当前位置:首页 » 语数英语 » 七下数学复习

七下数学复习

发布时间: 2021-08-14 20:03:07

Ⅰ 人教版七年级下数学知识点整理

5.1相交线
1、邻补角与对顶角
两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:
图形
顶点
边的关系
大小关系
对顶角
∠1与∠2
有公共顶点
∠1的两边与∠2的两边互为反向延长线
对顶角相等
即∠1=∠2
邻补角
∠3与∠4
有公共顶点
∠3与∠4有一条边公共,另一边互为反向延长线。
∠3+∠4=180°
注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线
⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

Ⅱ 七年级下册数学复习提纲

七年级数学下期复习提纲
一、 概念知识
1、 单项式:数字与字母的积,叫做单项式。
2、 多项式:几个单项式的和,叫做多项式。
3、 整式:单项式和多项式统称整式。
4、 单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、 多项式的次数:多项式中次数最高的项的次数,就是这个多项式的次数。
6、 余角:两个角的和为90度,这两个角叫做互为余角。
7、 补角:两个角的和为180度,这两个角叫做互为补角。
8、 对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。
9、 同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。(简称中垂线)
二、 计算能力
(A) 整式的计算。
1、 整式的加减
去括号,合并同类项!
2、 幂运算(七个公式)
① 同底数幂相乘:底数不变,指数相加。 ②幂的乘方:底数不变,指数相乘。
③积的乘方:等于每个因数乘方的积。 ④同指数幂相乘:指数不变,底数相乘。
⑤同底数幂相除:底数不变,指数相减。 ⑥零指数:任何非零数的0次方等于1。
⑦负指数:任何非零数的负指数等于它的正指数的倒数。
3、 乘法公式
① 平方差公式:平方差,平方差;两数和乘两数差。
② 完全平方公式:首平方,尾平方;首尾2倍在中央。
附:⑴三数和的完全平方:
⑵立方和:
⑶立方差:
4、 整式的乘法
① 单项式乘单项式:系数相乘,相同的字母相乘,不同的字母照写。
② 单项式乘多项式:用单项式去乘多项式的每一项,再把结果相加。
③多项式乘多项式:用第一个多项式的每一项去乘第二个多项式的每一项,再把结果相加。(握手原则)
5、 整式的除法
①单项式除以单项式:系数除以系数,相同的字母相除,只在被除式中出现的字母照写。
②多项式除以单项式:用多项式的每一项去除以单项式,再把结果相加。
(B) 角度的计算。
1、 利用三角形的内角定理、外角定理来计算
三角形的三个内角和为180度。一个外角等于和它不相邻的两个内角的和。
2、 利用平行线的关系角来计算。
3、 利用三角形的角平分线、高线来计算
(C) 面积的计算
1、 长方形的面积=长×高 或四个小三角形的面积之和(四个小三角形的面积相等)
2、 正方形的面积=边长×边长 或对角线相乘的一半。或四个全等小等腰直角三角形的面积和
3、 三角形面积=底×高÷2
4、 直角三角形的面积=两直角边的积的一半 或斜边与斜边上的高的积的一半
(D) 三角形线段的计算
① 用特殊位置(中线、中点、中垂线)来计算
② 用等腰三角形、全等三角形来计算
③ 用三角形的边之间的关系来计算
(E) 概率的计算
1、 一般算法: 2、 面积算法:
三、 图形与操作
1、 作三角形的高线、角平分线、中线。(基本作图,见书本143~146页)
2、 作轴对称图形。(找出关键点,用中垂线的方法来找对应点。)
3、 作三角形。
① 基本作图:⑴告诉三边⑵告诉两边夹角⑶告诉两角夹边(见书本169~171页)
② 综合作图:⑴告诉两边及第三边上的中线⑵告诉两边及第三边上的高线⑶告诉两边及夹角的角平分线
方法:2倍长关系线,构造全等三角形。
4、 生活中的最短路程作图。
(1) 在第三条直线上作到两点距离相等的点。(公路上建牛奶站,到两家人距离相等。作中垂线与公路相交。)
(2) 在第三条直线上作到两点距离之和最短的点。(公路上建牛奶站,到两家人距离和最短。作一家关于公路对称的对应点,对应点与另一家的连线与公路的交点。)
5、 平行的说明(证明)
以“三线八角”为基础
判定:同位角相等 性质: 同位角相等
内错角相等 两直线平行 两直线平行 内错角相等
同旁内角互补 同旁内角互补
6、 全等的说明(证明)
判定: 三边对应相等 (SSS) 性质:
两边夹一角对应相等 (SAS) 对应边相等
两角夹一边对应相等 (ASA) 两个三角形全等 全等三角形
两角及一角的对边对应相等 (AAS) 对应角相等
直角边和斜边对应相等 (HL)
四、 数据与统计
1、 科学记数法:数0法,左边有0,负指数;右边有0正指数。左边几个0,指数就是负几;右边几个0,指数先写成正几,然后指把a写成0~10之间的数,再修改指数。
1毫米= 10-3米 1微米=10 -6米 1纳米=10 -9米 1平方毫米=10 -6平方米 1立方微米=10 -18立方米
2、 变量的三种表示方法:
① 表格法:自变量在上,因变量在下
② 关系式法:自变量在前,因变量在后
③ 图像法:自变量是横轴,因变量是纵轴。
3、图像的认识:主要分析变量是增还是减。
五、 数学应用
1、 光线的反射
入射角等于反射角。入射角和反射角的余角也相等。如图:

∠1和∠2是入射角和反射角,所以∠1=∠2
∠3和∠4是∠1和∠2的余角,∠3=∠4
2、 用全等三角形测量距离
构造全等三角形,把不能直接测量的线段,变来可以测量!如测湖泊、高山、瓶子内部等。
3、 镜子的秘密:
(1) 镜子中的像和镜子外的事物成轴对称,对称轴是镜面,有时是竖直的,有时是水平的。
(2) 镜子里的时间+实际时间=12时
六、 典型题集
1、 几个非负数的和为0,这几个数都是0。已知:a2+b2-2a+6b+10=0,a2008+1/b=?
2、 换底:(x-y)2n (y-x)n (y-x)=? 已知3x-4y+5=0,则8x÷16y=?
3、 换指数:比较266和355的大小。 0.1252006×82007=
4、 完全平方的灵活运用:(1)求完全平方式中的一项或几项。已知:a+b=12,ab=30,可以求
(2) 隐藏一个条件:已知,求 (3)两个条件都隐藏。已知:x2-5x+1=0 求
(4)求其他高次方的和。
5、 平方差的运用。计算:(a-b+c)(a+b-c)
6、 已知三角形的两边长为a和b,求第三边上的中线长。已知三角两边分别是4和10,求第三条边上中线的范围。
A
4 ? 10 先求出BC的范围:6~14之间。然后BD为3~7之间。(左边三角形ABD中AD的范围为1~11之间)
B D C 再分析DC也为3~7之间。(右边三角形ACD中AD的范围为7~17之间)综合两边AD应为7~11之间。
7、 电话费的几种算法。(变量与关系式)
某电话有两种计算方法:(1)座机费每月25元,话费每分钟0.1元。(B)不交座机费。话费每分钟0.2元。
A、写出两种付费方法的总费用y(元)与时间x(分)的关系式。B、小明家本月要打300分钟电话,选哪种方式好,说明理由。C、打多少分钟时两种付费方式的钱一样多。
8、 近似数的精确范围。求近似数2.46的精确范围 在精确度下正负0.5 左边大于或等于,右边是小于。
9、 探索规律:(1)摆图形
注意分好类!把具有相同特点的部分分为一类来计算。如粘纸张中的首尾为一类,中间为一类,粘合部分为一类。
(2)粘纸张

Ⅲ 七年级下数学期末复习计划(学生的,新人教版的)

成绩是别人评价你学习情况的重要标准,所以要认真对待.但也要劳逸结合,保证睡眠,保证体力.
现在要做好集中精力全面复习,多记公式和单位,多看重要的范文(记住结构),多记概念,多做典型题目,单元测试题要复习一遍,找学习的弱点加强之.英语多看重要课文,熟悉词汇及用法.不要以一时的成绩好坏影响你的复习.不要为一些无为的事操心!
考试时一定要心细,先易后难,交卷前要反复检查,尤其是概念,定义,公式,单位,用语,标点符号等是否正确使用等.
最后冲刺时,一定要平常心.送你下面的留言,祝你成功!!!
眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.
考试结束后要认真总结,以便于以后更好的学习.

Ⅳ 求七年级下册数学复习资料

七年级下册数学
期末总复习
【关键时刻,不能应付!】
综合(一)
1. 计算 = ; ;
2. 如图,已知△ABC中,AB=AC,BD⊥AC于点D,
∠DBC=20º,则∠A=º
3. 小强照镜子时,看到镜子中衣服上印有:
则小强衣服上的字应为
4. 一口袋中有红球3个、白球若干个,若任意摸出一个,
摸到红球的概率为 ,则袋中有白球个
5. 如图,△ABC的角平分线DB、DC是相交于
点D,EF过点D,且EF∥BC,若BE=4,CF=3,则EF=
6. 2008年北京奥运会火炬拉力,火炬手达到21780人,把这个数用科学记数法表示约为人(保留两个有效数字)
7. 近似数3.1万精确到 位,有个有效数字
8. 小明在镜子中看到身后的时钟如图所示,则实际时间

9. 下列计算中,正确的是:()
A、 B、
C、 D、
10. 气象台预报“本市明天降水概率是80 %”.对此信息,下列说法正确的是( )
(A)本市明天将有80%的地区降水
(B)本市明天将有80%的时间降水
(C)明天肯定下雨
(D)明天降水的可能性比较大
11. 如图,是甲、乙两人从A地往
B地的路程与时间的关系图
(1)A、B两地相距km
(2)甲的平均速度为km/h
乙的平均速度为km/h
(3)甲比乙早出发小时
(4)谁早到B地,早到多少时间?
(5)根据以上条件,请列出方程,求出乙出发多少时间追上甲?
12. 如图所示的方角铁皮,要求用一条直线将其分成面积相等的两部分,请你设计两种不同的分割方案(用铅笔画图,不写画法,保留作图痕迹或简要的文字说明).13题图 14题图
13. 如图,△ABC中,AB=AC,D为BC上一点,DE⊥AB于点E,DF⊥AC于点F,①当D点在BC什么位置上时,DE=DF?说明理由;②在不添加辅助线的情况下,你能否再写出和①中不一样的条件,使得DE与DF相等。请写出两个这样的条件,但不要说明理由。

14. 如图,在△ABC中,∠B=90º,斜边AC的垂直平分线交BC于点D,垂足为点E,∠C=40º,
求∠BAD的度数

综合(二)
1. 一个角的补角为135º,则这个角的度数为º
2. 用科学记数法表示:0.00000053=
3. 近似数0.0310有个有效数字
4. 把12500取两个有效数字的近似数用科学记数法表示为
5. 在一个不透明的袋子里放入8个红球,2个白球,小明随意地摸出一球,这个球是白球的概率为
6. 计算:
7. 如果 是一个完全平方式,那么k的值为
8. 下列语句中错误的是( )
A、5是单项式 B、单项式 m 的系数与次数都是 1
C、 的系数是 D、 是二次单项式
9. 结果为 的式子是()
A. B. C. D.
10. 下面的运算正确的是( )
A、( ; B、 ;
C、( D、
11. 计算:

12. 小王发现在镜子中钟表显示的时间为2:15,则实际时间为
13. 已知: 则
14. 已知 ,则m+n=
15. 圆的面积s与半径r之间的关系式为s= r2,当半径
由1变化到2时,圆的面积增加了
16. 一副去掉大、小王的扑克中,任意抽取一张,则P(抽到5)=; P(抽到黑桃)=
17. 如图:(1)图2可以看成是图1的三角形往右平移单位长度得到的;
(2)画出下列各图中的格点三角形关于直线L的对称图形

18. 一口袋中共有红、黄、白球12个,请设计出满足下列条件的方案:
(1)任意摸出一球,得到黄球与白球的概率相同,红球的概率最小;
(2)任意摸出一球,得到红球的概率最大,白球的概率最小;
(3)任意摸出一球,得到红球的概率为 ,得到黄球的概率为

19. 计算:

20. 转动如图所示的转盘,当转动停止时,
指针指向红色区域的概率为
21. 已知 ,则
22. 一农民朋友带了若干千克的土豆进城出售,为了方便,他带了一些零钱备用.按市场售出一些后,又降价出售.售出土豆千克数x与他手中持有的钱数y(含备用零钱)的关系如图所示,结合图像回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出
售的价格是多少?

(3)降价后他按每千克0.4元
将剩余的土豆售完,这时他手中
的钱(含备用的钱)是26元,问他一共带了多少千克的土豆?
23. 有一个三角形的支架,AB=AC,小明在过A点和BC的中点D又架了一个细木条,经测量∠B=30º,在没有任何测量工具下,你能否求出∠BAD与∠ADC的度数。为什么?

23题图 24题图
24. 如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则D点到AB的距离DE长为___________
25. 某次班级游园中,准备了奖券53张,其中一等奖1张,二等奖3张,三等奖5张,小强第四位抽奖,若前三位同学有一位中了二等奖,其余两位未中奖,则小强中奖的概率为()
A. B. C. D.
26. 下列各事件中,发生概率为1的是( )
A、掷一枚骰子,出现6点朝上B、太阳从东方升起
C、若干年后,地球会发生大爆炸
D、全学校共有1500人,从中任意抽出两人,他们的生日完全不同
27. 将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是( )

28. 一辆汽车油箱内有油48升,从某地出发,每行1 km,耗油0.6升,如果设剩油量为y(升),行驶路程为x(千米)
(1)上述的哪些量发生变化?自变量是?因变量是?
(2)写出y与x的关系式;

(3)用表格表示汽车从出发地行驶10km、20km、30km、40km、50km时的剩油量;

(4)根据表格中的数据说明剩油量是怎样随着路程的改变而变化的;

(5)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时, 行驶了多少千米?

(6)请你估计这车辆在中途不加油的情况下最远能运行多少千米?

Ⅳ 七年级下册数学复习提纲(人教版)

第五章 相交线与平行线
5.1 相交线
对顶角(vertical angles)相等。
过一点有且只有一条直线与已知直线垂直(perpendicular)。
连接直线外一点与直线上各点的所有线段中,垂线段最短(简单说成:垂线段最短)。

5.2 平行线
经过直线外一点,有且只有一条直线与这条直线平行(parallel)。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
直线平行的条件:
两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

5.3 平行线的性质
两条平行线被第三条直线所截,同位角相等。
两条平行线被第三条直线所截,内错角相等。
两条平行线被第三条直线所截,同旁内角互补。
判断一件事情的语句,叫做命题(proposition)。

第六章 平面直角坐标系
6.1 平面直角坐标系
含有两个数的词来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数a和b组成的数对,叫做有序数对(ordered pair)。

第七章 三角形
7.1 与三角形有关的线段
三角形(triangle)具有稳定性。

7.2 与三角形有关的角
三角形的内角和等于180度。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角

7.3 多边形及其内角和
n边形内角和等于:(n-2)•180度
多边形(polygon)的外角和等于360度。

第八章 二元一次方程组
8.1 二元一次方程组
方程中含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程(linear equations of two unknowns) 。
把两个二元一次方程合在一起,就组成了一个二元一次方程组(system of linear equations of two unknowns)。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

8.2 消元
将未知数的个数由多化少、逐一解决的想法,叫做消元思想。

第九章 不等式与不等式组
9.1 不等式
用小于号或大于号表示大小关系的式子,叫做不等式(inequality)。
使不等式成立的未知数的值叫做不等式的解。
能使不等式成立的x的取值范围,叫做不等式的解的集合,简称解集(solution set)。
含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown)。
不等式的性质:
不等式两边加(或减)同一个数(或式子),不等号的方向不变。
不等式两边乘(或除以)同一个正数,不等号的方向不变。
不等式两边乘(或除以)同一个负数,不等号的方向改变。
三角形中任意两边之差小于第三边。
三角形中任意两边之和大于第三边。

9.3 一元一次不等式组
把两个一元一次不等式合在起来,就组成了一个一元一次不等式组(linear inequalities of one unknown)。

第十章 实数
10.1 平方根
如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根(arithmetic square root),2是根指数。
a的算术平方根读作“根号a”,a叫做被开方数(radicand)。
0的算术平方根是0。
如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root) 。
求一个数a的平方根的运算,叫做开平方(extraction of square root)。

10.2 立方根
如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根(cube root)。
求一个数的立方根的运算,叫做开立方(extraction of cube root)。

10.3 实数
无限不循环小数又叫做无理数(irrational number)。
有理数和无理数统称实数(real number)。

Ⅵ 七年级下册数学复习资料

七年级下册数学复习
,有以下几点复习方法,希望能帮助到你:
一、回归课本为主, 找准备考方向
学生根据自己的丢分情况,找到适合自己的备考方向。 基础差的学生,最好层层追溯到自己学不好的根源。 无论哪个学科, 基本上都是按照教材层层关联的, 希望基础不好的同学以课本为主,配套练习课本后的练习题,以中等题、简单题为辅、 逐渐吃透课本,也渐渐提高信心。只要把基础抓好, 那么考试时除了一些较难的题目, 基本上都可以凭借能力拿下,分数的高低仅剩下发挥的问题。
二、循序渐进,切忌急躁
在复习的时候, 由于是以自己为主导, 有时候复习的版块和教学进度不同,当考试时会发现没有复习到的部分丢分严重。导致成绩不高。 但是已经复习过的版块,却大多能够拿下。这就是进步,不要因为用一时的分数高低做为衡量标准,复习要循序渐进,不要急躁。复习就像修一 条坑坑洼洼的路, 每个坎坷都是障碍,我们只有认真的从起点开始,按照顺序慢慢推平。哪怕前面依旧沟整,但是当你回头的时候,展现在你眼前的是一条康庄大道。基本上, 如果纯做题的话, 1 -2个月时间就能把各科的试题从第一章节到最后一个章节摸得差不多。
三、合理利用作业试题、 试卷
简单题、中等题一方面可以印证、检验自己的基础知识体系, 又一方面可以提升我们复习的信心。在选择作业上,简单题、中等题尤其是概念理解应用题一 定要自己动手做,还要进行总结。 难题可以参考答案, 但要认真思考其中的步骤推导思想和转化思想,这些都是考试所考察的。语文要充分利用试卷,其中的成语、病句要注重收集,文言文虚实词记得要摘录。英语单词注意把正确选项带人念熟。 同时思考阅读、完型题是如何找到有效的原文信息,他们有何特点和提示点? 要这么去利用每一次作业和试卷,那么成绩将会短期内提高。
四、建立信心, 不计一时得失
有些学生自认为自己是差生, 无可救药了。但是事实上往往不是这样。有些学生认为自己天生比别人笨, 不如别人聪明。也许在某一方面上确实是有自身的缺陷,但是却忽略了自己的优势所在。为了自己心中那份或许并不是十分确定的梦想,一定要打起精神。前面也说过,考试不要记一时得失,而是要不断的总结归纳。中等生,只要你不放弃,找到自己的缺陷,严格给自己定下复习要求并认真执行,就能达到。

Ⅶ 七年级下册数学知识点归纳

第五章 平等线与相交线
1、同角或等角的余角相等,同角或等角的补角相等。
2、对顶角相等
3、判断两直线平行的条件:
1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 3)同旁内角互补,两直线平行。 (4)如果两条直线都和第三条直线平行,那么这两面三刀条直线也互相平行。
4、平行线的特征:
(1)同位角相等,两直线平行。 (2)内错角相等,两直线平行。 (3)同旁内角互补,两直线平行。
5、命题:
⑴命题的概念:
判断一件事情的语句,叫做命题。
⑵命题的组成
每个命题都是题设、结论两部分组成。题设是已知事项;结论是由已知事项推出的事项。命题常写成“如
果……,那么……”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
6、平移
平移是指在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移,平移不改变物体的形状和大小。
(1) 把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
(2) 新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点。连接各组对应点的线段平行且相等。
第六章 平面直角坐标系
1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)
2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。
3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
3、特殊位置的点的坐标的特点:
(1).x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2).第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3).在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。
3关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+) 第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)
x轴上的点纵坐标为0,y轴横坐标为0。
第七章 三角形
1、三角形任意两边之和大于第三边,确形任意两边之差小于第三边。
2、三角形三个内角的和等于180度。
3、直角三角形的两个锐角互余
4、三角形的三条角平分线交于一点,三条中线交于一点;三角形的三条高所在的直线交于一点。
5、直角三角形全等的条件:
斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
(只要有任意两条边相等,这两个直角三角形就全等)。
6、三角形全等的条件:
(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
27、等腰三角形的特征:
(1) 有两条边相等的三角形叫做等腰三角形;
(2) 等腰三角形是轴对称图形;
(3) 等腰三角形顶角的平分线、底边上的中线、底边上的重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴。
(4)等腰三角形的两个底角相等。
(5)等腰三角形的底角只能是锐角。

Ⅷ 七年级下册数学知识点总结

并且未知数项的次数都是1,这种变形通常称为“去分母”、一元一次方程都只含有一个未知数,体现了“化复杂为简单”“化未知为已知”的化归思想,将二元一方程组转化为一元一次方程来解,两种方法的核心是“消元”我刚学完
1,未知数的次数是1、解方程时方程的两边都乘以相同的不等于0的数,使方程中的系数不出现分数。具体用哪种方法解方程组要根据它的特点灵活选定。
2、二元一次方程都含有两个未知数。
4。
3、
解二元一次方程组的基本方法是“代入消元法”和“加减消元法”,并且含有未知数的式子都是整式

Ⅸ 七年级下册数学期知识点归纳

总的来说
就是
第一章 整式的运算
一. 整式
※1. 单项式
①由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.
③一个单项式中,所有字母的指数和叫做这个单项式的次数.
※2.多项式
①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.
②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.
※3.整式单项式和多项式统称为整式.

二. 整式的加减
¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.
三. 同底数幂的乘法
※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
②指数是1时,不要误以为没有指数;
③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);
⑤公式还可以逆用: (m、n均为正整数)
四.幂的乘方与积的乘方
※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.
※2. .
※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,
如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。
五. 同底数幂的除法
※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).
※2. 在应用时需要注意以下几点:
①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.
②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.
③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 ,
④运算要注意运算顺序.
六. 整式的乘法
※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
④单项式乘法法则对于三个以上的单项式相乘同样适用;
⑤单项式乘以单项式,结果仍是一个单项式。
※2.单项式与多项式相乘
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
②运算时要注意积的符号,多项式的每一项都包括它前面的符号;
③在混合运算时,要注意运算顺序。
※3.多项式与多项式相乘
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
②多项式相乘的结果应注意合并同类项;
③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到
七.平方差公式
¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,
※即 。
¤其结构特征是:
①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
八.完全平方公式
¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,
¤即 ;
¤口决:首平方,尾平方,2倍乘积在中央;
¤2.结构特征:
①公式左边是二项式的完全平方;
②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
¤3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现 这样的错误。
九.整式的除法
¤1.单项式除法单项式
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
¤2.多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

第二章 平行线与相交线
一.台球桌面上的角
※1.互为余角和互为补角的有关概念与性质
如果两个角的和为90°(或直角),那么这两个角互为余角;
如果两个角的和为180°(或平角),那么这两个角互为补角;
注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。
它们的主要性质:同角或等角的余角相等;
同角或等角的补角相等。
二.探索直线平行的条件
※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:
①同位角相等,两直线平行;
②内错角相等,两直线平行;
③同旁内角互补,两直线平行。
三.平行线的特征
※平行线的特征即平行线的性质定理,共有三条:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补。
四.用尺规作线段和角
※1.关于尺规作图
尺规作图是指只用圆规和没有刻度的直尺来作图。
※2.关于尺规的功能
直尺的功能是:在两点间连接一条线段;将线段向两方向延长。
圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。
第三章生活中的数据
※1.科学记数法:对任意一个正数可能写成a×10n的形式,其中1≤a<10,n是整数,这种记数的方法称为科学记数法。
¤2.利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
¤3.统计工作包括:
①设定目标;②收集数据;③整理数据;④表达与描述数据;⑤分析结果。

第四章 概率
¤1.随机事件发生与不发生的可能性不总是各占一半,都为50%。
※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。
※3.了解必然事件和不可能事件发生的概率。
必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

※4.了解几何概率这类问题的计算方法
事件发生概率=
第五章 三角形
一.认识三角形
1.关于三角形的概念及其按角的分类
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
这里要注意两点:
①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;
②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。
三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。
2.关于三角形三条边的关系
根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。
三角形三边关系的另一个性质:三角形任意两边之差小于第三边。
对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。
设三角形三边的长分别为a、b、c则:
①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;
②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。
3.关于三角形的内角和
三角形三个内角的和为180°
①直角三角形的两个锐角互余;
②一个三角形中至多有一个直角或一个钝角;
③一个三角中至少有两个内角是锐角。
4.关于三角形的中线、高和中线
①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;
②任意一个三角形都有三条角平分线,三条中线和三条高;
③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
二.图形的全等
¤能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。
四.全等三角形
¤1.关于全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角
所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。
※2.全等三角形的对应边相等,对应角相等。
¤3.全等三角形的性质经常用来证明两条线段相等和两个角相等。
五.探三角形全等的条件
※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”
※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”
※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”
※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”
六.作三角形
1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。
2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。
3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。
八.探索直三角形全等的条件
※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。
※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。
直角三角形的其他判定方法可以归纳如下:
①两条直角边对应相等的两个直角三角形全等;
②有一个锐角和一条边对应相等的两个直角三角形全等。
③三条边对应相等的两个直角三角形全等。

第七章 生活中的轴对称
※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
※2.角平分线上的点到角两边距离相等。
※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。
※4.角、线段和等腰三角形是轴对称图形。
※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
※6.轴对称图形上对应点所连的线段被对称轴垂直平分。
※7.轴对称图形上对应线段相等、对应角相等。

(注:※表示重点部分;¤表示了解部分;◎表示仅供参阅部分;)

热点内容
人教版一年级数学教案 发布:2025-06-21 04:06:13 浏览:807
接吻教师 发布:2025-06-21 03:50:44 浏览:205
湖南人文科技学院怎么样 发布:2025-06-21 02:10:49 浏览:302
美国小学英语 发布:2025-06-21 02:10:06 浏览:320
幸福师德作文 发布:2025-06-20 18:32:28 浏览:8
郑州39中学 发布:2025-06-20 18:27:51 浏览:397
岳西教育 发布:2025-06-20 17:36:50 浏览:807
蠡县教育局 发布:2025-06-20 15:34:53 浏览:316
书法学科总结 发布:2025-06-20 15:02:15 浏览:758
怎么查大学老师电话 发布:2025-06-20 14:51:15 浏览:809