初一下册数学测试题
『壹』 七年级下册数学期末试卷
班级: 姓名: 学号:
一、 选择题(每小题3分,共30分)
1.方程 的解是( )
A. x=0 B. x=1 C.x=2 D.x=3
2.如果-7y=8,那么用y的代数式表示x正确的是( )
A. B. C. D.
3.下列说法正确的是( )
A. 一元一次方程一定只有一个解; B. 二元一次方程x + y = 2有无数解;
C.方程2x = 3x没有解; D. 方程中未知数的值就是方程的解。
4.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y- = y-●,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y = -
很快补好了这个常数,这个常数应是 ( )
A.1 B.2 C.3 D.4
5. 下列不等式是一元一次不等式的是( )。
A.2(1-y)>4y+2 B.x(2-x)≥l C. + > D.x+l<y+2
6.不等式2x-2≥3x-4的正整数解的个数为( )。
A.1个 B.2个 C.3个 D.4个
7.代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
8.下列说法中错误的是( )
A. 三角形的中线、角平分线、高线都是线段;
B. 任意三角形的外角和都是3600;
C. 三角形按边分可分为不等边三角形和等腰三角形;
D. 三角形的一个外角大于任何一个内角。
9.在△ABC中,∠A-∠B = 900,则△ABC为( )三角形。
A.锐角三角形; B. 直角三角形; C. 钝角三角形; D. 无法确定。
10.某商品涨价20%后欲恢复原价,则必须下降的百分数约为( )
A.17%; B. 18%; C. 19% ; D. 20%。
二、 填空题(每小题3分,共33分)
11.某数的 加上5与它的2倍减去9相等,设某数为x,列方程得 .
12.如果 +(x+2y)2=0,则x=_______,y=_______。
13.在等式y=kx+b中,当x=0时,y=-1;当x=1时,y=2,则k=____,b=______。
14. 如图是“星星超市”中某洗发水的价格标签,
那么这种洗发水的原价是 。
15.三角形三边长分别为4,1-2a,7,则a的取值范围是
16.一份试卷共有20道选择题,总分为100分,每道题选对得5分,选错或不选扣1分,如果一个学生至少得88分,那么他至少选对______道题
17.不等式组 的解集是
18.求下列各图中∠1的度数
(1) (2) (3)
19.某储户将25000元人民币存入银行一年,取出时扣除20%的利息所得税后,共得人民币25396元,求该储户所存储种的利率。
设_______________,则列出的方程(或方程组)是___________________。
20.如图,∠A=280,∠B=420,∠DFE=1300,则∠C= 度。
21. 若3x+7y+z=5,4x+lOy+z=3,则x+y+z的值等于______
三、 作图题(请保留作图痕迹,共6分)
22.请任意作一个钝角三角形,并作出它三边上的高。
四、 解方程(或方程组)(23小题5分,24~26小题每小题6分,共23分)
23.3x-2=5x+6 24.
25. 26.
五、解答题(27小题6分,28~30小题每小题9分,共33分)
27.当k取何值时, 的值比 的值小1。
28. 已知方程组 与方程 的解相同,求a、b.
29.已知 与 的值的符号相同,求a的取值范围。
30.如图,在△ABC中,AD是角平分线,∠B=660,∠C=540,求∠ADB和∠ADC的度数.
班级: 姓名: 学号:
一、 选择题(每小题3分,共30分)
1.方程 的解是( )
A. x=0 B. x=1 C.x=2 D.x=3
2.如果2x-7y=8,那么用y的代数式表示x正确的是( )
A. B. C. D.
3.下列说法正确的是( )
A. 一元一次方程一定只有一个解; B. 二元一次方程x + y = 2有无数解;
C.方程2x = 3x没有解; D. 方程中未知数的值就是方程的解。
4.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y- = y-●,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y = -
很快补好了这个常数,这个常数应是 ( )
A.1 B.2 C.3 D.4
5. 下列不等式是一元一次不等式的是( )。
A.2(1-y)>4y+2 B.x(2-x)≥l C. + > D.x+l<y+2
6.不等式2x-2≥3x-4的正整数解的个数为( )。
A.1个 B.2个 C.3个 D.4个
7.代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
8.下列说法中错误的是( )
A. 三角形的中线、角平分线、高线都是线段;
B. 任意三角形的外角和都是3600;
C. 三角形按边分可分为不等边三角形和等腰三角形;
D. 三角形的一个外角大于任何一个内角。
9.在△ABC中,∠A-∠B = 900,则△ABC为( )三角形。
A.锐角三角形; B. 直角三角形; C. 钝角三角形; D. 无法确定。
10.某商品涨价20%后欲恢复原价,则必须下降的百分数约为( )
A.17%; B. 18%; C. 19% ; D. 20%。
二、 填空题(每小题3分,共33分)
11.某数的 加上5与它的2倍减去9相等,设某数为x,列方程得 .
12.如果 +(x+2y)2=0,则x=_______,y=_______。
13.在等式y=kx+b中,当x=0时,y=-1;当x=1时,y=2,则k=____,b=______。
14. 如图是“星星超市”中某洗发水的价格标签,
那么这种洗发水的原价是 。
15.三角形三边长分别为4,1-2a,7,则a的取值范围是
16.一份试卷共有20道选择题,总分为100分,每道题选对得5分,选错或不选扣1分,如果一个学生至少得88分,那么他至少选对______道题
17.不等式组 的解集是
18.求下列各图中∠1的度数
(1) (2) (3)
19.某储户将25000元人民币存入银行一年,取出时扣除20%的利息所得税后,共得人民币25396元,求该储户所存储种的利率。
设_______________,则列出的方程(或方程组)是___________________。
20.如图,∠A=280,∠B=420,∠DFE=1300,则∠C= 度。
21. 若3x+7y+z=5,4x+lOy+z=3,则x+y+z的值等于______
三、 作图题(请保留作图痕迹,共6分)
22.请任意作一个钝角三角形,并作出它三边上的高。
四、 解方程(或方程组)(23小题5分,24~26小题每小题6分,共23分)
23.3x-2=5x+6 24.
25. 26.
五、解答题(27小题6分,28~30小题每小题9分,共33分)
27.当k取何值时, 的值比 的值小1。
28. 已知方程组 与方程 的解相同,求a、b.
29.已知 与 的值的符号相同,求a的取值范围。
30.如图,在△ABC中,AD是角平分线,∠B=660,∠C=540,求∠ADB和∠ADC的度数.
六、列方程(组)解应用题(共10分)
31.人民公园的门票价格规定如下表:
购票人数 1~40人 41~80人 80人以上
每人门票价 10元 9元 8元
某校高二(1)、(2)两个班共85人去游人民公园,其中(1)班是小班,人数较少,不到40人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则比两班联合购票多花120元,问两班各有多少名学生?
七、综合题(共15分)
32、某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评。A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:
表1 演讲答辩得分表(单位:分)
A B C D E
甲 90 92 94 95 88
乙 89 86 87 94 91
表2 民主测评票数统计表(单位:张)
“好”票数 “较好”票数 “一般”票数
甲 40 7 3
乙 42 4 4
规则:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数 2分+“较好”票数 1分+“一般”票数 0分;综合得分=演讲答辩得分 (1-a)+民主测评得分 a .
(1)当a=0.6时,甲的综合得分是多少?
(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
六、列方程(组)解应用题(共10分)
31.人民公园的门票价格规定如下表:
购票人数 1~40人 41~80人 80人以上
每人门票价 10元 9元 8元
某校高二(1)、(2)两个班共85人去游人民公园,其中(1)班是小班,人数较少,不到40人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则比两班联合购票多花120元,问两班各有多少名学生?
七、综合题(共15分)
32、某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评。A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:
表1 演讲答辩得分表(单位:分)
A B C D E
甲 90 92 94 95 88
乙 89 86 87 94 91
表2 民主测评票数统计表(单位:张)
“好”票数 “较好”票数 “一般”票数
甲 40 7 3
乙 42 4 4
规则:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数 2分+“较好”票数 1分+“一般”票数 0分;综合得分=演讲答辩得分 (1-a)+民主测评得分 a .
(1)当a=0.6时,甲的综合得分是多少?
(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
班级: 姓名: 学号:
一、 选择题(每小题3分,共30分)
1.方程 的解是( )
A. x=0 B. x=1 C.x=2 D.x=3
2.如果2x-7y=8,那么用y的代数式表示x正确的是( )
A. B. C. D.
3.下列说法正确的是( )
A. 一元一次方程一定只有一个解; B. 二元一次方程x + y = 2有无数解;
C.方程2x = 3x没有解; D. 方程中未知数的值就是方程的解。
4.小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是2y- = y-●,怎么办呢?小明想了一想便翻看了书后的答案,此方程的解是y = -
很快补好了这个常数,这个常数应是 ( )
A.1 B.2 C.3 D.4
5. 下列不等式是一元一次不等式的是( )。
A.2(1-y)>4y+2 B.x(2-x)≥l C. + > D.x+l<y+2
6.不等式2x-2≥3x-4的正整数解的个数为( )。
A.1个 B.2个 C.3个 D.4个
7.代数式1-m的值大于-1,又不大于3,则m的取值范围是( )
8.下列说法中错误的是( )
A. 三角形的中线、角平分线、高线都是线段;
B. 任意三角形的外角和都是3600;
C. 三角形按边分可分为不等边三角形和等腰三角形;
D. 三角形的一个外角大于任何一个内角。
9.在△ABC中,∠A-∠B = 900,则△ABC为( )三角形。
A.锐角三角形; B. 直角三角形; C. 钝角三角形; D. 无法确定。
10.某商品涨价20%后欲恢复原价,则必须下降的百分数约为( )
A.17%; B. 18%; C. 19% ; D. 20%。
二、 填空题(每小题3分,共33分)
11.某数的 加上5与它的2倍减去9相等,设某数为x,列方程得 .
12.如果 +(x+2y)2=0,则x=_______,y=_______。
13.在等式y=kx+b中,当x=0时,y=-1;当x=1时,y=2,则k=____,b=______。
14. 如图是“星星超市”中某洗发水的价格标签,
那么这种洗发水的原价是 。
15.三角形三边长分别为4,1-2a,7,则a的取值范围是
16.一份试卷共有20道选择题,总分为100分,每道题选对得5分,选错或不选扣1分,如果一个学生至少得88分,那么他至少选对______道题
17.不等式组 的解集是
18.求下列各图中∠1的度数
(1) (2) (3)
19.某储户将25000元人民币存入银行一年,取出时扣除20%的利息所得税后,共得人民币25396元,求该储户所存储种的利率。
设_______________,则列出的方程(或方程组)是___________________。
20.如图,∠A=280,∠B=420,∠DFE=1300,则∠C= 度。
21. 若3x+7y+z=5,4x+lOy+z=3,则x+y+z的值等于______
三、 作图题(请保留作图痕迹,共6分)
22.请任意作一个钝角三角形,并作出它三边上的高。
四、 解方程(或方程组)(23小题5分,24~26小题每小题6分,共23分)
23.3x-2=5x+6 24.
25. 26.
五、解答题(27小题6分,28~30小题每小题9分,共33分)
27.当k取何值时, 的值比 的值小1。
28. 已知方程组 与方程 的解相同,求a、b.
29.已知 与 的值的符号相同,求a的取值范围。
30.如图,在△ABC中,AD是角平分线,∠B=660,∠C=540,求∠ADB和∠ADC的度数.
六、列方程(组)解应用题(共10分)
31.人民公园的门票价格规定如下表:
购票人数 1~40人 41~80人 80人以上
每人门票价 10元 9元 8元
某校高二(1)、(2)两个班共85人去游人民公园,其中(1)班是小班,人数较少,不到40人,(2)班人数较多,经估算,如果两班都以班为单位分别购票,则比两班联合购票多花120元,问两班各有多少名学生?
七、综合题(共15分)
32、某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评。A、B、C、D、E五位老师作为评委,对“演讲答辩”情况进行评价,全班50位同学参与了民主测评,结果如下表所示:
表1 演讲答辩得分表(单位:分)
A B C D E
甲 90 92 94 95 88
乙 89 86 87 94 91
表2 民主测评票数统计表(单位:张)
“好”票数 “较好”票数 “一般”票数
甲 40 7 3
乙 42 4 4
规则:演讲答辩得分按“去掉一个最高分和一个最低分再算平均分”的方法确定;民主测评得分=“好”票数 2分+“较好”票数 1分+“一般”票数 0分;综合得分=演讲答辩得分 (1-a)+民主测评得分 a .
(1)当a=0.6时,甲的综合得分是多少?
(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?
『贰』 初一数学下册期末试卷及答案
1.800 + 800 * x *(1-0.05)= 816.67
为100-x
x = 0.0219
2.解设原价为X元
X/10*8=188元
X/10=188/8
X/10=23.5
X=23.5*10
X=235元
3.本金*年利率*存款年数=利息
因为利息税取消,所以列方程:
解:设他开始存了x元.
2.7%x*3=5405-x
解得x=5000元.
4.解:设第一个数为x,则第二个数为100-x
由题意,得 x+3=(100-x)-3
解,得x=47
答:第一个数是47,第二个数是53
5........................................
..............
..
6.设爷爷赢的盘数为x
孙子的盘数为8-x
根据题意得:
x=3*(8-x)
x=6
所以爷爷赢了6盘,孙子赢了2盘
警告你啊、 以后不要再出这麽多题了
真麻烦
『叁』 初一下册数学测试题 越多越好
二元一次方程 [知识点] a. 二元一次方程的定义: 1. 只能有两个未知数;不能有一个或三个。 2. 未知数的次数只能为一次;不能有类似于xy等项 3. 左右两边都要是整式;分母中不能出现字母;π除外 b. 一个二元一次方程的解有无数组;一个二元一次方程组的解一般有一组解。 特例: 无解(矛盾方程组) 有无数组解(同解方程) c. 解法:(代入和加减消元法) 在很多时候;我们更多的是使用加减消元法。 注意点: 1. 去分母时;那些原本没有分母的项也要乘;那些分子去分母时要加括号 2. 去括号时;括号前若是“-”号;要全都变号。 3. 一般情况下;解方程(组)时解的数字不会很复杂;很多时候是同学做错才会出现。 4.解一些比较复杂的方程组时一般会先整理后再用加减法去做 5.解方程组一定要代入验算;以保正确率 d.留意二元一次方程的整数解与非负整数解的区别 [常见考题类型] 1解方程: (1) (2) 2x-3y+12 +3x-2y-33 =1x+2y+64 -4x+2y-25 =0 2. 方程4x+2y=3,用y的代数式表示x 。 3. 己知 ;求 的值 4. 方程组 中的y值是x值的3倍;求m的值。 5. 关于x、y的二元一次方程组 的解互为相反数;求m的值。 6. 关于 、 的方程组 的解 、 的和为12;求 的值。 7. 若3x n-1y 2-m和-2x4+m y n+1是同类项;则m= ;n= 。 8. 已知 求x 、y的值。 9. 用白铁皮做罐头盒;每张铁皮可做盒身16个或做盒底43个;一个盒身与两个盒底配成一套罐头盒;现有150张白铁皮;用多少张做盒身;多少张做盒底;可以正好做成整套罐头盒。 10. 如图;周长为68cm 的长方形ABCD被分成 7个相同的矩形;求长方形ABCD的面积 11.把一个两位数的个位数字与十位数字对调;所得的两位数比原两位数小18;且知个位数字与十位数字的和为6;求原两位数。 希望你的数学能有提高 暖山Q兔 - 二级 2009-6-21 13:15 (答案在下面) 1.二元一次方程4x-3y=12;当x=0;1;2;3时;y=______. 2.在x+3y=3中;若用x表示y;则y=______;用y表示x;则x=______. 4.把方程3(x+5)=5(y-1)+3化成二元一次方程的一般形式为______. (1)方程y=2x-3的解有______; (2)方程3x+2y=1的解有______; (3)方程y=2x-3与3x+2y=1的公共解是______. 9.方程x+y=3有______组解;有______组正整数解;它们是______. 11.已知方程(k2-1)x2+(k+1)x+(k-7)y=k+2.当k=______时;方程为一元一次方程;当k=______时;方程为二元一次方程. 12.对二元一次方程2(5-x)-3(y-2)=10;当x=0时;则y=______;当y=0时;则x=______. 13.方程2x+y=5的正整数解是______. 14.若(4x-3)2+|2y+1|=0;则x+2=______. 的解. 当k为______时;方程组没有解. ______. (二)选择 24.在方程2(x+y)-3(y-x)=3中;用含x的代数式表示y;则[ ] A.y=5x-3; B.y=-x-3; D.y=-5x-3. [ ] 26.与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是[ ] A.10x+2y=4; B.4x-y=7; C.20x-4y=3; D.15x-3y=6. [ ] A.m=9; B.m=6; C.m=-6; D.m=-9. 28.若5x2ym与4xn+m-1y是同类项;则m2-n的值为 [ ] A.1; B.-1; C.-3; D.以上答案都不对. 29.方程2x+y=9在正整数范围内的解有[ ] A.1个; B.2个; C.3个; D.4个. [ ] A.4; B.2; C.-4; D.以上答案都不对. 二元一次方程组•综合创新练习题 一、综合题 【Z;3;二】 【Z;3;二】 3.已知4ax+yb2与-a3by是同类项求2x-y的值. 【Z;3;二】 4.若|x-2|+(2x-3y+5)2=0;求x和y的值. 【N;3;三】 5.若方程2x2m+3+3y5n-4=7是x;y的二元一次方程组;求m2+n的值. 【Z;3;二】 二、创新题 1.已知x和y互为相反数;且(x+y+4)(x-y)=4;求x和y的值. 【N;4;三】 2.求方程x+2y=7在自然数范围内的解. 【N;4;三】 三、中考题 (山东;95;3分)下列结论正确的是 [ ] 参考答案及点拨 一、1.所考知识点:方程组的解及求代数式的值. ∴ 2m+3n=2×2+3(-3)=4-9=-5. 2.所考知识点:方程的解及解一元一次方程. 解:把 x=-3;y=-2代入方程;得 2(-3)-4(-2)+2a=3解关 点拨:以上两题考察的知识点类似;已知方程的解时;只要把这组数代入方程或方程组就可求出方程中其他字母的值. 3.所考知识点:同类项及解方程 点拨:根据同类项的定义知;相同字母的指数相同;故可列出方程;从而求解. 4.所考知识点:非负数的性质及解简单的二元一次方程组. 点拨:因|x-2|≥0;(2x-3y+5)2≥0;所以;当它们的和为零;这两个数都须是零;即x-2=0;2x-3y+5=0. 5.所考知识点:二元一次方程的定义. 解:由题意知 点拨:从二元一次方程的定义知;未知项的指数为 1;由此得到 2m+3=1; 5n-4=1. 二、1.所考知识点:相反数的意义及解简单的二元一次方程组. 解:由题意;得x+y=0; 又∵(x+y+4)(x-y)=4 ∴ 4(x-y)=4 即x-y=1 2.所考知识点:二元一次方程的自然数解. 解:把方程x+2y=7变形;得x=7-2y 令y=1;2;3;4……;则x=5;3;1;-1…… 点拨:二元一次方程的自然数解;就是未知数的值;都是自然数;首先将方程变形;用含一个字母的代数式表示另一个字母;再根据题目的特点求解. 三、所考知识点:二元一次方程组解的定义. 解:D 点拨:由二元一次方程组的定义知道;二元一次方程组的解;是方程组中每个二元一次方程组的解;故选D. <
『肆』 人教版七年级下册数学测试题
第六章 平面直角坐标系
江苏省赣榆县沙河中学 张庆华
【课标要求】
考点
课标要求
知识与技能目标
了解
理解
掌握
灵活应用
平面直角坐标系
理解平面直角坐标系的有关概念
∨
理解坐标平面内点的坐标特征并达到初步掌握
∨
∨
了解不同位置点的坐标特征并达到初步应用
∨
∨
∨
【知识梳理】
1.平面直角坐标系的有关概念:平面直角坐标系的有关概念不要死记硬背,应紧密结合坐标系来认识;在坐标平面内会正确地描点,对于坐标平面内的点要借助图形正确地写出,特别注意各象限内点的坐标符号。
2.坐标平面内点的坐标特征:注意两坐标轴上点的坐标的不同,且x轴、y轴不属于任何一个象限。
3.不同位置点的坐标特征:对于平行于两坐标轴的直线上点的坐标特点应借助于平面直角坐标系来应用。对于对称点的坐标特征应遵循:关于x轴对称的两点,横坐标不变,纵坐标相反; 关于y轴对称的两点,横坐标相反,纵坐标不变;关于原点对称的两点, 横纵坐标都互为相反数,或借助图形来完成,切忌死背。注意P(x,y)到两坐标轴的距离与线段长度的区分。
【能力训练】
一、填空题:
1.已知点M(,)在第二象限,则的值是 ;
2.已知:点P的坐标是(,),且点P关于轴对称的点的坐标是(,),则;
3.点 A在第二象限,它到轴、轴的距离分别是 、,则坐标是 ;
4. 点P在轴上对应的实数是,则点P的坐标是 ,若点Q在轴上对应的实数是,则点Q的坐标是 ,若点R(,)在第二象限,则,(填“>”或“<”号);
5.点P(,)关于轴的对称点的坐标是 ,关于轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;
6.点A(,)到轴的距离是 ,到轴的距离是 ,到原点的距离是 ;
7.若点 在第一象限,则的取值范围是 ;
8.若 关于原点对称,则 ;
9.已知,则点(,)在 ;
10.等腰三角形周长为20cm,腰长为(cm),底边长为(cm),则与的函数关系式为 ,自变量的取值范围是 ;
11.已知中自变量的取值范围是 ;
12.函数中自变量的取值范围是__ ___;
13.函数中,自变量的取值范围是 ;
14.中自变量的取值范围是 ;
15.函数中自变量的取值范围是_____ ___;
16.函数中自变量的取值范围是 ;
18.函数中,自变量的取值范围是________ __;
19.函数的自变量的取值范围是 ;
20.函数的自变量的取值范围是 ;
二.选择题:
21.若点P(,)到轴的距离是,到轴的距离是,则这样的点P有 ( )
A 1个 B 2个 C 3个 D 4个
22.点A(,)关于轴对称的点的坐标是 ( )
A (,) B (,) C (, ) D (, )
23.点P(,)关于原点的对称点的坐标是 ( )
A.(,) B (,) C (,) D. (,)
24.在直角坐标系中,点P(,)关于轴对称的点P1的坐标是 ( )
A(,) B(,) C(, ) D(,)
25.若点P(, )在第二象限,则下列关系正确的是 ( )
A B C D
26.点(,)不可能在 ( )
A 第一象限 B 第二象限 C 第三象限 D 第四象限
27.如果点P(,)与点P1(,)关于轴对称,则,的值分别为 ( )
A B C D
28.函数中,自变量的取值范围是 ( )
A B C D
29.在函数中,自变量的取值范围是 ( )
A ≥3 B ≠3 C D
30. (02包头市)函数中,自变量的取值范围是 ( )
A. ≥1 B. C. ≤1 D.
31.函数的自变量的取值范围是 ( )
A <3 B ≤3且≠1 C ≤3 D 1<≤3
32.函数的自变量的取值范围是 ( )
A ≥2 B ≥-2 C >2 D >-2
33.已知点P(,)在第三象限,则的取值范围是 ( )
A B 3≤≤5 C 或 D ≥5或≤3
34.函数中自变量的取值范围是 ( )
A ≥-1 B ≠2 C ≥-1或≠2 D ≥-1且≠2
35.函数 中,自变量的取值范围是 ( )
A 且 B C 且 D ≤2且
36.下列五个命题:
(1)若直角三角形的两条边长为3和4,则第三边长是5;
(2)=a(a≥0);
(3)若点P(a,b)在第三象限,则点P’(-a,-b+1)在第一象限;
(4)连接对角线互相垂直且相等的四边形各边中点的四边形是正方形;
(5)两边及第三边上的中线对应相等的两个三角形全等。
其中正确命题的个数是 ( )
A 2个 B 3个 C 4个 D 5个
37.如图,已知直角坐标系中的点A,点B的坐标分别为A(2,4),B(4,0),且P为AB的中点,若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标为 ( )
A.(3,2) B.(6,2) C.(6,4) D.(3,5)
三.解答题:
38.对于边长为6的正△ABC,建立适当的直角坐标系,并写出各个顶点的坐标.
39.如图,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在轴上行驶,从原点O出发。
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标。
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标。
(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
40.已知三点A(0,4),B(—3,0),C(3,0),现以A、B、C为顶点画平行四边形,请根据A、B、C三点的坐标,写出第四个顶点D的坐标。
http://www.pep.com.cn/czsx/jszx/qnxc/st/
『伍』 初一下册数学期末测试题 附答案
1.下列说法正确的是( )
①最大的负整数是-1;②数轴上表示数2和-2的点到原点的距离相等;③1.61 ×104是精确到百分位;④a+5一定比a大;⑤(-2)3和-23相等.
A.2个 B.3个 C.4个 D.5个
2.若m,n互为相反数,则下列结论中不一定正确的是( )
A.m+n=0 B.m2=n2 C.│m│=│n│ D.
3.下列调查中必须用抽样调查的方式收集数据的有( )
①检查一大批灯炮使用寿命的长短;②调查某一城市居民家庭的收入状况;③了解全班同学的身高情况;④检查某种药品的疗效
A.1 B.2 C.3 D.4
4.如图所示的是某晚报“百姓热线”一周内接到热线电话的统计图, 其中有关环境保护问题的电话最多,共70个,那么, 本周“百姓热线”共接到热线电话的个数是( )
A.100 B.200 C.300 D.400
5.下列图形(如图所示)经过折叠不能围成正方体的是( )
6.若(a+1)2+│b-2│=0,则a6(-a+2b)等于( )
A.5 B.-5 C.3 D.-3
7.下面4个方程的变形中正确的是( )
A.4x+8=0 x+2=0; B.x+7=5-3x 4x=2; C. =3 2x=15;D.-4x=-2 x=-2
8.下列各式一定成立的有( )
①a2=(-a)2; ②a3=(-a)3; ③-a2=│-a2│; ④a3=│-a3│
A.1个 B.2个 C.3个 D.4个
9.将三角形绕直线I旋转一周,可以得到左图所示立体图形的是( )
10.物体如图甲所示,则这两个物体的俯视图应是( )
二、填空题:(每小题3分,共24分)
11.方程-x- a=-3的解是-4,则a=_________.
12.如图5,将硬纸片沿虚线折起来,便可做成一个正方体,这个正方体,这个正方体的2号面的对面是________号面.
13.翻开数学书,连续看了3页,页码的和为453,则这3页的页码分别是第____页,第_______页,第________页.
14.观察下列图形和所给表样中的数据后回答问题.
梯形个数 1 2 3 4 5 ……
图形周长 5 8 11 14 17 ……
当图形的周长为80时,梯形的个数为_________.
15.近似数3.1×105精确到________位,有________个有效数字.
16.一个角的补角比它的余角的3倍大10°,则这个角等于________.
17.开学时,对班上的男生进行了单杆引体向上的测验,以能做8次为标准, 超过的次数用正数表示,不足的次数用负数表示,该班男生的成绩如下:
成绩 2 -1 0 3 -2 -3 1 4
人数 4 3 3 4 5 4 5 2
则该班男生的达标率约为:_______.
18.一家商店将某种微波炉按原价提高40%后标价,又以8折优惠卖出, 结果每台微波炉比原价多赚了180元,这种微彼炉原价是________元.
三、解答题:(46分)
19.计算: . 20.解方程: .
21.股民小张星期五买某公司股票1000股,每股14.80元,下表为第二周星期一至星期五每日该股票涨跌情况(单位:元):
星期 一 二 三 四 五
每股涨跌 +0.4 +0.5 -0.1 -0.2 +0.4
(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价是每股多少元?
(3)已知小张买进股票时付了成交额0.15%的手续费,卖出时付了成交额0.15%的手续费和成交额0.1%的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?(8分)
22.如图7所示的是某班的一次数学测验成绩的统计图(分数取正整数, 满分100分),请观察图形,并回答下列问题:
(1)这个班有多少名学生? (2)这个班及格率(60分及格)是多少?
(3)这个班80分以上有多少人?(8分)
23.如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=14°,求∠AOB的度数.(9分)
24.某市收取水费按以下规定:若每月每户用水不超过20立方米, 则每立方米水价按1.2元收费;若超过20立方米,则超过的部分每立方米按2元收费, 如果某户居民在某月所缴水费的平均水价为每立方米1.5元,那么他这个月共用了多少立方米的水?(9分)
答案:
一、选择题 1.C 2.D 3.C 4.B 5.B 6.A 7.A 8.A 9.B 10.D
二、填空题 11.a=14 12.6 13.150,151,152
14.26 15.万,两 16.50° 17.80% 18.1500元
三、解答题
19.
20.
21.(1)15.6元
(2)15.8元,15.2元
(3)15.8×1000(1- 0.15%-0.1%)-14.8×1000(1+0.15%)=938.3(元)
22.(1)60名 (2)76.7% (3)17 人
23.28°
24.32立方米.
『陆』 初一下册数学练习题及答案
一.选择题(每小题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每小题3分,计30分)
1、下列成语所描述的事件是必然事件的是
A、水中捞月 B、拔苗助长 C、守株待兔 D、瓮中捉鳖
2.根据图提供的信息,可知一个杯子的价格是( )
A.51元 B.35元 C.8元 D.7.5元
3、如图,工人师傅砌门时,常用木条EF固定长方形门
框ABCD,使其不变形,这种做法的根据是( )
A、两点之间线段最短 B、长方形的对称性
C、长方形的四个角都是直角 D、三角形的稳定性
4、如图,下列结论中,正确的是( )
A、∠1和∠2是同位角 B、∠2和∠3是内错角
C、∠2 和∠4是同旁内角 D、∠1和∠4是内错角
5、如图,AB=DB,BC=BE,欲证△ABE≌△DBC,
则需增加的条件是( )
A、∠1=∠2 B、∠A=∠D
C、∠E=∠C D、∠A=∠C
6、如图,AC=AD,BC=BD,则图中全等三角形共有()
A、3对B、4对C、5对D、6对
7、ΔABC中,∠A= ∠B= ∠C,则ΔABC是( )
A、锐角三角形 B、直角三角形
C、钝角三角形 D、等腰三角形
8、如图,阴影部分的面积为 ( )
A、a2 B、2a C、2a2 D、 a2
9.解方程组 时,一学生把 看错而得 ,而正
确的解是 ,那么 、 、 的值是( )
A、不能确定 ; B、 =4, =5, =-2 ;
C、 、 不能确定, =-2 ; D、 =4, =7, =2
10、下列说法中:(1)顶角相等,并且有一腰相等的两个等腰三角形全等;(2)底边相等,且周长相等的两个等腰三角形全等;(3)腰长相等,且有一角是50°的两个等腰三角形全等;(4)两条直角边对应相等的两个直角三角形全等;
错误的有( )
A、1个B、2个C、3个D、4个
二、填空题(每题3分,计30分)
11、 2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”声中胜利结束,全程11.8千米。11.8千米用科学计数法表示是___________米。
12、已知: 则 ____________
13、进行下列调查:①调查全班学生的视力;②调查扬州市初一年级学生双休日是如何安排的;③调查学校大门两侧100米内有没有开电子游戏厅;④电视台调查某部电视剧的收视率;⑤联合国调查伊拉克是否还在继续生产大规模杀伤性武器;⑥调查一批炮弹的杀伤半径;⑦质量技术监督部门调查某种电子产品的质量.再这些调查中,适合作普查的是________________,适合作抽样调查的是_____ _____.(只填序号)
14、如图,小明从点A向北偏东75°方向走到点B,又从点B向南偏西30°方向走到点C,则∠ABC的度数为________;
15、如右图,已知四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,那么Rt△ABC≌Rt△ADC,根据是______ 。
16、若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF=________
17.七年级(10)班的50个同学中,至少有5个同学的生日时在同一个月,这是_________事件(填“不确定”、“不可能”或“必然”)
18、如图:沿AM折叠,使D点落在BC上,如果AD=7cm,DM=5cm,∠DAM=30°,则AN=_________ cm,∠NAM=_________。
19、如图,ΔABC中,∠C=90°,AC=BC,AD平分∠CAB,DE⊥AB,垂足为E,AB=6㎝,则ΔDEB的周长为 ㎝.
20、如图,已知AB∥CD,O是∠ACD与∠BAC的平分线的交点,OE⊥AC于E,且OE=2,则AB与CD之间的距离为___________
21、如图,∠A+∠ABC+∠C+∠D+∠E+∠F=_____________
三.解答题(本大题有8题,共90分)
21.计算 (本题
题满分8分)
① ②
22.(本题满分8分)
先化简,再求值:[(x-y)2+(x+y)(x-y)]÷2x,其中x=3,y=-1.5.
23.(本题满分12分)
(1) 25-16x2 (2) b (x-3)+b(3-x)
(3)
24.(本题满分8分)
已知方程组 与 有相同的解,求m和n值。
25.(本题满分8分)
如图是雨伞开闭过程中某时刻的截面图,伞骨AB=AC,支撑杆
OE=OF,AE= AB,AF= AC,当O沿AD滑动时,雨伞开闭,
问雨伞开闭过程中,∠BAD与∠CAD有何关系?请说明理由;
26.(本题满分8分)
在△ 中,
AE为BC边上的中线,(1)试说明:AE=CD 。 (2)若AC=15cm,求线段BD的长。
27.(本题满分12分)
为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取初一年段50名学生,调查他们一周(按七天计算)做家务所用时间(单位:小时),得到一组数据,并绘制成右表,根据该表完成下列各题:(8分)
分组 频数 频率
0.55~1.05 14 0.28
1.05~1.55 15 0.30
1.55~2.05
2.05~2.55 4 0.08
2.55~3.05 5 0.10
3.05~3.55 3
3.55~4.05 2 0.04
合计 1.00
频率分布表
(1).填写频率分布表中未完成的部分;
(2).在这个问题中,
总体是:___________________
样本是:___________________
(3).由以上信息判断,每周做家务的时 间不超过1.5小时的学生所占百分比是______________
(4).针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子。
28.(本题满分12分)
一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车。已知过去租用这两种货车情况如下表:Xkb1.com
第一次 第二次
甲货车的数量 2 5
乙货车的数量 3 6
累计运货吨数 20.5 46
(1) 问甲、乙两种货车每次运货多少吨?
(2)现租用该公司的3辆甲种货车与5辆乙种货车一次刚好运完这批货物。如果按每吨付运费30元计算,问货主应付运费多少元?
30.(本题满分14分)
如图1,两个不全等的等腰直角三角形OAB和OCD叠放在一起,并且有公共的直角顶点O。
(1)在图1中,你发现线段AC、BD的数量关系是¬¬¬¬______________;直线AC、BD相交成角的度数是_____________.
(2)将图1的⊿OAB绕点O顺时针旋转90°角,在图2中画出旋转后的⊿OAB。
(3)将图1中的⊿OAB绕点O顺时针旋转一个锐角,连接AC、BD得到图3,这时(1)中的两个结论是否成立?作出判断并说明理由。若⊿OAB绕点O继续旋转更大的角时,结论仍然成立吗?作出判断,不必说明理由。(14分)
一、选择题(共10小题,每小题3分,共30分;
1、方程2x-3y=5,x+ =6,3x-y+2z=0,2x+4y,5x-y>0中是二元一次方程的有()个。
A.1 B.2 C.3 D.4
2.若a>b,则下列式子正确的是 ( ) .
A.a-6>b-2 B. a< b C.4+3a>4+3b D.—2a>—2b
3.不等式 的解集在 数轴上表示正确的是 ( )
4.命题“垂直于同一条直线的两条直线互相平行”的题设是 ( ).
(A)垂直 (B)两条直线
(C)同一条直线 (D)两条直线垂直于同一条直线
5.对于命题“如果∠1+∠2=9 0°,那么∠1≠∠2”,能说明它是假命题的例子是( )
(A)∠1=50°,∠2=40° (B)∠1=50°,∠2=50°
(C)∠1=∠2=45° (D)∠1=40°,∠2=40°
6.若不等式组 的解集为x<0,则a的取值范围为( )
A.a>0 B.a=0 C.a>4 D.a=4
7、如图,下列条件中:(1) ∠B+∠BCD=180°;(2) ∠1=∠2;(3) ∠3=∠4;(4) ∠B=∠5;能判定AB∥CD的条件 个数有( )
A.1 B.2 C.3 D.4
8.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 ( )
A、45° B、60° C、75° D、85°
9.如果不等式组 无解,那么m的取值范围是 ( )
(A)m>8 (B)m≥8 (C)m<8 (D)m≤8
10、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是( )
A B C D
二、填空题:(每题3分,共30分)
11.若x=1,y=2是方程组 的解,则 +b= ;
12.不等式2x−l≤4的所有正整数解为 .
13.已知2x+y=5,当 满足条件 时,-1≤y<3.
14.“同位角相等”的逆命题是______________________。
15.填空使之成为一个完整的命题。若a⊥b,b∥c,则 .
16.若a∥b,b∥c,则 .理由是______________________。
17.已知 且 ,则 的取值范围为 .
18.在△ABC中,∠A=60°,∠B=2∠C,则∠B= ______°
19.如图,直线 1∥ 2,AB ⊥ 1,垂足为O,BC与 2相交于点E,若∠1=43°,则∠2=_ _
20.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,ED′的延长线与BC交于点G.若∠EFG=55°,则∠1=_______°.
三、解答题:(共96分)
19.(本题满分6分)解不等式 ≤ ,并把解集在数轴上表示出来.
20.(本题满分6分)解不等式组: ,并写出它的所有整数解.
21.(本题满分6分)小宏准备用50元钱买甲、乙两种饮 料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买多少瓶甲饮料.
22.(本题满分8分)小虎大学毕业后自主创业,打算开一间特色餐厅,计划购买12张餐桌和至少12张餐椅.他从甲、乙两个商场了解到:同一型号的餐桌报价每张均为160元,餐椅报价每把均为4 0元.甲商场规定:每购买一张餐桌赠送一把餐椅;乙商场规定:所有餐桌椅均按报价的八五折销售.小虎最多可以买多少把餐椅,他到甲商场购买才相对优惠一些?
24.(本题满分10分)(1)比较下列两个算式的结果的大小(在横线上选填“>”“=”或“<”)
① 2×3×4; ② 2× ;
③ 2× ;
④
⑤ ………
(2)观察并归纳(1)中的规律,用含 的一个关系式把你的发现表示出来。
(3)若已知 =8,且 都是正数,试求 的最小值。
25.(本题满分10分)已知:如图12,AD⊥BC于D,EF⊥BC于F,交AB于G,交CA延长线于E,∠1=∠2.
求证:AD平分∠BAC,填写分析和证明中的空白.
分析:要证明AD平分∠BAC,只要证明__________=____________,
而已知∠1=∠2,所以应联想这两个角分别和∠1、∠2的关系,由已知BC的两条垂线可推出________∥_________,这时再观察这两对角的关系已不难得到结论.
证明:∵AD⊥BC,EF⊥BC(已知)
∴∠ =∠ =90°.
________∥_________(两直线平行,同位角相等)
∴_______=________(两直线平行,内错角相等),
________= (两直线平行,同位角相等)
∵ (已知)
∴______________( )
∴AD平分∠BAC( )
26.(本题满分10分)如图,在△ABC中,A D⊥BC,AE平分∠BAC, ∠B=70°,∠C=30°.
(1)求∠BAE的度数;
(2)求∠DAE的度数;
(3)探究:小明认为如果只知道∠B-∠C=40°,也能得出∠DAE的度数?你认为可以吗?若能,请你写出求解过程;若不能,请说明理由.
27.(本题满分12分)“保护生态环境,建设绿色家园”已经从理念变为人们的行动.扬州某地建立了绿色无公害蔬菜基地,现有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:
种植户 种植A类蔬菜面积
(单位:亩) 种植B类蔬菜面积
(单位:亩) 总收入
(单位:元)
甲 3 1 12500
乙 2 3 16500
说明:不同种植户种植的同类蔬菜每亩平均收入相等.
⑴ 求A、B两类蔬菜每亩平均收入各是多少元?
⑵ 另有某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有种植方案.
(3)利用所学知识:直接写出该种植户收益最大的种植方案和最大收益。
『柒』 七年级下册期末数学试卷1
2009学年第二学期期末复习试卷
七年级数学
一、 细心选一选(本题有5个小题, 每小题3分, 满分15分 ,下面每小题给出的四个选项中, 只有一个是正确的. )
1.把下列某不等式组的解集在数轴上表示,如图所示,则这个不等式组是( ).
A. B.
C. D.
2. 下列四个命题中,真命题的是( )
A.同位角相等 B.相等的角是对顶角
C.邻补角相等 D.a,b,c是直线,且a‖b,b‖c,则a‖c
3.下列平面图形中不能镶嵌成一个平面图案的是( ).
A.任意三角形 B.任意四边形 C.正五边形 D.正六边形
4. 2009年5月31日世界无烟日的口号是“戒烟一小时,健康亿人行”.小华学习小组为了解本地区大约有多少成年人吸烟,随机调查了100个成年人,结果其中有15个成年人吸烟.对于这个关于数据收集与描述的问题,下列说法正确的是( ).
A.调查的方式是普查 B.本地区只有85个成年人不吸烟
C.样本是15个吸烟的成年人 D.本地区约有15%的成年人吸烟
5.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.
A.4 B.3 C.2 D.1
二、耐心填一填(本题有5个小题,每小题3分, 满分15分)
6.不等式2x-1>5的解集为 .
7. 如图,在△ABC中,∠A = 80°,∠B = 60°,则∠1 = °.
8. 一个多边形的内角和等于360° ,则它是 边形.
9. 点(2,-1)向左平移3个单位长度得到的点在第 象限.
10.规律探索:连结图(1)中的三角形三边的中点得图(2),再连结图(2)中间的三角形三边的中点得图(3),如此继续下去,那么在第n个图形中共有 个三角形.
三、用心答一答(本大题有10小题, 共70分,解答要求写出文字说明, 证明过程或计算步骤)
11、(本题6分)解方程组
12、(本题6分) 解不等式组 ,并在数轴上表示它的解集.
13、(本题6分)若 ,求x和y?
14、(本题6分)如图,在平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(3,0).把△AOB沿射线OB的方向平移2个单位, 其中A、O、B的对应点分别为D、E、F.
⑴请你画出平移后的△DEF;
⑵求线段OA在平移过程中扫过的面积.
15、(本题6分)如图,AB‖DC, , ,
(1) 求∠D的度数;
(2) 求 的度数;
(3) 能否得到DA‖CB,请说明理由.
16、(本题6分)天河某中学七年级甲、乙两个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值),根据以下图、表提供的信息,回答问题:
(1)请把三个统计图(表)补充完整;
(2)在扇形统计图中,“90~100分”所占的扇形圆心角是多少度?
(3)你认为这三种图表各有什么特点?
17、(本题6分)一个零件的形状如图,按规定∠A=90ordm; ,∠ C=25ordm;,∠B=25ordm;,检验已量得∠BCD=150ordm;,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
18、(本题9分)根据所给信息,分别求出每只小猫和小狗的价格.
买 一共要70元,
买 一共要50元.
19、(本题9分)某次数学竞赛共20道题。每题答对得10分,答错或不答扣5分。至多答错或不答几道题,得分才能不低于82分?
20、(本题10分)为庆祝北京奥运会的到来,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在金山大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
⑴某校七年级(1)班课外活动小组承接了这个园艺造型搭案的设计,问符合题
意的搭案有几种?请你帮助设计出来.
⑵若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说
明(1)中哪种方案成本最低?最低成本是多少元?