当前位置:首页 » 语数英语 » 高中数学四

高中数学四

发布时间: 2021-08-11 14:58:11

『壹』 高中数学选修4-4

刚开始学的时候,觉得4-4坐标系与参数方程好学,但都学完以后,做题的时候,选不等式多一点。原因如下,
4-4题目长,有的题列式计算麻烦。4-5虽然能出出难题,但做了发现,出的题目大多是套绝对值三角不等式,解不等式等简单基础的题目,而且,题目简短,文字少,有没有思路一目了然

『贰』 高中数学必修四

向量方法正在学习中。

先提供个几何方法,希望能对你有帮助。

解:如图,作AD的中点N,连结BN,交AC于F,

则DM//BN,在△ADE中,NF为其中位线,所以AF=EF

同理在△CFB中,CE=EF

由此,AF=EF=CE

AE:AC=2:3

『叁』 高中数学的四大思想是什么

数形结合思想
数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一 些概念和运算的几何意义及常见曲线的代数特征.
应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数 列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.
以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.
以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.
分类讨论思想
分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.
常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类
等. 分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意 分类必须满足互斥、无漏、最简的原则.
函数与方程思想
函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应 用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.
运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:
(1)深刻理解函数 f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.
(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等 式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.
转化与化归思想
化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转 化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解 题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转 化则部分地改变了原对象的实质,需对所得结论进行必要的修正.

『肆』 高中数学必修四的全部公式整理

公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα

公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα

公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα

公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα

公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα

公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα

sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα

(以上k∈Z)

诱导公式记忆口诀

※规律总结※
上面这些诱导公式可以概括为:
对于k·π/2±α(k∈Z)的个三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
(奇变偶不变)
然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)

例如:
sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
所以sin(2π-α)=-sinα

上述的记忆口诀是:
奇变偶不变,符号看象限。
公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
所在象限的原三角函数值的符号可记忆
水平诱导名不变;符号看象限。
各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.
这十二字口诀的意思就是说:
第一象限内任何一个角的四种三角函数值都是“+”;
第二象限内只有正弦是“+”,其余全部是“-”;
第三象限内切函数是“+”,弦函数是“-”;
第四象限内只有余弦是“+”,其余全部是“-”.

其他三角函数知识:

同角三角函数基本关系

⒈同角三角函数的基本关系式
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα /cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)
构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
(1)倒数关系:对角线上两个函数互为倒数;
(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

⒉两角和与差的三角函数公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ

cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
这样,我们就得到了积化和差的四个公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.
我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2
把a,b分别用x,y表示就可以得到和差化积的四个公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

向量的运算
加法运算
AB+BC=AC,这种计算法则叫做向量加法的三角形法则。
已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。
对于零向量和任意向量a,有:0+a=a+0=a。
|a+b|≤|a|+|b|。
向量的加法满足所有的加法运算定律。

减法运算
与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。
(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算
实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。
设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积
已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a•b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。
a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和

『伍』 高中数学第四题

先等一下,我在写过程。

『陆』 高中数学四道题

6:写成指数式:0.8=0.6^b=0.5^a<0.6^a,底数小于1,指数函数是减函数,∴b>a
小数为底的指数函数,要想得到比底更大的值,只有开方,越开越大(乘方会越乘越小),因此a,b都是<1的分数,c=1.1^0.8,底数大于1,开方,越开越小,但是总是>1,
因此c最大,a<b<c
7:图像向左平移π/2,x坐标增加了,但是函数值与原坐标时一致,计算时要减去增加量,化为原来的值,才能得到函数值,对应原来图像的横坐标为x-π/2
y=2sin(2(x-π/2)+π/3)=2sin(2x-π+π/3)=2sin(2x-2π/3)
正弦单调增区间:
2kπ-π/2≤2x-2π/3≤2kπ+π/2
2kπ-π/2+2π/3≤2x≤2kπ+π/2+2π/3
2kπ-3π/6+4π/6≤2x≤2kπ+3π/6+4π/6
2kπ+π/6≤2x≤2kπ+7π/6
kπ+π/12≤x≤kπ+7π/12
k=0,π/12≤x≤7π/12,D正确;
8:等比数列问题:
年:2017,2018,2019,...
投入:120万,120×1.12,120×1.12²,...
项数n:1,2,3,....
an=120×1.12^(n-1)>200
取对数n-1>(lg200-lg120)/lg1.12
=(lg2+lg100-lg12-lg10)/lg1.12
=(lg2+2-lg(3×4)-1)/lg1.12
=(lg2+1-lg3-2lg2)/lg1.12
=(1-lg3-lg2)/lg1.12
=(1-0.48-0.30)/0.05
=0.22/0.05
=22/5
=4.4年,
取5年,
年=2017+(n-1)=2017+5=2022年。

『柒』 高中数学4-4

首先关于选来考的第一题,就是所源谓的平面几何,我并不推荐做这道题。虽然知识基础框架来源于初中,但是我们高中主要进行了解析几何的学习,对平面几何没有再进行深入的探讨,大部分学校,也没有开这个课,需要有较好的平面几何的感觉,更何况存在知识的遗忘。所以能不选,就不选。关于第二道,极坐标和参数方程,个人比较推荐这一道。首先知识简单,其二,这本书承接高中必修二和选修2-3的解析几何的知识。纵观这些年的高考真题,这道题得分率较高,而且一般消耗的解题时间最少关于第三道题,不等式,这本书有在高中必修的基础上有很大程度的延续和拓展,对不等式和定义域分类不太感冒的童靴,还是避开为好。当然,你们学校如果开了这一个课,也可以选做。综上来说 选择的顺序是 4-4>4-5>4-1

『捌』 高中数学中的四心

1.重心(三角形中心线的交点)重心到顶点的距离与重心到对边中点的距离之比为2:1;2.内心(内切圆的交点)直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。3外心(外接圆的交点)三角形三条边的垂直平分线的交于一点,该点即为三角形外接圆的圆心.外心到三顶点的距离相等。 ,4垂心,三角形三边高的交点三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

『玖』 高中数学必修四

图一中的K是自然数,上面写着K€Z。
意即一个角加360度的角和原来的角终也相同。
三亇题的解法,其规律是化成360的倍数再加上某个数。

热点内容
漳县历史 发布:2025-06-27 16:55:57 浏览:85
英语文体学要略 发布:2025-06-27 16:48:39 浏览:370
平湖职业中专数字校园 发布:2025-06-27 16:25:29 浏览:882
后撤步教学视频 发布:2025-06-27 16:11:31 浏览:994
ui教学视频 发布:2025-06-27 15:01:15 浏览:762
国考教师资格证报名入口 发布:2025-06-27 12:16:41 浏览:15
家居化学 发布:2025-06-27 11:55:06 浏览:306
残念什么意思 发布:2025-06-27 11:39:37 浏览:607
八年级英语作业本 发布:2025-06-27 11:30:23 浏览:480
教师年度师德个人总结 发布:2025-06-27 09:51:16 浏览:468