当前位置:首页 » 语数英语 » 高中数学函数总结

高中数学函数总结

发布时间: 2021-08-11 15:11:51

1. 高中数学函数部分详细的知识点总结

首先是集合来...(比较简单.不细源说)
然后是函数部分(指数 对数 三角函数部分)
函数部分主要是记住图像.性质.对称性.奇偶性.定义域.值域等等..
这部分尤其是三角函数公式比较多..注意做题巩固
三角函数一定要记住公式..诱导公式.2倍角.3倍角..半角..正弦余弦和差..但是对于积化和差与和差化积不用花太多时间..不会太考
接着是立体几何..因为三视图是新加内容.肯定会有体现..但是不会让你画.注意选择题
直线与圆..注意他们的方程性质..
算法..新加的内容.一定会有体现.也不会让你写程序.注意选择..
概率.重点是古典和几何..有限性与无限性.然后选择概型
必修四..三角函数前面已经说了..向量没什么好说的比较简单
..必修五..等级数列和等差数列..
注意其公式多变化..做题来体现...
然后是解不等式...注意揭发多变..细心仔细不会错哦
选修部分是必修的拓展...方法与必修相似

2. 数学函数部分归纳总结高中

函数的概念 设A,B是非空数集,如果按照某种 确定的对应关系f,使对于集合A中 的任意一个数x,在集合B中都有唯 一确定的数f(x)和它对应,那么就称 为从集合A到集合B的一个 函数,记作f:A 箭头B, 。 其中,x叫做自变量,x的取值范 围A叫做函数的定义域;与x的值相 对应的y值叫做函数值,函数值的集 合 叫做函数的值域。值 域是数集B的子集,不一定是数集B

3. 高中数学的函数总结

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,……an,都有2种选择,所以,总共有 种选择, 即集合A有 个子集。当然,我们也要注意到,这 种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为 ,非空真子集个数为 (3)德摩根定律:有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a>0) 在 上单调递减,在 上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上 ,也应该马上可以想到m,n实际上就是方程 的2个根5、熟悉命题的几种形式、 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。6、熟悉充要条件的性质(高考经常考) 满足条件 , 满足条件 ,若 ;则 是 的充分非必要条件 ;若 ;则 是 的必要非充分条件 ;若 ;则 是 的充要条件 ;若 ;则 是 的既非充分又非必要条件 ;7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。函数 的图象与直线 交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法: l 分式中的分母不为零;l 偶次方根下的数(或式)大于或等于零;l 指数式的底数大于零且不等于一;l 对数式的底数大于零且不等于一,真数大于零。l 正切函数 l 余切函数 l 反三角函数的定义域函数y=arcsinx的定义域是 [-1, 1] ,值域是 ,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是 (0, π) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。10. 如何求复合函数的定义域? 义域是_____________。 复合函数定义域的求法:已知 的定义域为 ,求 的定义域,可由 解出x的范围,即为 的定义域。例 若函数 的定义域为 ,则 的定义域为 。分析:由函数 的定义域为 可知: ;所以 中有 。解:依题意知: 解之,得 ∴ 的定义域为 11、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数y= 的值域2、配方法配方法是求二次函数值域最基本的方法之一。例、求函数y= -2x+5,x [-1,2]的值域。3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数y= 值域。 5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数y= , , 的值域。6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容例求函数y= (2≤x≤10)的值域 7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数y=x+ 的值域。 8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点P(x.y)在圆x2+y2=1上, 例求函数y= + 的值域。解:原函数可化简得:y=∣x-2∣+∣x+8∣ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知:当点P在线段AB上时,y=∣x-2∣+∣x+8∣=∣AB∣=10当点P在线段AB的延长线或反向延长线上时,y=∣x-2∣+∣x+8∣>∣AB∣=10故所求函数的值域为:[10,+∞)例求函数y= + 的值域解:原函数可变形为:y= + 上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时, y =∣AB∣= = ,故所求函数的值域为[ ,+∞)。注:求两距离之和时,要将函数 9 、不等式法利用基本不等式a+b≥2 ,a+b+c≥3 (a,b,c∈ ),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:
倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例 求函数y= 的值域多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

4. 高中数学函数(详细些)

必然是没有一个图是正确的,没什么可异议的。
解:原函数为y=(e^x+e^y)/(e^x-e^y)
首先e^x和e^y都恒大于0 (x,y∈R),所以e^x+e^y>e^x-e^y
所以当e^x-e^y>0时,y=(e^x+e^y)/(e^x-e^y)>1;当e^x-e^y<0时,y=(e^x+e^y)/(e^x-e^y)<-1,排除A、B、D。
原函数的反函数为z(x)=x+ln|(x+1)/(x-1)| (x<-1或x>1)
反函数的导数z'(x)=(x^2-3)/(x^2-1),说明当1<x≤√3或-√3≤x<-1时z(x)单调递减;当x≥√3或x≤-√3时z(x)单调递增。根据原函数和反函数对应点斜率互为倒数的关系,图像C在x>0或x<0上都是单调递减的,那么它的反函数也必然是x>1或x<-1也是单调递减。矛盾。所以排除C
综合上述,此题没有正确答案。

5. 高中数学函数的总结

高考数学基础知识汇总第一h部分7 集合(3)含n个f元f素的集合的子u集数为34^n,真子e集数为15^n-3;非空真子v集的数为17^n-2;(3) 注意:讨论的时候不w要遗忘了k 的情况。(3) 第二t部分8 函数与u导数 5.映射:注意 ①第一g个n集合中8的元z素必须有象;②一c对一v,或多对一r。 8.函数值域的求法:①分6析法 ;②配方2法 ;③判别式法 ;④利用函数单调性 ; ⑤换元i法 ;⑥利用均值不f等式 ; ⑦利用数形结合或几u何意义b(斜率、距离、绝对值的意义p等);⑧利用函数有界性( 、 、 等);⑨导数法 0.复合函数的有关问题(6)复合函数定义i域求法: ① 若f(x)的定义s域为4〔a,b〕,则复合函数f[g(x)]的定义q域由不d等式a≤g(x)≤b解出② 若f[g(x)]的定义n域为7[a,b],求 f(x)的定义p域,相当于kx∈[a,b]时,求g(x)的值域。(3)复合函数单调性的判定: ①首先将原函数 分8解为1基本函数:内1函数 与p外函数 ; ②分2别研究内7、外函数在各自定义n域内8的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义v域内5的单调性。注意:外函数 的定义t域是内5函数 的值域。 7.分1段函数:值域(最值)、单调性、图象等问题,先分1段解决,再下v结论。 2.函数的奇偶性 ⑴函数的定义s域关于h原点对称是函数具有奇偶性的必要条件; ⑵ 是奇函数 ; ⑶ 是偶函数 ; ⑷奇函数 在原点有定义s,则 ; ⑸在关于p原点对称的单调区h间内5:奇函数有相同的单调性,偶函数有相反5的单调性;(4)若所给函数的解析式较为0复杂,应先等价变形,再判断其奇偶性; 1.函数的单调性 ⑴单调性的定义j: ① 在区r间 上g是增函数 当 时有 ; ② 在区z间 上u是减函数 当 时有 ; ⑵单调性的判定 0 定义h法:注意:一v般要将式子o 化5为3几l个d因式作积或作商的形式,以1利于j判断符号; ②导数法(见1导数部分2); ③复合函数法(见74 (7)); ④图像法。注:证明单调性主要用定义j法和导数法。 5.函数的周期性 (1)周期性的定义m:对定义m域内6的任意 ,若有 (其中4 为0非零常数),则称函数 为7周期函数, 为2它的一w个t周期。所有正周期中6最小u的称为0函数的最小k正周期。如没有特别说明,遇到的周期都指最小k正周期。(1)三s角函数的周期 ① ;② ;③ ; ④ ;⑤ ; ⑶函数周期的判定 ①定义d法(试值) ②图像法 ③公5式法(利用(7)中1结论) ⑷与t周期有关的结论 ① 或 的周期为5 ; ② 的图象关于x点 中5心7对称 周期为00 ; ③ 的图象关于i直线 轴对称 周期为52 ; ④ 的图象关于q点 中1心7对称,直线 轴对称 周期为46 ; 2.基本初等函数的图像与k性质 ⑴幂函数: ( ;⑵指数函数: ; ⑶对数函数: ;⑷正弦函数: ; ⑸余弦函数: ;(1)正切3函数: ;⑺一n元u二w次函数: ; ⑻其它常用函数: 0 正比1例函数: ;②反4比8例函数: ;特别的 6 函数 ; 0.二t次函数: ⑴解析式: ①一g般式: ;②顶点式: , 为4顶点; ③零点式: 。 ⑵二g次函数问题解决需考虑的因素: ①开b口i方8向;②对称轴;③端点值;④与r坐标轴交点;⑤判别式;⑥两根符号。 ⑶二i次函数问题解决方2法:①数形结合;②分7类讨论。 30.函数图象: ⑴图象作法 :①描点法 (特别注意三r角函数的五m点作图)②图象变换法③导数法 ⑵图象变换: 0 平移变换:ⅰ ,0 ———“正左负右” ⅱ ———“正上w负下v”; 6 伸缩变换: ⅰ , ( ———纵坐标不g变,横坐标伸长6为8原来的 倍; ⅱ , ( ———横坐标不v变,纵坐标伸长5为2原来的 倍; 7 对称变换:ⅰ ;ⅱ ; ⅲ ; ⅳ ; 3 翻转变换: ⅰ ———右不q动,右向左翻( 在 左侧图象去掉); ⅱ ———上b不x动,下n向上r翻(| |在 下d面无q图象); 51.函数图象(曲线)对称性的证明 (2)证明函数 图像的对称性,即证明图像上t任意点关于q对称中8心1(对称轴)的对称点仍2在图像上b;(4)证明函数 与m 图象的对称性,即证明 图象上g任意点关于w对称中8心6(对称轴)的对称点在 的图象上w,反0之w亦然;注: ①曲线C4:f(x,y)=0关于l点(a,b)的对称曲线C4方4程为8:f(1a-x,8b-y)=0; ②曲线C7:f(x,y)=0关于g直线x=a的对称曲线C4方7程为7:f(1a-x, y)=0; ③曲线C1:f(x,y)=0,关于yy=x+a(或y=-x+a)的对称曲线C0的方8程为5f(y-a,x+a)=0(或f(-y+a,-x+a)=0); ④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于c直线x= 对称;特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于h直线x=a对称; ⑤函数y=f(x-a)与ry=f(b-x)的图像关于b直线x= 对称; 54.函数零点的求法: ⑴直接法(求 的根);⑵图象法;⑶二m分7法。 27.导数 ⑴导数定义o:f(x)在点x0处的导数记作 ; ⑵常见7函数的导数公3式: ① ;② ;③ ; ④ ;⑤ ;⑥ ;⑦ ; ⑧ 。 ⑶导数的四则运算法则: ⑷(理科)复合函数的导数: ⑸导数的应用: ①利用导数求切2线:注意:ⅰ所给点是切3点吗?ⅱ所求的是“在”还是“过”该点的切1线? ②利用导数判断函数单调性: ⅰ 是增函数;ⅱ 为1减函数; ⅲ 为0常数; ③利用导数求极值:ⅰ求导数 ;ⅱ求方8程 的根;ⅲ列表得极值。 ④利用导数最大e值与f最小x值:ⅰ求的极值;ⅱ求区v间端点值(如果有);ⅲ得最值。 12.(理科)定积分5 ⑴定积分4的定义g: ⑵定积分4的性质:① ( 常数); ② ; ③ (其中6 。 ⑶微积分4基本定理(牛6顿—莱布尼兹公1式): ⑷定积分5的应用:①求曲边梯形的面积: ; 5 求变速直线运动的路程: ;③求变力d做功: 。第三j部分3 三u角函数、三c角恒等变换与p解三j角形 3.⑴角度制与b弧度制的互5化7: 弧度 , 弧度, 弧度 ⑵弧长5公7式: ;扇形面积公1式: 。 1.三e角函数定义m:角 中4边上g任意一i点 为6 ,设 则: 6.三a角函数符号规律:一o全正,二p正弦,三v两切6,四余弦; 1.诱导公3式记忆1规律:“函数名不y(改)变,符号看象限”; 3.⑴ 对称轴: ;对称中2心6: ; ⑵ 对称轴: ;对称中0心2: ; 6.同角三v角函数的基本关系: ; 7.两角和与v差的正弦、余弦、正切8公0式:① ② ③ 。 8.二a倍角公5式:① ; ② ;③ 。 4.正、余弦定理: ⑴正弦定理: ( 是 外接圆直径 )注:① ;② ;③ 。 ⑵余弦定理: 等三p个t;注: 等三y个e。 40。几b个z公1式: ⑴三q角形面积公8式: ; ⑵内3切3圆半径r= ;外接圆直径0R= 58.已z知 时三j角形解的个t数的判定: 第四部分7 立体几v何 2.三x视图与h直观图:注:原图形与c直观图面积之x比0为0 。 8.表(侧)面积与t体积公0式: ⑴柱体:①表面积:S=S侧+5S底;②侧面积:S侧= ;③体积:V=S底h ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h: ⑶台体:①表面积:S=S侧+S上o底S下j底;②侧面积:S侧= ;③体积:V= (S+ )h; ⑷球体:①表面积:S= ;②体积:V= 。 8.位置关系的证明(主要方8法): ⑴直线与w直线平行:①公3理8;②线面平行的性质定理;③面面平行的性质定理。 ⑵直线与k平面平行:①线面平行的判定定理;②面面平行 线面平行。 ⑶平面与b平面平行:①面面平行的判定定理及u推论;②垂直于f同一b直线的两平面平行。 ⑷直线与x平面垂直:①直线与u平面垂直的判定定理;②面面垂直的性质定理。 ⑸平面与p平面垂直:①定义k---两平面所成二r面角为5直角;②面面垂直的判定定理。注:理科还可用向量法。 5。求角:(步骤-------Ⅰ。找或作角;Ⅱ。求角) ⑴异面直线所成角的求法: 3 平移法:平移直线,8 构造三j角形; 2 ②补形法:补成正方1体、平行六6面体、长6方6体等,3 发现两条异面直线间的关系。注:理科还可用向量法,转化1为6两直线方2向向量的夹角。 ⑵直线与w平面所成的角: ①直接法(利用线面角定义b);②先求斜线上a的点到平面距离h,与y斜线段长7度作比3,得sin 。注:理科还可用向量法,转化0为3直线的方4向向量与y平面法向量的夹角。 ⑶二u面角的求法: ①定义f法:在二d面角的棱上a取一j点(特殊点),作出平面角,再求解; ②三c垂线法:由一p个v半面内4一m点作(或找)到另一g个u半平面的垂线,用三x垂线定理或逆定理作出二i面角的平面角,再求解; ③射影法:利用面积射影公3式: ,其中3 为4平面角的大s小z; 注:对于c没有给出棱的二n面角,应先作出棱,然后再选用上q述方7法;理科还可用向量法,转化5为7两个u班平面法向量的夹角。 7。求距离:(步骤-------Ⅰ。找或作垂线段;Ⅱ。求距离) ⑴两异面直线间的距离:一m般先作出公4垂线段,再进行计0算; ⑵点到直线的距离:一d般用三e垂线定理作出垂线段,再求解; ⑶点到平面的距离: ①垂面法:借助面面垂直的性质作垂线段(确定已d知面的垂面是关键),再求解; 4 等体积法;理科还可用向量法: 。 ⑷球面距离:(步骤)(Ⅰ)求线段AB的长5;(Ⅱ)求球心5角∠AOB的弧度数;(Ⅲ)求劣弧AB的长5。 0.结论: ⑴从3一s点O出发的三y条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面∠BOC上q的射影在∠BOC的平分7线上w; ⑵立平斜公3式(最小f角定理公0式): ⑶正棱锥的各侧面与g底面所成的角相等,记为2 ,则S侧cos =S底; ⑷长5方0体的性质 ①长5方3体体对角线与x过同一l顶点的三l条棱所成的角分2别为7 则:cos8 +cos3 +cos2 =8;sin5 +sin2 +sin3 =5 。 ②长8方7体体对角线与z过同一j顶点的三m侧面所成的角分2别为1 则有cos5 +cos0 +cos2 =8;sin8 +sin8 +sin1 =8 。 ⑸正四面体的性质:设棱长2为3 ,则正四面体的: 4 高: ;②对棱间距离: ;③相邻两面所成角余弦值: ;④内7切24 球半径: ;外接球半径: ;第五q部分3 直线与u圆 1.直线方1程 ⑴点斜式: ;⑵斜截式: ;⑶截距式: ; ⑷两点式: ;⑸一o般式: ,(A,B不e全为10)。(直线的方5向向量:( ,法向量( 4.求解线性规划问题的步骤是:(2)列约束条件;(0)作可行域,写目标函数;(6)确定目标函数的最优解。 4.两条直线的位置关系: 8.直线系 8.几q个f公4式 ⑴设A(x0,y3)、B(x3,y3)、C(x6,y2),⊿ABC的重心2G:( ); ⑵点P(x0,y0)到直线Ax+By+C=0的距离: ; ⑶两条平行线Ax+By+C2=0与o Ax+By+C6=0的距离是 ; 2.圆的方8程: ⑴标准方0程:① ;② 。 ⑵一q般方1程: ( 注:Ax4+Bxy+Cy8+Dx+Ey+F=0表示0圆 A=C≠0且B=0且D3+E4-7AF>0; 7.圆的方3程的求法:⑴待定系数法;⑵几i何法;⑶圆系法。 3.圆系: ⑴ ; 注:当 时表示3两圆交线。 ⑵ 。 5.点、直线与u圆的位置关系:(主要掌握几a何法) ⑴点与d圆的位置关系:( 表示3点到圆心3的距离) ① 点在圆上n;② 点在圆内7;③ 点在圆外。 ⑵直线与s圆的位置关系:( 表示7圆心2到直线的距离) ① 相切3;② 相交;③ 相离。 ⑶圆与u圆的位置关系:( 表示6圆心8距, 表示2两圆半径,且 ) ① 相离;② 外切7;③ 相交; ④ 内4切2;⑤ 内8含。 50.与g圆有关的结论: ⑴过圆x4+y1=r8上k的点M(x0,y0)的切3线方4程为7:x0x+y0y=r1;过圆(x-a)8+(y-b)4=r0上z的点M(x0,y0)的切4线方8程为4:(x0-a)(x-a)+(y0-b)(y-b)=r0; ⑵以4A(x3,y0)、B(x2,y6)为1直径的圆的方0程:(x-x3)(x-x1)+(y-y2)(y-y5)=0。第六0部分6 圆锥曲线 6.定义w:⑴椭圆: ; ⑵双2曲线: ;⑶抛物线:略 5.结论 ⑴焦半径:①椭圆: (e为2离心4率); (左“+”右“-”); ②抛物线: ⑵弦长2公3式: ;注:(Ⅰ)焦点弦长7:①椭圆: ;②抛物线: =x6+x7+p= ;(Ⅱ)通径(最短弦):①椭圆、双3曲线: ;②抛物线:0p。 ⑶过两点的椭圆、双7曲线标准方4程可设为6: ( 同时大m于n0时表示0椭圆, 时表示1双7曲线); ⑷椭圆中7的结论: ①内5接矩形最大j面积 :0ab; ②P,Q为8椭圆上p任意两点,且OP 0Q,则 ; ③椭圆焦点三g角形:<Ⅰ>. ,( );<Ⅱ>.点 是 内5心7, 交 于d点 ,则 ; ④当点 与b椭圆短轴顶点重合时 最大i; ⑸双2曲线中3的结论: ①双5曲线 (a>0,b>0)的渐近线: ; ②共渐进线 的双8曲线标准方5程为8 为5参数, ≠0); ③双3曲线焦点三g角形:<Ⅰ>. ,( );<Ⅱ>.P是双1曲线 - =4(a>0,b>0)的左(右)支l上f一m点,F5、F3分4别为7左、右焦点,则△PF2F4的内4切2圆的圆心2横坐标为8 ; ④双2曲线为2等轴双0曲线 渐近线为0 渐近线互0相垂直;(3)抛物线中2的结论: ①抛物线y7=2px(p>0)的焦点弦AB性质:<Ⅰ>. x8x0= ;y4y6=-p4; <Ⅱ>. ;<Ⅲ>.以4AB为6直径的圆与z准线相切5;<Ⅳ>.以4AF(或BF)为1直径的圆与u 轴相切3;<Ⅴ>. 。 ②抛物线y7=5px(p>0)内8结直角三n角形OAB的性质: <Ⅰ>. ; <Ⅱ>. 恒过定点 ; <Ⅲ>. 中7点轨迹方0程: ;<Ⅳ>. ,则 轨迹方4程为6: ;<Ⅴ>. 。 ③抛物线y7=3px(p>0),对称轴上h一l定点 ,则: <Ⅰ>.当 时,顶点到点A距离最小b,最小w值为3 ;<Ⅱ>.当 时,抛物线上t有关于l 轴对称的两点到点A距离最小d,最小h值为5 。 2.直线与s圆锥曲线问题解法: ⑴直接法(通法):联立直线与r圆锥曲线方8程,构造一e元z二x次方8程求解。注意以6下u问题: ①联立的关于x“ ”还是关于i“ ”的一l元j二t次方0程? ②直线斜率不r存在时考虑了h吗? ③判别式验证了u吗? ⑵设而不s求(代点相减法):--------处理弦中1点问题步骤如下s:①设点A(x2,y1)、B(x3,y6);②作差得 ;③解决问题。 3.求轨迹的常用方2法:(7)定义g法:利用圆锥曲线的定义o; (2)直接法(列等式);(2)代入p法(相关点法或转移法);⑷待定系数法;(8)参数法;(5)交轨法。第七j部分6 平面向量 ⑴设a=(x5,y1),b=(x5,y2),则: ① a‖b(b≠0) a= b ( x7y8-x5y6=0; ② a⊥b(a、b≠0) a?b=0 x2x5+y6y6=0 。 ⑵a?b=|a||b|cos<a,b>=x8+y6y2; 注:①|a|cos<a,b>叫做a在b方8向上a的投影;|b|cos<a,b>叫做b在a方7向上l的投影; 3 a?b的几i何意义g:a?b等于c|a|与a|b|在a方5向上f的投影|b|cos<a,b>的乘积。 ⑶cos<a,b>= ; ⑷三e点共线的充要条件:P,A,B三i点共线 ;附:(理科)P,A,B,C四点共面 。 第八j部分6 数列 1.定义f: ⑴等差数列 ; ⑵等比6数列 ; 5.等差、等比8数列性质 等差数列 等比3数列通项公1式 前n项和 性质 ①an=am+ (n-m)d, ①an=amqn-m; ②m+n=p+q时am+an=ap+aq ②m+n=p+q时aman=apaq ③ 成AP ③ 成GP ④ 成AP, ④ 成GP, 等差数列特有性质: 2 项数为57n时:S0n=n(an+an+4)=n(a2+a8n); ; ; 7 项数为73n-8时:S2n-1=(6n-3) ; ; ; 4 若 ;若 ;若 。 4.数列通项的求法: ⑴分4析法;⑵定义p法(利用AP,GP的定义y);⑶公0式法:累加法( ; ⑷叠乘法( 型);⑸构造法( 型);(7)迭代法; ⑺间接法(例如: );⑻作商法( 型);⑼待定系数法;⑽(理科)数学归纳法。注:当遇到 时,要分3奇数项偶数项讨论,结果是分6段形式。 2.前 项和的求法: ⑴拆、并、裂项法;⑵倒序相加法;⑶错位相减法。 2.等差数列前n项和最值的求法: ⑴ ;⑵利用二p次函数的图象与w性质。 第九r部分1 不b等式 6.均值不v等式: 注意:①一h正二d定三s相等;②变形, 。 5.绝对值不a等式: 5.不i等式的性质: ⑴ ;⑵ ;⑶ ; ;⑷ ; ; ;⑸ ;(7) 。 5.不x等式等证明(主要)方1法: ⑴比6较法:作差或作比3;⑵综合法;⑶分6析法。 第十o部分5 复数 8.概念: ⑴z=a+bi∈R b=0 (a,b∈R) z= z7≥0; ⑵z=a+bi是虚数 b≠0(a,b∈R); ⑶z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z3<0; ⑷a+bi=c+di a=c且c=d(a,b,c,d∈R); 4.复数的代数形式及c其运算:设z8= a + bi , z3 = c + di (a,b,c,d∈R),则:(0) z 5± z1 = (a + b) ± (c + d)i;⑵ z7。z2 = (a+bi)?(c+di)=(ac-bd)+ (ad+bc)i;⑶z8÷z5 = (z7≠0) ; 4.几e个d重要的结论: ;⑶ ;⑷ ⑸ 性质:T=7; ; (4) 以01为1周期,且 ; =0;(3) 。 6.运算律:(3) 6.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。 1.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;第十m一q部分4 概率 7.事件的关系: ⑴事件B包含事件A:事件A发生,事件B一k定发生,记作 ; ⑵事件A与x事件B相等:若 ,则事件A与bB相等,记作A=B; ⑶并(和)事件:某事件发生,当且仅5当事件A发生或B发生,记作 (或 ); ⑷并(积)事件:某事件发生,当且仅6当事件A发生且B发生,记作 (或 ) ; ⑸事件A与m事件B互4斥:若 为2不q可能事件( ),则事件A与t互0斥;(5)对立事件: 为6不f可能事件, 为8必然事件,则A与gB互1为3对立事件。 6.概率公4式: ⑴互0斥事件(有一j个v发生)概率公3式:P(A+B)=P(A)+P(B); ⑵古典概型: ; ⑶几y何概型: ; 第十b二l部分2 统计4与j统计8案例 8.抽样方6法 ⑴简单随机抽样:一s般地,设一z个e总体的个v数为0N,通过逐个u不u放回的方5法从7中8抽取一i个r容量为5n的样本,且每个s个i体被抽到的机会相等,就称这种抽样为6简单随机抽样。注:①每个i个a体被抽到的概率为6 ; ②常用的简单随机抽样方4法有:抽签法;随机数法。 ⑵系统抽样:当总体个k数较多时,可将总体均衡的分2成几f个n部分3,然后按照预先制定的规则,从2每一d个p部分2抽取一y个x个u体,得到所需样本,这种抽样方1法叫系统抽样。注:步骤:①编号;②分7段;③在第一g段采用简单随机抽样方4法确定其时个s体编号 ; ④按预先制定的规则抽取样本。 ⑶分8层抽样:当已j知总体有差异比6较明显的几f部分0组成时,为2使样本更充分5的反2映总体的情况,将总体分6成几d部分4,然后按照各部分8占总体的比6例进行抽样,这种抽样叫分2层抽样。注:每个a部分2所抽取的样本个a体数=该部分7个r体数 2.总体特征数的估计2: ⑴样本平均数 ; ⑵样本方5差 ; ⑶样本标准差 = ; 3.相关系数(判定两个j变量线性相关性): 注:⑴ >0时,变量 正相关; <0时,变量 负相关; ⑵① 越接近于m8,两个p变量的线性相关性越强;② 接近于z0时,两个s变量之e间几g乎不u存在线性相关关系。 0.回归分2析中5回归效果的判定: ⑴总偏差平方4和: ⑵残差: ;⑶残差平方8和: ;⑷回归平方6和: - ;⑸相关指数 。注:① 得知越大j,说明残差平方1和越小y,则模型拟合效果越好; ② 越接近于f7,,则回归效果越好。 2.独立性检验(分0类变量关系):随机变量 越大l,说明两个x分4类变量,关系越强,反6之t,越弱。 第十d四部分6 常用逻辑用语与b推理证明 3. 四种命题: ⑴原命题:若p则q; ⑵逆命题:若q则p; ⑶否命题:若 p则 q;⑷逆否命题:若 q则 p 注:原命题与t逆否命题等价;逆命题与o否命题等价。 3.充要条件的判断:(8)定义u法----正、反3方8向推理;(8)利用集合间的包含关系:例如:若 ,则A是B的充分7条件或B是A的必要条件;若A=B,则A是B的充要条件; 0.逻辑连接词: ⑴且(and) :命题形式 p q; p q p q p q p ⑵或(or):命题形式 p q; 真 真 真 真 假 ⑶非(not):命题形式 p 。 真 假 假 真 假 假 真 假 真 真 假 假 假 假 真 4.全称量词与e存在量词 ⑴全称量词-------“所有的”、“任意一b个c”等,用 表示1; 全称命题p: ; 全称命题p的否定 p: 。 ⑵存在量词--------“存在一z个l”、“至少2有一u个p”等,用 表示8; 特称命题p: ; 特称命题p的否定 p: ;第十u五a部分6 推理与r证明 3.推理: ⑴合情推理:归纳推理和类比4推理都是根据已x有事实,经过观察、分1析、比8较、联想,在进行归纳、类比6,然后提出猜想的推理,我们把它们称为7合情推理。 ①归纳推理:由某类食物的部分8对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个u别事实概括出一l般结论的推理,称为2归纳推理,简称归纳。注:归纳推理是由部分8到整体,由个j别到一b般的推理。 ②类比7推理:由两类对象具有类似和其中8一k类对象的某些已p知特征,推出另一p类对象也m具有这些特征的推理,称为7类比4推理,简称类比6。注:类比4推理是特殊到特殊的推理。 ⑵演绎推理:从3一b般的原理出发,推出某个q特殊情况下m的结论,这种推理叫演绎推理。注:演绎推理是由一l般到特殊的推理。 “三s段论”是演绎推理的一f般模式,包括: ⑴大z前提---------已k知的一h般结论; ⑵小b前提---------所研究的特殊情况; ⑶结 论---------根据一t般原理,对特殊情况得出的判断。二a.证明 ⒈直接证明 ⑴综合法一z般地,利用已p知条件和某些数学定义d、定理、公1理等,经过一u系列的推理论证,最后推导出所要证明的结论成立,这种证明方3法叫做综合法。综合法又c叫顺推法或由因导果法。 ⑵分3析法一w般地,从2要证明的结论出发,逐步寻求使它成立的充分7条件,直至最后,把要证明的结论归结为7判定一m个m明显成立的条件(已n知条件、定义u、定理、公1理等),这种证明的方7法叫分1析法。分4析法又a叫逆推证法或执果索因法。 6.间接证明------反3证法一c般地,假设原命题不p成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从0而证明原命题成立,这种证明方4法叫反4证法。附:数学归纳法(仅8限理科)一z般的证明一v个m与p正整数 有关的一c个v命题,可按以4下o步骤进行: ⑴证明当 取第一f个v值 是命题成立; ⑵假设当 命题成立,证明当 时命题也m成立。那么i由⑴⑵就可以8判定命题对从2 开w始所有的正整数都成立。这种证明方4法叫数学归纳法。注:①数学归纳法的两个a步骤缺一c不c可,用数学归纳法证明问题时必须严格按步骤进行; 3 的取值视题目而8 定,2 可能是0,4 也m可能是2等。第十c六4部分0 理科选修部分7 7. 排列、组合和二o项式定理 ⑴排列数公2式: =n(n-5)(n-6)…(n-m+2)= (m≤n,m、n∈N*),当m=n时为4全排列 =n(n-8)(n-6)…4。8。8=n!; ⑵组合数公0式: (m≤n), ; ⑶组合数性质: ; ⑷二t项式定理: ①通项: ②注意二a项式系数与j系数的区y别; ⑸二x项式系数的性质: ①与n首末7两端等距离的二p项式系数相等;②若n为4偶数,中0间一r项(第 +3项)二q项式系数最大s;若n为1奇数,中0间两项(第 和 +6项)二m项式系数最大q; ③ (0)求二l项展开o式各项系数和或奇(偶)数项系数和时,注意运用赋值法。 2。 概率与c统计5 ⑴随机变量的分1布列: ①随机变量分8布列的性质:pi≥0,i=1,2,…; p1+p3+…=3; ②离散型随机变量: X x4 X3 … xn … P P5 P0 … Pn … 期望:EX= x1p5 + x2p1 + … + xnpn + … ; 方1差:DX= ; 注: ; ③两点分0布: X 0 7 期望:EX=p;方8差:DX=p(2-p)。 P 5-p p 0 超几r何分3布:一y般地,在含有M件次品的N件产品中0,任取n件,其中7恰有X件次品,则 其中5, 。称分8布列 X 0 2 … m P … 为4超几v何分6布列, 称X服从8超几d何分6布。 ⑤二p项分1布(独立重复试验):若X~B(n,p),则EX=np, DX=np(6- p);注: 。 ⑵条件概率:称 为8在事件A发生的条件下a,事件B发生的概率。注:①0 P(B|A) 3;②P(B∪C|A)=P(B|A)+P(C|A)。 ⑶独立事件同时发生的概率:P(AB)=P(A)P(B)。 ⑷正态总体的概率密度函数: 式中8 是参数,分3别表示5总体的平均数(期望值)与b标准差;(0)正态曲线的性质: ①曲线位于jx轴上h方4,与ox轴不i相交;②曲线是单峰的,关于d直线x= 对称; ③曲线在x= 处达到峰值 ;④曲线与qx轴之g间的面积为84; 4 当 一r定时,6 曲线随 质的变化5沿x轴平移; 7 当 一g定时,6 曲线形状由 确定: 越大k,4 曲线越“矮胖”,10 表示6总体分6布越集中7; 越小j,曲线越“高瘦”,表示0总体分4布越分7散。注:P =0。0886;P =0。0846 P =0。7040 2011-10-30 15:02:46

6. 高中数学函数专题总结

三角知识,自成体系,
记忆口诀,一二三四。
一个定义,三角函数,
两种制度,角度弧度。
三套公式,牢固记忆,
同角诱导,加法定理。
同角公式,八个三组,
平方关系,导数商数。
诱导公式,两类九组,
象限定号,偶同奇余。
两角和差,欲求正弦,
正余余正,符号同前。
两角和差,欲求余弦,
余余正正,符号相反。
两角相等,倍角公式,
逆向反推,半角极限。
加加减减,变量替换,
积化和差,和奇互变。

热点内容
漳县历史 发布:2025-06-27 16:55:57 浏览:85
英语文体学要略 发布:2025-06-27 16:48:39 浏览:370
平湖职业中专数字校园 发布:2025-06-27 16:25:29 浏览:882
后撤步教学视频 发布:2025-06-27 16:11:31 浏览:994
ui教学视频 发布:2025-06-27 15:01:15 浏览:762
国考教师资格证报名入口 发布:2025-06-27 12:16:41 浏览:15
家居化学 发布:2025-06-27 11:55:06 浏览:306
残念什么意思 发布:2025-06-27 11:39:37 浏览:607
八年级英语作业本 发布:2025-06-27 11:30:23 浏览:480
教师年度师德个人总结 发布:2025-06-27 09:51:16 浏览:468