∴0<2x-1≤1,∴ .
(2)S= DE×DF=
=
当 时, .
(3)①如图1,若∠PFE=Rt∠,则两三角形相似,
此时可得DF=DG

解得: .
②如图2,若∠PEF=Rt∠,则两三角形相似,
此时可得DF= EF= BP,
即 .解得: .

【预测题】4、如图,二次函数 的图像经过点 ,
且与 轴交于点 .
(1)试求此二次函数的解析式;
(2)试证明: (其中 是原点);
(3)若 是线段 上的一个动点(不与 、 重合),过 作 轴的平行线,分别交此二次函数图像及 轴于 、 两点,试问:是否存在这样的点 ,使 ?若存在,请求出点 的坐标;若不存在,请说明理由。

解:(1)∵点 与 在二次函数图像上,
∴ ,解得 ,
∴二次函数解析式为 .
(2)过 作 轴于点 ,由(1)得 ,则在 中, ,又在 中, ,
∵ ,∴ .
(3)由 与 ,可得直线 的解析式为 ,
设 ,则 ,
∴ .∴ .
当 ,解得 (舍去),∴ .
当 ,解得 (舍去),∴ .
综上所述,存在满足条件的点,它们是 与 .

【预测题】5、如图1,在Rt△ABC中,∠C=90°,BC=8厘米,点D在AC上,CD=3厘米.点P、Q分别由A、C两点同时出发,点P沿AC方向向点C匀速移动,速度为每秒k厘米,行完AC全程用时8秒;点Q沿CB方向向点B匀速移动,速度为每秒1厘米.设运动的时间为x秒 ,△DCQ的面积为y1平方厘米,△PCQ的面积为y2平方厘米.
(1)求y1与x的函数关系,并在图2中画出y1的图象;
(2)如图2,y2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P的速度及AC的长;
(3)在图2中,点G是x轴正半轴上一点(0<OG<6=,过G作EF垂直于x轴,分别交y1、y2于点E、F.
①说出线段EF的长在图1中所表示的实际意义;
②当0<x<6时,求线段EF长的最大值.

解:(1)∵ ,CD=3,CQ=x,∴ .
图象如图所示.
(2)方法一: ,CP=8k-xk,CQ=x,
∴ .∵抛物线顶点坐标是(4,12),
∴ .解得 .则点P的速度每秒 厘米,AC=12厘米.
方法二:观察图象知,当x=4时,△PCQ面积为12.
此时PC=AC-AP=8k-4k=4k,CQ=4.∴由 ,得 .
解得 .则点P的速度每秒 厘米,AC=12厘米.
方法三:设y2的图象所在抛物线的解析式是 .
∵图象过(0,0),(4,12),(8,0),
∴ 解得 ∴ . ①
∵ ,CP=8k-xk,CQ=x,∴ . ②
比较①②得 .则点P的速度每秒 厘米,AC=12厘米.
(3)①观察图象,知线段的长EF=y2-y1,表示△PCQ与△DCQ的面积差(或△PDQ面积).②由⑵得 .(方法二, )
∵EF=y2-y1,∴EF= ,
∵二次项系数小于0,∴在 范围,当 时, 最大.
【预测题】6、如图,在 中, , 、 分别是边 、
上的两个动点( 不与 、 重合),且保持 ,以 为边,在点 的异侧作正方形 .
(1)试求 的面积;
(2)当边 与 重合时,求正方形 的边长;
(3)设 , 与正方形 重叠部分的面积为 ,试求 关于 的函数关系式,并写出定义域;
(4)当 是等腰三角形时,请直接写出 的长。

解:(1)过 作 于 ,∵ ,∴ .
则在 中, ,∴ .
(2)令此时正方形的边长为 ,则 ,解得 .
(3)当 时, .
当 时, .
(4) .

【预测题】7、如图已知点A (-2,4) 和点B (1,0)都在抛物线 上.
(1)求 、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′ 的交点为点C,试在 轴上找点D,使得以点B′、C、D为顶点的三角形与 相似.

解:(1)根据题意,得: 解得
(2)四边形A A′B′B为菱形,则A A′=B′B= AB=5

=
∴ 向右平移5个单位的抛物线解析式为
(3)设D(x,0)根据题意,得:AB=5,
∵∠A=∠B B′A
ⅰ) △ABC∽△B′CD时,∠ABC=∠B′CD ,∴BD=6-x, 由 得 解得x=3, ∴D(3,0)
ⅱ)△ABC∽△B′DC时,
∴ 解得 ∴

【预测题】8、如 图,已知直角梯形ABCD中,AD‖BC,A B⊥BC ,AD=2,AB=8,
CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以1cm/s的速度、沿B→A→D→C方向,向点C运动;动点Q从点C出发,以1cm/s的速度、沿C→D→A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由;
②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

解:

在Rt△DCH中,

(2)①

经计算,PQ不平分梯形ABCD的面积


, -

【预测题】9、如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为( ,0), CAB=90°,AC=AB,顶点A在⊙O上运动.
(1)当点A在x轴上时,求点C的坐标;
(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;
(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;
(4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.

解:(1)当点A的坐标为(1,0)时,AB=AC= -1,点C的坐标为(1, -1);
当点A的坐标为(-1,0)时,AB=AC= +1,点C的坐标为(-1, +1);
(2)直线BC与⊙O相切,过点O作OM⊥BC于点M,∴∠OBM=∠BOM=45°,
∴OM=OB•sin45°=1,∴直线BC与⊙O相切
(3)过点A作AE⊥OB于点E
在Rt△OAE中,AE2=OA2-OE2=1-x2,
在Rt△BAE中,AB2=AE2+BE2=(1-x2) +( -x)2=3-2 x
∴S= AB•AC= AB2= (3-2 x)=
其中-1≤x≤1,
当x=-1时,S的最大值为 ,
当x=1时,S的最小值为 .
(4)①当点A位于第一象限时(如右图):
连接OA,并过点A作AE⊥OB于点E
∵直线AB与⊙O相切,∴∠OAB=90°,
又∵∠CAB=90°,∴∠CAB+∠OAB=180°,
∴点O、A、C在同一条直线上,∴∠AOB=∠C=45°,
在Rt△OAE中,OE=AE= .点A的坐标为( , )
过A、B两点的直线为y=-x+ .
②当点A位于第四象限时(如右图)
点A的坐标为( ,- ),过A、B两点的直线为y=x- .

【预测题】10、已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求A、B、C三点的坐标;
(2)求此抛物线的表达式;
(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF‖AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

解:(1)解方程x2-10x+16=0得x1=2,x2=8
∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC
∴点B的坐标为(2,0),点C的坐标为(0,8)
又∵抛物线y=ax2+bx+c的对称轴是直线x=-2
∴由抛物线的对称性可得点A的坐标为(-6,0)
(2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上,∴c=8,将A(-6,0)、B(2,0)代入表达式,得
0=36a-6b+80=4a+2b+8 解得 a=-23b=-83
∴所求抛物线的表达式为y=-23x2-83x+8
(3)依题意,AE=m,则BE=8-m,∵OA=6,OC=8,∴AC=10
∵EF‖AC ∴△BEF∽△BAC,∴EFAC=BEAB 即EF10=8-m8,∴EF=40-5m4
过点F作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=45
∴FGEF=45 ∴FG=45•40-5m4=8-m
∴S=S△BCE-S△BFE=12(8-m)×8-12(8-m)(8-m)
=12(8-m)(8-8+m)=12(8-m)m=-12m2+4m
自变量m的取值范围是0<m<8
(4)存在.
理由:∵S=-12m2+4m=-12(m-4)2+8 且-12<0,
∴当m=4时,S有最大值,S最大值=8 ∵m=4,∴点E的坐标为(-2,0)
∴△BCE为等腰三角形.

【预测题】11、数学课上,张老师出示了问题1:

[来源:学科网ZXXK]

(1)经过思考,小明认为可以通过添加辅助线——过点O作OM⊥BC,垂足为M求解.你认为这个想法可行吗?请写出问题1的答案及 相应的推导过程;
(2)如果将问题1中的条件“四边形ABCD是正 方形,BC =1”改为“四边形ABCD是平行四边形,BC=3,CD=2,”其余条件不变(如图25-2),请直接写出条件改变后的函数解析式;
(3)如果将问题1中的条件“四边形ABCD是正方形,BC =1”进一步改为:“四边形ABCD是梯形,AD‖B C, , , (其中 , , 为常量)”其余条件不变(如图25-3),请你写出条件再次改变后 关于 的函数解析式以及相应的推导过程.

解:(1)∵四边形ABCD是正方形,∴OB=OD.
∵OM⊥BC,∴∠OMB=∠DCB= ,∴OM‖DC.
∴OM DC ,CM BC .∵OM‖DC,∴ ,
即 ,解得 .定义域为 .
(2) ( ).
(3) AD‖BC, , .
过点O作ON‖CD,交BC于点N,∴ ,∴ .
∵ON‖CD, ,∴ ,∴ .
∵ON‖CD,∴ ,即 .
∴ 关于 的函数解析式为 ( ).
【预测题】12、已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3) 在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象。请你结合这个新的图像回答:当直线y= x+b (b<k)与此图象有两个公共点时,b的取值范围.
解:(1)由题意得,Δ=16-8(k-1)≥0.∴k≤3.∵k为正整数,∴k=1,2,3.
(2)当k=1时,方程2x2+4x+k-1=0有一个根为零;
当k=2时,方程2x2+4x+k-1=0无整数根;
当k=3时,方程2x2+4x+k-1=0有两个非零的整数根.
综上所述,k=1和k=2不合题意,舍去;k=3符合题意.
当k=3时,二次函数为y=2x2+4x+2,把它的图象向下平移8个单位长度得到的图象的解析式为y=2x2+4x-6.
(3)设二次函数y=2x2+4x-6的图象与x轴交于A、B两点,则A(-3,0),B(1,0).
依题意翻折后的图象如图所示.
当直线 经过A点时,可得 ;
当直线 经过B点时,可得 .
由图象可知,符合题意的b(b<3)的取值范围为 .

【预测题】13、如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).
(1)求抛物线的解析式及其顶点D的坐标;
(2)设直线CD交x轴于点E.在线段OB的垂直平分线上是否存在点P,使得点P到直线CD的距离等于点P到原点O的距离?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴平移,使抛物线与线段EF总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

解:(1)设抛物线解析式为 ,把 代入得 .
,顶点
(2)假设满足条件的点 存在,依题意设 ,
由 求得直线 的解析式为 ,
它与 轴的夹角为 ,设 的中垂线交 于 ,则 .
则 ,点 到 的距离为 .
又 . .
平方并整理得: , .
存在满足条件的点 , 的坐标为 .

(3)由上求得 .
①若抛物线向上平移,可设解析式为 .
当 时, .
当 时, . 或 .

②若抛物线向下移,可设解析式为 .
由 ,
有 . , .
∴向上最多可平移72个单位长,向下最多可平移 个单位长.
【预测题】14、如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
(1)请用含t的代数式表示出点D的坐标;
(2)求t为何值时,△DPA的面积最大,最大为多少?
(3)在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.
若不能,请说明理由;
(4)请直接写出随着点P的运动,点D运动路线的长.

解:(1)过点D作DE⊥x轴,垂足为E,则△PED∽△COP,∴
, ,故D(t+1, )
(2)S=
∴当t=2时,S最大,最大值为1
(3)∵∠CPD=900,∴∠DPA+∠CPO=900,∴∠DPA≠900,故有以下两种情况:
①当∠PDA=900时,由勾股定理得 ,又 ,
, ,
即 ,解得 , (不合题意,舍去)
②当∠PAD=900时,点D在BA上,故AE=3-t,得t=3
综上,经过2秒或3秒时,△PAD是直角三角形;
(4) ;
【预测题】15、设抛物线 与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90°。
(1)求m的值;
(2)求抛物线的解析式,并验证点D(1,-3 )是否在抛物线上;
(3)已知过点A的直线 交抛物线于另一点E. 问:在x轴上是否存在点P,使以点P、B、D为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标. 若不存在,请说明理由。

解:(1)令x=0,得y=-2 ∴C(0,-2)
∵∠ACB=90°,CO⊥AB ,∴△AOC ∽△COB ,∴OA•OB=OC2
∴OB= ∴m=4
(2)将A(-1,0),B(4,0)代入 ,解得
∴抛物线的解析式为 ……(2分)
当x=1时, =-3,∴点D(1,-3)在抛物线上。
(3)由 得 ,∴E(6,7)
过E作EH⊥x轴于H,则H(6,0),
∴ AH=EH=7 ∴∠EAH=45°
作DF⊥x轴于F,则F(1,0)
∴BF=DF=3 ∴∠DBF=45°
∴∠EAH=∠DBF=45°
∴∠DBH=135°,90°<∠EBA<135°
则点P只能在点B的左侧,有以下两种情况:
①若△DBP1∽△EAB,则 ,∴
∴ ,∴ ……(2分)
②若△ ∽△BAE,则 ,∴
∴ ∴ ……(2分)
综合①、②,得点P的坐标为:

【预测题】16、如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相似?

解:(1)四边形ABCE是菱形。
∵△ECD是由△ABC沿BC平移得到的,∴EC‖AB,且EC=AB,
∴四边形ABCE是平行四边形,又∵AB=BC,∴四边形ABCE是菱形 .
(2)①四边形PQED的面积不发生变化。
方法一:∵ABCE是菱形,∴AC⊥BE,OC=12AC=3,∵BC=5,∴BO=4,
过A作AH⊥BD于H,(如图1).∵S△ABC=12BC×AH=12AC×BO,
即:12×5×AH=12×6×4,∴AH=245.
【或 ∵∠AHC=∠BOC=90°,∠BCA公用,∴△AHC∽△BOC,∴AH:BO=AC:BC,
即:AH:4=6:5,∴AH=245.】
由菱形的对称性知,△PBO≌△QEO,∴BP=QE,
∴S四边形PQED=12(QE+PD)×QR=12(BP+PD)×AH=12BD×AH=12×10×245=24.
方法二: 由菱形的对称性知,△PBO≌△QEO,∴S△PBO= S△QEO,
∵△ECD是由△ABC平移得到得,∴ED‖AC,ED=AC=6,
又∵BE⊥AC,∴BE⊥ED,
∴S四边形PQED=S△QEO+S四边形POED=S△PBO+S四边形POED=S△BED
=12×BE×ED=12×8×6=24.

②方法一:如图2,当点P在BC上运动,使△PQR与△COB相似时,
∵∠2是△OBP的外角,∴∠2>∠3,∴∠2不与∠3对应,∴∠2与∠1对应,
即∠2=∠1,∴OP=OC=3,过O作OG⊥BC于G,则G为PC的中点,△OGC∽△BOC,
∴CG:CO=CO:BC,即:CG:3=3:5,∴CG=95,
∴PB=BC-PC=BC-2CG=5-2×95=75.
方法二:如图3,当点P在BC上运动,使△PQR与△COB相似时,
∵∠2是△OBP的外角,∴∠2>∠3,
∴∠2不与∠3对应,∴∠2与∠1对应,
∴QR:BO=PR:OC,即:245:4=PR:3,∴PR=185,
过E作EF⊥BD于F,设PB=x,则RF=QE=PB=x,
DF=ED2-EF2 =62-(245)2 =185,
∴BD=PB+PR+RF+DF=x+185+x+185=10,x=75.
方法三: 如图4,若点P在BC上运动,使点R与C重合,
由菱形的对称性知,O为PQ的中点,∴CO是Rt△PCQ斜边上的中线,
∴CO=PO,∴∠OPC=∠OCP,此时,Rt△PQR∽Rt△CBO,
∴PR:CO=PQ:BC,即PR:3=6:5,∴PR=185
∴PB=BC-PR=5-185=75.

Ⅹ 初中数学应用题

25天,16小时。

(1)甲每天生产:10÷5=2,乙每天生产:9÷3=3,125÷(2+3)=25天。版

(2)假设工作量为1(总的工作量)权,则甲每小时做1/40,乙每小时做1/30,乙先做2个小时就是1/30×2=2/30。

然后设x为两人合作时间:2/30+(1/40+1/30)x=1(总的工作量),(1/40+1/30)x=14/15

通分:(3/120+4/120)x=14/15,7/120x=14/15,可得x=16小时。

(10)初中数学应用题扩展阅读:

在解答这类应用题的时候,主要是要求出一个人的工作效率,然后列方程等式进行求解,这里我们用到了假设总的工作量为1,每人的工作效率,可以用分数进行表示。使得运算简单,合情合理。

热点内容
背影教学设计优质课 发布:2025-06-29 23:24:20 浏览:145
教育宝app 发布:2025-06-29 19:11:44 浏览:753
天津武清区教师招聘 发布:2025-06-29 18:25:53 浏览:784
教师读书活动记录 发布:2025-06-29 16:50:45 浏览:654
社政教师 发布:2025-06-29 16:05:54 浏览:479
没有教师资格证可以当老师吗 发布:2025-06-29 15:39:27 浏览:80
一年级班主任工作计划小学 发布:2025-06-29 12:05:08 浏览:959
语文是美丽的 发布:2025-06-29 10:43:39 浏览:78
泉州市教师招聘公告 发布:2025-06-29 10:29:35 浏览:858
师德专题培训总结 发布:2025-06-29 10:28:45 浏览:974