数学4年级上册
❶ 小学四年级数学上册
1、 ①分步法:30×60=1800(千克)
25×60=1500(千克)
1800—1500=300(千克)
②综合法:(30—25)×60=300(千克)
2、 分析:①由“3件上衣和7条裤子共430元”可求(3件上衣和7条裤子)×7共(430×7=)3010元,即21件上衣和49条裤子共3010元;
②由“7件上衣和3条裤子共470元”可求(7件上衣和3条裤子)×3共(470×3=)1410元,
即21件上衣和9条裤子共1410元。
③为什么都是21件上衣,总钱数相差(3010—1410=)1600元呢?是因为买的裤子条数不相等。裤子条数相差(49—9=)40条,钱数相差1600元,每条裤子的价钱可以求出,裤子和价钱知道了,上衣的价钱也容易求了。
解:430×7—470×3=1600(元)
7×7-3×3=40(条)
1600÷40=40(元)
(430—40×7)÷3=50(元)
答:每件上衣50元,每条裤子40元。
❷ 四四年级上册数学
1.在一次登山活动中,梓涵上山每分钟行50米,18分钟到达山顶。然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米? 2.四年级有60名同学去栽树,平均每人栽4棵,恰好栽完。随后又派来一部分同学,这时平均每人栽树3棵就可完成任务,又派来几名同学? 3.有几位同学一起计算他们语文考试的平均分,梓涵的得分如果再提高13分,他们的平均分就达到90分,梓涵的得分如果降低5分,他们的平均分就只有87分,那么这些同学共有多少人? 4.九湖中心小学有100名学生参加数学竞赛,平均得分63分,其中男学生平均分是60分,女学生平均分是70分,男女生各有多少人? 5.甲、乙的平均数是26,乙、丙的平均数是28,甲、丙的平均数是21,求甲、乙、丙三数的平均数。 6.梓涵参加体育达标测试,五项平均成绩是85分,如果投掷成绩不算在内,平均成绩是83分,梓涵投掷得了多少分? 7.如果四个人的平均年龄是23岁,且没有小于18岁的,那么年龄最大的可能多少岁? 8.五个数的平均数是45,将5个数从小到大排列,前三个数的平均数是39,后三个数的平均数是53,第三个数是多少? 9. 梓涵参加了三次数学竞赛,平均分是84分,已知前两次平均分是82分,求他的三次得了多少分? 10. 梓涵期末考试时,数学成绩公布前他四门功课的平均分数是92分,数学成绩公布后,他的平均成绩下降了1分。梓涵数学考了多少分? 11. 如果三个人的平均年龄是22岁,且没有小于18岁的,那么年龄最大的可能是多少岁? 12. . 如果四个人的平均年龄是25岁,且没有小于16岁的,且这四个人的年龄互不相等,那么年龄最大的可能是多少岁?年龄最小的可能是多少岁? 13. 在一次登山活动中,梓涵上山每分钟行50米,然后按原路下山,每分钟行75米。梓涵上山和下山平均每分钟行多少米? 14. 一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完。这个同学平均每天读多少页? 15. 梓涵同学读一本故事书,前4天每天读25页,以后6天又读了200页正好读完。这个同学平均每天读多少页? 16.琦涵五次考试平均分为96分(满分100分),那么她每次考试的分数不得低于多少分? 四年级应用题1 1、奶奶去买水果,她买4千克梨和5千克荔枝,需花68元,买1千克梨和3千克荔枝的价钱相等,问1千克梨和1千克荔枝各多少元? 2、3筐苹果和5筐橘子共重330千克,每筐苹果重量是每筐橘子重量的2倍,一筐苹果和一筐橘子各重多少千克? 3、张老师为阅览室买书,他买了6本童话书和7本故事书需102元,买3本童话书和5本故事书价钱相等,买1本童话书和1本故事书各需多少元? 4、粮店运来一批粮食,4袋大米和5袋面粉共重600千克,4袋大米和7袋面粉共重680千克,一袋大米和一袋面粉各重多少千克? 1、一个标准油桶,桶连油共重7千克。司机马叔叔已经用去一半油,现在连桶还重4千克。桶里还有多少千克油?这桶油原来有多少千克油?桶重多少千克? 2、一瓶香水连瓶重50克,用去一半的香水后,连瓶还重30克,原来有香水多少克?瓶重多少克? 3、一瓶酒连瓶重80克,喝了一半的酒后,连瓶还重50克,原来有酒多少克?瓶重多少克? 4、一瓶汽水连瓶重45克,用去一半的汽水后,连瓶还重25克,原来有汽水多少克?瓶重多少克? 1、有6箱鸡蛋,每箱鸡蛋个数相等,如果从每箱中拿出50个,那么6箱剩下的鸡蛋个数正好和原来5箱的个数相等,原来每箱鸡蛋多少个? 2、有7筐苹果,每筐苹果个数相等,如果从每筐中拿出40个,那么7筐剩下的苹果个数正好和原来5筐的个数相等,原来每筐苹果多少个? 3、有5箱饼干,每箱鸡蛋重量相等,如果从每箱中拿出40克,那么5箱剩下的总克数正好和原来3箱的克数相等,原来每箱饼干多少克? 4、一年级有6班,每班人数相等,如果从每班中调出30个,那么6班剩下的人数正好和原来2班的人数相等,原来每班多少人? 1、韩琦练写字,计划每天写100字,实际每天比计划多写4字,结果提前一天完成任务。原计划要写多少字? 2、张梓涵看一本书,计划每天看15页,实际每天比计划多看3页,结果提前两天完成任务。这本书有多少页? 3、修一条路,计划每天修60米,实际每天比计划多修8米,结果提前4天完成任务。这条路多少米? 4、陈赫做千纸鹤,计划每天做30个,实际每天比计划多做6个,结果提前3天完成任务。原计划要做多少个千纸鹤? 1、琦涵有10张画片,郑洁有4 张画片。琦涵给郑洁多少张画片后,她俩的画片张数相等? 2、红盒子里有52个玻璃球,蓝盒子里有34个玻璃球,每次从多的盒子里取出3个放到少的盒子里,拿几次才能使两个盒子里的玻璃球的个数相等? 3、大袋子里有68粒糖,小袋子里有28粒糖,每次从多的袋子里取出4个放到少的袋子里,拿几次才能使两个袋子里的糖的粒数相等? 4、书架的上层有25本书,下层有27本书,爸爸又买回10本书,怎样放才能使书架上、下两层的书同样多? 四年级应用题2 1、电视机厂装一批电视,每天装80台,15天可完成任务,如果要提前3天完成,每天要装多少台? 2、某厂每天节约煤40千克,如果每8千克煤可以发电16度,照这样计算,该厂9月份(按25天计算)节约的煤可发电多少度? 3、某车间计划20人每天工作8小时,8天完成一批订货,后来要提前交货,该批货由32人工作,限4天内完成,每天需工作几小时? 4、学校总务处张老师去商店采购学生用练习本,练习本定价4元8角,带去买900本的钱。由于买得多,可以优惠,每本便宜了3角钱,张老师一共买回多少本练习本? 5、某工程队预计用20人,14天挖好一条水渠,挖了2天后,又增加20人,每人工作效率相同,可以提前几天完工? 6、锅炉房按照每天3600千克的用量储备了140天的供暖煤,供暖40天后,由于进行技术改造,每天能节约600千克煤,问这些煤共可以供暖多少天? 7、学校食堂管理员去农贸市场买鸡蛋,原计划每千克5元的鸡蛋买96千克,结果鸡蛋价格下调,用这笔钱多买了24千克的鸡蛋。问鸡蛋价格下调后每千克是多少元? 8、18个人参加搬一堆砖的劳动,计划8小时可以搬完,实际劳动2小时后,有6个人被调走,余下的砖还需多少小时才能搬完? 9、24辆卡车一次能运货物192吨,现在增加同样的卡车6辆,一次能运货物多少吨? 10、张师傅计划加工552个零件。前5天加工零件345个,照这样计算,这批零件还要几天加工完? 11、 3台磨粉机4小时可以加工小麦2184千克。照这样计算,5台磨粉机6小时可加工小麦多少千克? 12、一个机械厂4台机床5小时可以生产零件720个。照这样计算,再增加6台同样的机床生产3600个零件,需要多少小时? 13、一个修路队计划修路126米,原计划安排7个工人6天修完。后来又增加了54米的任务,并要求在6天完工。如果每个工人每天工作量一定,需要增加多少工人才如期完工? 14、九湖中心小学买了一批粉笔,原计划25个班可用40天,实际用了10天后,有10个班外出,剩下的粉笔,够在校的班级用多少天? 15、扬栋发电厂有10200吨煤,前十天每天烧煤300吨,后来改进炉灶,每天烧煤240吨,这堆煤还能烧多少天? 16、师傅和徒弟同时开始加工各200个零件,师傅每小时加工25个,完成任务时,徒弟还要做2小时才能完成任务。徒弟每小时加工多少个? 17、甲乙两地相距200千米,汽车行完全程要5小时,步行要40小时。泽奇同学从甲地出发,先步行8小时后该乘汽车,还需要几小时到达乙地? 18、旭婷筑路队修一条长4200米的公路,原计划每人每天修4米,派21人来完成,实际修筑时增加了4人,可以提前几天完成任务? 19、舒琪自行车厂计划每天生产自行车100辆,可按期完成任务,实际每天生产120辆,结果提前8天完成任务,这批自行车有多少辆? 20、德韬同学计划30天做完一些计算题,实际每天比原计划多算80题,结果25天就完成了任务,这些计算题有多少题? 四年级和差问题 一、1、 学校有排球、足球共50个,排球比足球多4个,排球、足球各多少个? 2、甲、乙两车间共有工人260人,甲车间比乙车间少30人,甲、乙两车间各有工人多少人? 3、甲乙两个工程队合挖一条长48千米的水渠,甲队比乙队多挖了6千米,求甲、乙工程队各挖了多少千米? 4、小宁与小芳今年的年龄和是28岁,小宁比小芳小2岁,小芳今年多少岁? 5、小敏和他爸爸的平均年龄是29岁,爸爸比他大26岁。小敏和他爸爸的年龄各是多少岁? 6、小兰期末考试时语文和数学的平均分是96分,数学比语文多4分。小兰语文、数学各得多少分? 二、1、甲、乙两个书架共有书480本,如果从甲书架中取出40本放入乙书架,这时两个书架上书的本数正好相等。甲、乙两个书架原来各有多少本? 2、两个桶里共盛水30千克,如果把第一桶里的水倒6千克到第二个桶里,两个桶里的水就一样多。原来每桶各有水多少千克? 3、甲、乙两个仓库共存大米58吨,如果从甲仓调3吨大米到乙仓,两个仓库所存的大米正好相等。甲、乙两个仓库各存大米多少吨? 4、甲、乙两人共有150元钱,如果甲增加13元,而乙减少27元,那么两人的钱数就相等。甲、乙两人各有多少元? 三、1、甲、乙两堆货物共180吨,甲堆货物运走30吨仍比乙堆货物多12吨,求甲乙两堆货物各多少吨? 2、甲、乙两堆货物共180吨,如果从甲堆货物调运30吨到乙堆货物,甲堆货物仍比乙堆货物多10吨,求甲乙两堆货物各多少吨? 3、甲、乙两筐苹果共64千克,从甲筐里取出5千克放到乙筐里去,结果甲筐的苹果反而比乙筐的苹果还少2千克。甲、乙两筐原有苹果各多少千克? 4、甲乙两个学校共有学生2008人,如果从甲校调走20人,乙校调走15人,甲校比乙校还多5人,两校原各有学生多少人? 5、学校食堂共有三种蔬菜,其中黄瓜、番茄共重50千克,青菜、黄瓜共重70千克,青菜、番茄共重60千克。这三种蔬菜各有多少千克? 6、《红楼梦》分上、中、下三册,全书共108元。上册比中册贵11元,下册比中册便宜5元。上、中、下三册各是多少元? 7、四个人年龄之和是77岁,最小的10岁,他和最大的人的年龄之和比另外二人年龄之和大7岁,最大的年龄是几岁? 8、小诺沿长与宽相差30米的游泳池跑了5圈,做下水前的准备活动。已知小诺共跑了700米,问:游泳池的长和宽各是多少米? 9、曾老师比琪晗重30千克,曾老师比陈赫重25千克,琪晗陈赫共重75千克,琪晗陈赫各重多少千克? 10、苗圃有很多花苗,11000棵不是玫瑰,12500棵不是牡丹,玫瑰和牡丹共有8500棵,玫瑰和牡丹各有多少棵? 四年级和倍问题 1、小红和妈妈的年龄加在一起是40岁,妈妈的年龄是小红年龄的4倍,小红和妈妈各是多少岁? 2、甲乙两数和是150,甲数除以乙数的商是4,甲乙两数各是多少? 3、一块长方形木板,长是宽的2倍,周长54厘米,这块长方形木块的面积是多少? 4、一筐苹果、一筐梨和一筐葡萄共重42千克,知道苹果重量是葡萄的2倍,梨的重量是葡萄的3倍,苹果、梨、葡萄各是多少千克? 5、三年级三个班共植树200棵,二班植树棵数是一班的2倍,三班植树棵数和二班一样多,三个班各植树多少棵? 6、有三堆煤,甲堆是乙堆的3倍,丙堆是甲堆的2倍,三堆煤共重240千克,那么甲堆、乙堆、丙堆煤各重多少千克? 7、有三队修路队合修一条长240千米的路,甲队修的是乙队的3倍,丙队修的是甲队的2倍,那么甲队、乙队、丙队各修多少千米? 8、张老师买回篮球足球共83个球,其中篮球比足球的2倍多5个,这两种球各有多少个? 9、张老师买回篮球足球排球共83个球,其中篮球比足球的2倍多5个,排球比足球的2倍少7个,这三种球各有多少个? 10、张老师买回篮球足球排球共83个球,其中篮球是足球的2倍,足球比排球多5个,这三种球各有多少个? 11、小华有笔30枝,小明有笔15只,问小明给几枝给小华后,小华的枝数是小明的8倍? 12、小明有书18本,小芳有书8本,现在又买来16本,怎样分配才能使小明的本数是小芳的2倍? 13、甲水池有水60吨,乙水池有水30吨,如果甲水池的水以每分钟3吨的速度流入乙水池,那么多少分钟后,乙水池的水是甲水池的2倍? 14、一个除式,商是18,余数是4,被除数、除数、商、余数的和是292,除数与被除数各是多少? 四年级差倍问题 1、林下小学购买的排球是篮球的3倍,排球比篮球多18只,购买的排球和篮球各有多少只?购买的排球和篮球共有多少只? 2、有大小两个书架,大书架上书的本数是小书架上的4倍,如果从大书架上取出150本放到小书架上,这时,两书架上的书的本数相等。大小书架原来各有多少本? 3、老猫和小猫去钓鱼,老猫钓的是小猫的3倍。如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓多少条鱼? 4、张老师买回篮球比足球多83个球,其中篮球比足球的2倍多5个,这两种球各有多少个? 5、副食店中白糖的千克数比红糖的3倍少35千克,已知白糖比红糖多41千克。副食店有白糖、红糖各多少千克? 6、张老师买回篮球足球排球,其中足球是篮球的3倍,足球比排球多7个,排球比篮球多11个。这三种球各有多少个? 7、梨比葡萄重2000千克,苹果重量是葡萄的2倍,苹果重量比梨多3000个,苹果、梨、葡萄各是多少千克? 8、小明的存款数是小刚的3倍,现在小明取出380元,小刚取出110元,两人的存款数变得同样多。小明和小刚原来各存款多少元? 9、甲仓存粮吨数是乙仓的3倍,如果甲仓中取出60吨,乙仓中运进80吨,甲、乙两个粮仓存粮吨数正好相等。甲、乙两个粮仓各存粮多少吨? 10、甲、乙两个粮仓各存粮若干吨,甲仓存粮的吨数是乙的3倍。如果甲仓中运进60吨,乙仓中运进260吨,则甲、乙两个粮仓存粮的吨数相等。甲、乙两个粮仓各存粮多少吨? 11、小张有36本课外书,小徐有24本课外书,两人捐出同样多的本数后,小张剩下的本数是小徐剩下本数的3倍,两人各捐出多少本书? 12、师徒两人加工同样多的一批零件,师傅加工了102个,徒弟加工了40个,这时,徒弟剩下的个数是师傅的3倍。师徒要加工多少个零件? 用假设法解题 兔数=(总脚数—每只鸡脚数×鸡兔总数)÷(每只兔子脚数—每只鸡脚数) 鸡数=鸡兔总数-兔数 (假设鸡,先求出兔) 或:鸡数=(每只兔脚数×鸡兔总数—总脚数)÷(每只兔子脚数—每只鸡脚数) 兔数=鸡兔总数-鸡数 (假设兔,先求出鸡) 1、鸡兔共30只,共有脚70只,鸡兔各有多少只? 2、鸡兔共20只,共有脚50只,鸡兔各有多少只? 3、在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆? 4、体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件? 1、买甲、乙两种戏票,甲种票每张6元,乙种票每张4元,两种票买了11张,一共用去50元,两种票各买了多少张? 2、扬栋有面值2元、5元纸币共30张,一共是90元,面值2元、5元纸币各有多少张? 3、有2角,5角和1元人民币20张,共计12元,则1元有_______张,5角有______张,2角有_______张. 1、一批水泥,用小车装载,要用20辆,用大车装载,只要12辆,每辆大车比小车多装4吨。这批水泥有多少吨? 2、一堆水泥,用小集装车装载,要用30辆,用大集装车装载,只要24辆,每辆大集装车比小集装车多装5吨。这批水泥有多少吨? 1、某公司运输衬衫400箱,规定每箱运费30元,若损失一箱,不但不给运费,并要赔偿100元,运后的运费结算为8880元,问这次运输损失了几箱? 2、某小学进行英语竞赛,每答对一题得10分,没有做、答错一题倒扣2分,共有15道题,小明得了102分,他做对了多少题? 3、九湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题? 4、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了多少只? 1、李宇春演唱会售出30元、40元、50元的门票共600张,收入23400元,其中40元和50元的张数相等,每种票各售出多少张? 2、王舒琪演唱会售出30元、40元、50元的门票共200张,收入7800元,其中40元和50元的张数相等,每种票各售出多少张? 1、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种昆虫各几只? 2、甲,乙,丙三种练习本每本价钱分别为7角,3角,2角。三种练习本一共卖了47本,付了21元2角,买的乙种练习本的本数是丙种练习本本数的2倍。就三种练习本各买了多少本? 3、买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张? 4、有一元,五元和十元的人民币共14张,共计66元,其中一元的张数比十元的多2张。问三种人民币各多少张? 盈亏问题的关系式: 1、(盈+亏)÷两次分配的差=份数 2、(大盈-小盈)÷两次分配的差=份数 3、(大亏-小亏)÷两次分配的差=份数 每次分的数量×份数+盈=总数量,每次分的数量×份数-亏=总数量, 解答盈亏问题的关键是要求出总差额和两次分配的数量差,然后利用基本公式求出分配者人数,进而求出物品的数量。 1、幼儿园买来一些玩具,如果每班分8个玩具,则多出2个玩具,如果每班分10个玩具,则少12个玩具,幼儿园有几个班?这批玩具有多少个? 2、小明带了一些钱去买苹果,如果买3千克,则多出2元,如果买6千克,则少了4元,问苹果每千克多少元?小明带了多少钱? 3、一个小组去山坡植树,如果每人栽4棵,还剩12棵,如果每人栽8棵,则还缺4棵,这个小组有多少人?一共有多少棵树? 4、一组学生去搬书,如果每人搬2本,还剩12本,如果每人搬4本,还缺6本,这组学生有几人?这批书有多少本? 1、老师买来一些练习本分给优秀少先队员,如果每人分5本,则多了14本;如果每人分7本,则多了2本;优秀少先队员有几人?买来多少本练习本? 2、把一袋糖分给小朋友们,如果每人分4粒,则多出12粒,如果每人分6粒,则多出2粒,问有几个小朋友?有多少粒糖? 3、妈妈买来一些苹果分给全家人,如果每人分6个,则多出了12个,如果每人分7个,则多出了6个,全家有几人?妈妈买回多少个苹果? 4、某学校有一些学生住校,每间宿舍住8人,空出床位24张,如果每间宿舍住10人,则空出床位2张,学校共有几间宿舍?住宿学生有几人? 1、学校派一些学生搬树苗,如果每人搬6棵,则差4棵,如果每人搬8棵,则差18棵,学校派了多少名学生?这批树苗有多少棵? 2、自然课上,老师给学生发树叶,如果每人分5片树叶,则差3片树叶,如果每人分7片树叶,则差25片树叶,这节课有多少学生?老师一共带了多少树叶? 3、数学兴趣小组同学做数学题,如果每人做6道题,则少4道,如果每人做8道题,则少16道,问有几个同学?一共有多少道数学题? 4、学校排练节目,如果每行排8人,则有一行少2人,如果每行排9人,则有一行少7人,一共排了多少行?一共有多少人? 1、三(1)班学生去公园划船,如果每条船坐4人,则多出4人;如果每条船坐6人,则多出了4条船;公园里有多少条船?三(1)班有多少名学生? 2、学校给新生分配宿舍,如果每间住8人,则少了2间房,如果每间住10人,则多出了2间房,一共有几间房分给新生?新生有多少人住宿? 3、同学们去划船,如果每条船坐5人,则有10人没船坐,如果每条船多坐2人,则多出两条船,共有几条船?有多少个同学? 4、小明从家到学校,如果每分钟走40米,则要迟到2分钟,如果每分钟走50米,则要早到4分钟,小明家到学校有多远? 1、三年级学生练习册,如果每人发5册还剩下32册,如果其中10个学生每人发4册,其余每人发8册,就恰好发完。那么三年级学生有多少人?练习册有多少本? 2、小明买了一本《趣味数学》,他计划:如果每天做3题,则剩下16题,如果每天做5题,则最后一天只要做1题。那么这本书共有几道题?小明计划做几天? 3、三(2)班同学去植树,如果每人植5棵,还有3棵没有人植,如果其中4人每人植4棵,其余每人植6棵,就恰好植完所有的树。那么参加植树的有几名同学?共植树多少棵? 4、小明从家到学校,出发时看看表,发现如果每分钟步行80米,他将迟到5分钟,如果先步行10分钟后,再改成骑车每分钟行200米,他就可以提前1分钟到校。问小明从家出发时离上学时间有多少分钟?
❸ 四年级上册数学应用题大全(附答案)
1、全校师生523人参加植树劳动,如果70人分成一组,那么最多够分成几组?
523÷70=7组.33人故8组
2、用电脑录入一篇466个字的文章,红红每分钟能录入60个字,聪聪7分钟录完.谁录入得快一些?
466÷7≈66>60故聪聪快
3、王大爷的果园收获苹果358千克,梨270千克,李子196千克.苹果每箱40千克,梨每箱30千克,李子每箱20千克.算一算:装这几种水果,各需要多少个纸箱?
358÷40=8.38故9个 270÷30=9 196÷20=9.16故10个
4、在一条长为180米的小路一旁植树,每20米栽一棵.一共需要栽多少棵树?
180÷20=9 9﹢1=10棵
5、一箱鸡蛋的个数是一篮鸡蛋个数的3倍.一箱鸡蛋有96个,6篮鸡蛋有多少个?
96÷3=32 32×6=192
6、一本故事书448页,明明用16天看完,芳芳每天比明明多看4页,芳芳每天看多少页?
448÷16=28 28﹢4=32
7、春光粮油公司要出口680吨粮食,如果用22吨的集装箱,需要多少个?如果选用17吨的集装箱,需要多少个? 680÷22=30.20故31个 680÷17=40
8、石家庄到承德的公路长是546千米.红红一家从石家庄开车到承德游览避暑山庄,如果平均每小时行驶78千米,上午8时出发,那么几时可以到达?
546÷78=7
7﹢8=15时
9、一块长方形菜地,长是9米,宽是6米.这块菜地一共收青菜972千克.平均每平方米收青菜多少千克? 6×9=54平方米 972÷54=18
10、上海东方明珠电视塔是亚洲最高的电视塔,它的高度是468米.一楼房有12层,高39米.电视塔的高度相当于几个12层住宅楼的高度? 468÷39=12
11、王爷爷家养的4头奶牛每个星期产奶896千克,平均1头奶牛每天产多少奶呢?
896÷4÷732
12、4辆汽车3次运水泥960袋,平均每辆汽车每次运水泥多少袋?
960÷4÷3=80
13、(1)水波小学每间教室有3个窗户,每个窗户安装12块玻璃,9间教室一共安装多少块玻璃?
12×3×9324
(2)杨柳小学有12间教室,每间教室有3个窗户,一共安装324块玻璃.平均每个窗户安装多少块玻璃? 324÷12÷3=9
14、小红买了2盒绿豆糕,一共重1千克.每盒装有20块,平均每块重多少克?
20×2=40 1千克=1000克 1000÷40=25
15、一辆大巴车从张村出发,如果每小时行驶60千米,4小时就可以到达李庄.结果只用了3个小时就到达了.这辆汽车实际平均每小时行驶多少千米?
60×4=240 240÷3=80
16、白塔村计划修一条水渠,如果每天修16米,18天就能修完.第一天修了24米,照第一天的进度,几天能修完?
16×18=288 288÷24=12
17、虹光宾馆购进100条毛巾,每条6元.如果用这些钱购买8元一条的毛巾,可以买多少条?
100×6=600 600÷8=75
18、一包A4复印纸,每天用25张,20天正好用完.如果每天少用5张,那么可以用多少天?
25×20=500 25-5=20 500÷20=25
19、一个养蜂专业户,今年饲养蜜蜂24箱.去年5箱蜜蜂酿了375千克蜂蜜,照去年的酿蜜量计算,今年可以酿多少千克蜂蜜?
375÷5=75 75×24=1800
20、冬冬家在15平方米的土地上共育苗135棵,照这样计算,要育苗99 0棵,需要多大面积的土地?
135÷15=9 990÷9=110
❹ 四年级数学上册
21710000读作二千一百七十一万。
56570000读作五千六百五十七万。
8005000读作八百万五千。
632000读作六十三万二千。
七千三百万七十八——这个数应为:73000078读作七千三百万零七十八。
你基本做对了!不错。
❺ 数学四年级上册公式大全
小学四年级数学公式大全
加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
1 每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2 1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3 速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4 单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5 工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6 加数+加数=和
和-一个加数=另一个加数
7 被减数-减数=差
被减数-差=减数
差+减数=被减数
8 因数×因数=积
积÷一个因数=另一个因数
9 被除数÷除数=商
被除数÷商=除数
商×除数=被除数
小学数学图形计算公式
1 正方形
C周长 S面积 a边长
周长=边长×4
C=4a
面积=边长×边长
S=a×a
2 正方体
V:体积 a:棱长
表面积=棱长×棱长×6
S表=a×a×6
体积=棱长×棱长×棱长
V=a×a×a
3 长方形
C周长 S面积 a边长
周长=(长+宽)×2
C=2(a+b)
面积=长×宽
S=ab
4 长方体
V:体积 s:面积 a:长 b: 宽 h:高
(1)表面积(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
(2)体积=长×宽×高
V=abh
5 三角形
s面积 a底 h高
面积=底×高÷2
s=ah÷2
三角形高=面积 ×2÷底
三角形底=面积 ×2÷高
6 平行四边形
s面积 a底 h高
面积=底×高
s=ah
7 梯形
s面积 a上底 b下底 h高
面积=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圆形
S面积 C周长 ∏ d=直径 r=半径
(1)周长=直径×∏=2×∏×半径
C=∏d=2∏r
(2)面积=半径×半径×∏
9 圆柱体
v:体积 h:高 s;底面积 r:底面半径 c:底面周长
(1)侧面积=底面周长×高
(2)表面积=侧面积+底面积×2
(3)体积=底面积×高
(4)体积=侧面积÷2×半径
10 圆锥体
v:体积 h:高 s;底面积 r:底面半径
体积=底面积×高÷3
总数÷总份数=平均数
和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者 和-小数=大数)
差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或 小数+差=大数)
三角形的面积=底×高÷2。公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a×a
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的体积=长×宽×高 公式:V=abh
长方体(或正方体)的体积=底面积×高 公式:V=abh
正方体的体积=棱长×棱长×棱长 公式:V=aaa
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。
读懂理解会应用以下定义定理性质公式
一、算术方面
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)×5=2×5+4×5
6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7、么叫等式?等号左边的数值与等号右边的数值相等的式子
叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,
等式仍然成立。
8、什么叫方程式?答:含有未知数的等式叫方程式。
9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。
16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。
19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数
(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。
21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。数量关系计算公式方面
1、单价×数量=总价 2、单产量×数量=总产量
3、速度×时间=路程 4、工效×时间=工作总量
5、加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
有余数的除法: 被除数=商×除数+余数
一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤
1公顷=10000平方米。 1亩=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3
比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
9、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。如:x×y = k( k一定)或k / x = y
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化发。
16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数: 公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。(约分用最大公约数)
21、最简分数:分子、分母是互质数的分数,叫做最简分数。
分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整除,即能用2进行
约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
22、偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。
30、自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
32、不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。
如3. 141592654
33、无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
34、什么叫代数? 代数就是用字母代替数。
35、什么叫代数式?用字母表示的式子叫做代数式。如:3x =(a+b
)*c
初中数学知识点归纳.
有理数的加法运算
同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算
减正等于加负,减负等于加正。
有理数的乘法运算符号法则
同号得正异号负,一项为零积是零。
合并同类项
说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则
去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程
已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式
两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式
二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式
首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程
先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程
先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法
和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解
两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解
一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。
【注】 一提(提公因式)二套(套公式)
因式分解
一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。
对症下药稳又准,连乘结果是基础。
二次三项式的因式分解
先想完全平方式,十字相乘是其次。
两种方法行不通,求根分解去尝试。
比和比例
两数相除也叫比,两比相等叫比例。
外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。
同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。
前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。
前项和比后项和,比值不变叫等比。
解比例
外项积等内项积,列出方程并解之。
求比值
由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。
消元也是好办法,殊途同归会变通。
正比例与反比例
商定变量成正比,积定变量成反比。
正比例与反比例
变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。
判断四数成比例
四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。
判断四式成比例
四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。
比例中项
成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。
比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。
有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。
根式与无理式
表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。
被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。
被开方式有字母,又可称为无理式。
求定义域
求定义域有讲究,四项原则须留意。
负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。
限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。
负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。
限制条件不唯一,不等式组求解集。
解一元一次不等式
先去分母再括号,移项合并同类项。
系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。
同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。
解一元一次不等式组
大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。
同向取两边,异向取中间。
中间无元素,无解便出现。
幼儿园小鬼当家,(同小相对取较小)
敬老院以老为荣,(同大就要取较大)
军营里没老没少。(大小小大就是它)
大大小小解集空。(小小大大哪有哇)
解一元二次不等式
首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。
a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。
方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。
用平方差公式因式分解
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。
用完全平方公式因式分解
两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。
分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。
一平方又一平方,底积2倍在中路。
三正两底和平方,全负和方相反数。
分成两底差平方,两端为正倍积负。
两边若负中间正,底差平方相反数。
用公式法解一元二次方程
要用公式解方程,首先化成一般式。
调整系数随其后,使其成为最简比。
确定参数abc,计算方程判别式。
判别式值与零比,有无实根便得知。
有实根可套公式,没有实根要告之。
用常规配方法解一元二次方程
左未右已先分离,二系化“1”是其次。
一系折半再平方,两边同加没问题。
左边分解右合并,直接开方去解题。
该种解法叫配方,解方程时多练习。
用间接配方法解一元二次方程
已知未知先分离,因式分解是其次。
调整系数等互反,和差积套恒等式。
完全平方等常数,间接配方显优势
【注】 恒等式
解一元二次方程
方程没有一次项,直接开方最理想。
如果缺少常数项,因式分解没商量。
b、c相等都为零,等根是零不要忘。
b、c同时不为零,因式分解或配方,
也可直接套公式,因题而异择良方。
正比例函数的鉴别
判断正比例函数,检验当分两步走。
一量表示另一量, 有没有。
若有再去看取值,全体实数都需要。
区分正比例函数,衡量可分两步走。
一量表示另一量, 是与否。
若有还要看取值,全体实数都要有。
正比例函数的图象与性质
正比函数图直线,经过 和原点。
K正一三负二四,变化趋势记心间。
K正左低右边高,同大同小向爬山。
K负左高右边低,一大另小下山峦。
一次函数
一次函数图直线,经过 点。
K正左低右边高,越走越高向爬山。
K负左高右边低,越来越低很明显。
K称斜率b截距,截距为零变正函。
反比例函数
反比函数双曲线,经过 点。
K正一三负二四,两轴是它渐近线。
K正左高右边低,一三象限滑下山。
K负左低右边高,二四象限如爬山。
二次函数
二次方程零换y,二次函数便出现。
全体实数定义域,图像叫做抛物线。
抛物线有对称轴,两边单调正相反。
A定开口及大小,线轴交点叫顶点。
顶点非高即最低。上低下高很显眼。
如果要画抛物线,平移也可去描点,
提取配方定顶点,两条途径再挑选。
列表描点后连线,平移规律记心间。
左加右减括号内,号外上加下要减。
二次方程零换y,就得到二次函数。
图像叫做抛物线,定义域全体实数。
A定开口及大小,开口向上是正数。
绝对值大开口小,开口向下A负数。
抛物线有对称轴,增减特性可看图。
线轴交点叫顶点,顶点纵标最值出。
如果要画抛物线,描点平移两条路。
提取配方定顶点,平移描点皆成图。
列表描点后连线,三点大致定全图。
若要平移也不难,先画基础抛物线,
顶点移到新位置,开口大小随基础。
【注】基础抛物线
直线、射线与线段
直线射线与线段,形状相似有关联。
直线长短不确定,可向两方无限延。
射线仅有一端点,反向延长成直线。
线段定长两端点,双向延伸变直线。
两点定线是共性,组成图形最常见。
角
一点出发两射线,组成图形叫做角。
共线反向是平角,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
直平之间是钝角,平周之间叫优角。
互余两角和直角,和是平角互补角。
一点出发两射线,组成图形叫做角。
平角反向且共线,平角之半叫直角。
平角两倍成周角,小于直角叫锐角。
钝角界于直平间,平周之间叫优角。
和为直角叫互余,互为补角和平角。
证等积或比例线段
等积或比例线段,多种途径可以证。
证等积要改等比,对照图形看特征。
共点共线线相交,平行截比把题证。
三点定型十分像,想法来把相似证。
图形明显不相似,等线段比替换证。
换后结论能成立,原来命题即得证。
实在不行用面积,射影角分线也成。
只要学习肯登攀,手脑并用无不胜。
解无理方程
一无一有各一边,两无也要放两边。
乘方根号无踪迹,方程可解无负担。
两无一有相对难,两次乘方也好办。
特殊情况去换元,得解验根是必然。
解分式方程
先约后乘公分母,整式方程转化出。
特殊情况可换元,去掉分母是出路。
求得解后要验根,原留增舍别含糊。
列方程解应用题
列方程解应用题,审设列解双检答。
审题弄清已未知,设元直间两办法。
列表画图造方程,解方程时守章法。
检验准且合题意,问求同一才作答。
添加辅助线
学习几何体会深,成败也许一线牵。
分散条件要集中,常要添加辅助线。
畏惧心理不要有,其次要把观念变。
熟能生巧有规律,真知灼见靠实践。
图中已知有中线,倍长中线把线连。
旋转构造全等形,等线段角可代换。
多条中线连中点,便可得到中位线。
倘若知角平分线,既可两边作垂线。
也可沿线去翻折,全等图形立呈现。
角分线若加垂线,等腰三角形可见。
角分线加平行线,等线段角位置变。
已知线段中垂线,连接两端等线段。
辅助线必画虚线,便与原图联系看。
两点间距离公式
同轴两点求距离,大减小数就为之。
与轴等距两个点,间距求法亦如此。
平面任意两个点,横纵标差先求值。
差方相加开平方,距离公式要牢记。
矩形的判定
任意一个四边形,三个直角成矩形;
对角线等互平分,四边形它是矩形。
已知平行四边形,一个直角叫矩形;
两对角线若相等,理所当然为矩形。
菱形的判定
任意一个四边形,四边相等成菱形;
四边形的对角线,垂直互分是菱形。
已知平行四边形,邻边相等叫菱形;
两对角线若垂直,顺理成章为菱形。
❻ 四年级上册数学小故事40字大全
1、一位农夫请了工程师、物理学家和数学家来,想用最少的篱笆围出最大的面积。
工程师用篱笆围出一个圆,宣称这是最优设计。
物理学家将篱笆拉开成一条长长的直线,假设篱笆有无限长,认为围起半个地球总够大了。
数学家好好嘲笑了他们一番。
他用很少的篱笆把自己围起来,然后说:“我现在是在外面。”
3、战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。
比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
4、一只蜗牛不小心掉进了一口枯井里。它趴在井底哭了起来。一只癞蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。
我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”
蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”
第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。它不停的爬呀,到了傍晚终于爬了5米。蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。早上,蜗牛被一阵呼噜声吵醒了。
一看原来是癫大叔还在睡觉。它心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。
到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。你能猜出来,蜗牛需要用几天时间就能爬上井台吗?
5、有一天,一只蝴蝶在动物城的花丛里飞来飞去,一只小蜻蜓飞过来,说:小蜻蜓,咱们一起玩吧。小蝴蝶说:我是蝴蝶,你是蜻蜓,怎么能在一起玩呢?
小蜻蜓说:在图形王国里,我们就是一家的,另外还有许多家庭成员呢?不信,我领你去看..一路上,蝴蝶看到了许多美丽的景色,还看见了许多动物:有美丽的孔雀,知了,七星瓢虫...小朋友们,它们美吗?你觉得它们哪儿美呢?