当前位置:首页 » 语数英语 » 世界著名数学家

世界著名数学家

发布时间: 2021-08-15 10:15:41

『壹』 中外著名数学家及成就、著作

1、祖冲之:

祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。

著作:《安边论》《缀术》《述异记》《历议》。

2、陈省身:

美籍华裔数学大师、20世纪最伟大的几何学家之一,生前曾长期任教于美国加州大学伯克利分校、芝加哥大学, 并在伯克利建立了美国国家数学科学研究所。为了纪念陈省身的卓越贡献,国际数学联盟还特别设立了“陈省身奖”作为国际数学界最高级别的终身成就奖。

著作:《微分几何的若干论题》、《微分流形》、《复流形》、《整体几何和分析的研究》、《不具位势原理的复流形。

3、陈景润:

中国著名数学家,厦门大学数学系毕业。1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》(简称“1+2”),成为哥德巴赫猜想研究上的里程碑。而他所发表的成果也被称之为陈氏定理。

著作:《算术级数中的最小素数》、《表大偶数为一个素数及一个不超过二个素数的乘积之和》、《数学趣味谈》、《组合数学》、《哥德巴赫猜想》 。

(1)世界著名数学家扩展阅读:

数学家专注于数、数据、集合、结构、空间、变化。数学研究工作,不仅是了解及整理已知的结果,还包含着创造新的数学成果与理论。许多人误解数学是一个已经被研究完的领域,事实上,数学上还有许多未知的领域和待解决的问题,也一直有大量新的数学成果发表。这些数学成果有些是新的数学知识,有些是新的应用方式。

心算家、珠算家不能算是数学家,数学家也不见得能够快速的做出各种计算。从事与数学相关的工作,比如教学和科普,而不从事数学研究的人,可以被称为广义的“数学工作者”。

『贰』 世界著名数学家的简介

高斯是19世纪德国杰出的数学家和物理、天文学家。有人说高斯是绝顶聪明的天才,高斯却说:“我的知识和成功,全是靠勤奋学习取得的。我小时候很喜欢数学,甚至在学会说话之前,就学会计数了!

有一天,高斯的父亲正在结算几个工人的工资,算了半天,累得满头是汗。

“唉,终于算出来了!”父亲站起身子伸了伸懒腰说。

“爸爸,您算得不对!”站在一边的小高斯低声地说,“总数应该是……”

“你怎么知道的?”父亲不以为然地问了一句。

“我是心里算出来的呀!”高斯天真地说,“不信您再算一遍。”

父亲又仔细核算了一遍,发现果真算错了,而儿子说的总数是对的。他又惊又喜,兴奋地说:“聪明的孩子,过几天爸爸就送你上学。”

高斯八岁时进入乡村小学读书。教数学的教师是一个从城里来的人,觉得在一个穷乡僻壤教几个小孩子读书,真是大材小用。而他又有些偏见:认为穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书用不着太认真,如果有机会,还应该处罚他们,给自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师很不高兴的一天。同学们看到老师那阴沉的脸色,心里畏惧起来,知道老师又会在今天处罚学生了。

“你们今天算一道题,从1加2加3一直到100,谁算不出来就罚他不能回家吃饭。老师只说了这么一句话后,就一言不发地拿起一本小说坐在椅子上看去了。

于是,教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸儿涨红了,有些孩子的手心、额上渗出了汗来。

还不到半个小时,小高斯就拿起了他的石板走上前去:“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想,小孩子们不可能这么快就算出答案了。

可是高斯却站着不动,把石板伸到老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050。他惊奇起来,因为他自己曾经算过,得到的数就是5050,这个8岁的小孩子怎么这样快就算出了得数呢?

高斯就向老师解释说:“如果把从1到100这100个数首尾相加,1+100=101,2+99=101,3+98=101……这样,每两个数的和都是101.100个数两两相加,就会有50个结果,而每个结果都是101,那么50个101加起来就等于5050。”

高斯的发现使老师觉得十分羞愧,他开始认识到自己以前目空一切并且轻视穷人家的孩子是不对的。从此,老师改变了对农村学生的看法,他尤其喜欢高斯,经常买一些新书送给高斯读。在老师的热心帮助和指导下,高斯对数学越来越感兴趣,终身与数学结下了不解之缘。

『叁』 世界著名的数学家是谁

1、古代:墨子 惠施 张苍 耿寿昌 刘歆 许商 张衡 刘洪 徐岳 赵爽 刘徽 王蕃 何承天 张邱建 祖冲之 祖日桓 甄鸾 刘焯 王孝通 李淳风 僧一行 边冈 沈括 贾宪 刘益 秦九韶 李冶 王恂 杨辉 郭守敬 朱世杰 陶宗仪 吴敬 王文素 顾应祥 程大位 徐光启朱载堉 李之藻 王锡阐 梅文鼎家族 年希尧 明安图 董佑诚 焦循 汪莱 李锐 项名达 阮元 徐有壬 戴煦 李善兰 邹伯奇 夏鸾翔 华蘅芳 丁取忠 黄宗宪 左潜 曾纪鸿 周达 2、现当代:胡明复 冯祖荀 姜立夫 陈建功 熊庆来 苏步青 江泽涵 许宝騄 华罗庚 陈省身 林家翘 吴文俊 陈景润 丘成桐 冯康 周伟良 萧荫堂 钟开莱 项武忠 项武义 龚升 王湘浩 伍鸿熙 严志达 陆家羲 苏家驹 王菊珍外国著名数学家: 1、古希腊:泰勒斯、欧几里得,阿基米德,毕达哥拉斯, 2、德国:高斯、柯西、莱布尼兹、戴维·希尔伯特、歌德巴赫、克莱因、开普勒 3、法国:笛卡儿、拉格朗日、拉普拉斯、费马、泊松、嘉当、伽罗瓦、傅里叶 4、美国:Lars V.Ahlfors 5、英国:艾萨克·牛顿 6、瑞士:欧拉 、丹尼尔·伯努利,,阿贝尔, …… 7、匈牙利:冯·诺依曼 8、挪威:伯努利

『肆』 近代国际知名数学家有哪些

1.费尔马大定理,起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。古希腊的丢番图写过一本著名的“算术”,经历中世纪的愚昧黑暗到文艺复兴的时候,“算术”的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在“算术”的关于勾股数问题的页边上,写下猜想:x^n+ y^n =z^n 是不可能的(这里n大于2;a,b,c,n都是非零整数)。此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。1847年,库木尔创立“代数数论”这一现代重要学科,对许多n(例如100以内)证明了费尔马大定理,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他后来为费尔马大定理设悬赏10万马克(相当于现在160万美元多),期限1908-2007年。无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的N,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个a,b,c振动了世界,获得费尔兹奖(数学界最高奖)。
历史的新转机发生在1986年夏,贝克莱·瑞波特证明了:费尔马大定理包含在“谷山丰—志村五朗猜想 ” 之中。童年就痴迷于此的怀尔斯,闻此立刻潜心于顶楼书房7年,曲折卓绝,汇集了20世纪数论所有的突破性成果。终于在1993年6月23日剑桥大学牛顿研究所的“世纪演讲”最后,宣布证明了费尔马大定理。立刻震动世界,普天同庆。不幸的是,数月后逐渐发现此证明有漏洞,一时更成世界焦点。这个证明体系是千万个深奥数学推理连接成千个最现代的定理、事实和计算所组成的千百回转的逻辑网络,任何一环节的问题都会导致前功尽弃。怀尔斯绝境搏斗,毫无出路。1994年9月19日,星期一的早晨,怀尔斯在思维的闪电中突然找到了迷失的钥匙:解答原来就在废墟中!他热泪夺眶而出。怀尔斯的历史性长文“模椭圆曲线和费尔马大定理”1995年5月发表在美国《数学年刊》第142卷,实际占满了全卷,共五章,130页。1997年6月27日,怀尔斯获得沃尔夫斯克勒10万马克悬赏大奖。离截止期10年,圆了历史的梦。他还获得沃尔夫奖(1996.3),美国国家科学家院奖(1996.6),费尔兹特别奖(1998.8)。
2.四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”用数学语言表示,即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。”(右图)
这里所指的相邻区域,是指有一整段边界是公共的。如果两个区域只相遇于一点或有限多点,就不叫相邻的。因为用相同的颜色给它们着色不会引起混淆。
四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。汉密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年汉密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。如为正规地图,否则为非正规地图(右图)。一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。
肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的,这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问题”,但是后来人们发现他错了。
不过肯普的证明阐明了两个重要的概念,对以后问题的解决提供了途径。第一个概念是“构形”。他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国,不存在每个国家都有六个或更多个邻国的正规地图,也就是说,由两个邻国,三个邻国、四个或五个邻国组成的一组“构形”是不可避免的,每张地图至少含有这四种构形中的一个。
肯普提出的另一个概念是“可约”性。“可约”这个词的使用是来自肯普的论证。他证明了只要五色地图中有一国具有四个邻国,就会有国数减少的五色地图。自从引入“构形”,“可约”概念后,逐步发展了检查构形以决定是否可约的一些标准方法,能够寻求可约构形的不可避免组,是证明“四色问题”的重要依据。但要证明大的构形可约,需要检查大量的细节,这是相当复杂的。
11年后,即1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了肯普在证明上的漏洞。他指出肯普说没有极小五色地图能有一国具有五个邻国的理由有破绽。不久,泰勒的证明也被人们否定了。人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图着色,用五种颜色就够了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。
高速数字计算机的发明,促使更多数学家对“四色问题”的研究。从1936年就开始研究四色猜想的海克,公开宣称四色猜想可用寻找可约图形的不可避免组来证明。他的学生丢雷写了一个计算程序,海克不仅能用这程序产生的数据来证明构形可约,而且描绘可约构形的方法是从改造地图成为数学上称为“对偶”形着手。
他把每个国家的首都标出来,然后把相邻国家的首都用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或边)外,擦掉其他所有的线,剩下的称为原图的对偶图。到了六十年代后期,海克引进一个类似于在电网络中移动电荷的方法来求构形的不可避免组。在海克的研究中第一次以颇不成熟的形式出现的“放电法”,这对以后关于不可避免组的研究是个关键,也是证明四色定理的中心要素。
电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。美国伊利诺大学哈肯在1970年着手改进“放电过程”,后与阿佩尔合作编制一个很好的程序。就在1976年6月,他们在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明,轰动了世界。
这是一百多年来吸引许多数学家与数学爱好者的大事,当两位数学家将他们的研究成果发表的时候,当地的邮局在当天发出的所有邮件上都加盖了“四色足够”的特制邮戳,以庆祝这一难题获得解决。
“四色问题”的被证明仅解决了一个历时100多年的难题,而且成为数学史上一系列新思维的起点。在“四色问题”的研究过程中,不少新的数学理论随之产生,也发展了很多数学计算技巧。如将地图的着色问题化为图论问题,丰富了图论的内容。不仅如此,“四色问题”在有效地设计航空班机日程表,设计计算机的编码程序上都起到了推动作用。
不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍由不少数学家和数学爱好者在寻找更简洁的证明方法。
3.史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。
1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:
一、任何不小于6的偶数,都是两个奇质数之和;
二、任何不小于9的奇数,都是三个奇质数之和。
这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。
同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。
我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之积。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。
1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。
1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的积。”这个定理被世界数学界称为“陈氏定理”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。

『伍』 世界上著名的数学家

1.毕达哥拉斯:影响西方乃至世界的人物,第一个着重“数”的人,发现毕达哥拉斯定理(勾股定理)
证明了正多面体的个数,建设了许多较有影响的社团毕达哥拉斯学派创始人。
2.欧几里得:欧几里得几何(欧式几何)的始祖,编写了几何原本。

3.阿基米德:写出几何体的表面积和体积的计算方法,著有《论球和圆柱》、《论螺线》、《沙的计算》、《论图形的平衡》。
4.祖冲之:创立《大明历》,把圆周率推算到小数点后七位。
5.笛卡尔:在数学发展上与费马共同创立了解析几何学,使数学进入了第一个重要时代——变量时代,他还发现了凸多面体边、顶点、面之间的关系,后人称为欧拉-笛卡尔公式。还有微积分中常见的笛卡尔叶形线也是他发现的。

6.莱布尼茨:与牛顿共同发现了微积分,使数学进入了第二个重要时代,提出了许多数学符号,是一个数学符号大师.
7.欧拉:提出函数的概念,创立分析力学,解决了柯尼斯堡七桥问题,给出欧拉公式,拓扑学的创始人。
8.高斯:至今为止最伟大的数学家,发现了数个后来才被人发现的定理(后人在他笔记上看到的),及独立研究出前人发现的定理,不求名利(成就说不完了,不提了)
9.黎曼:非欧几何的黎曼几何的创始人。
10.希尔伯特:证明论、数理逻辑、区分数学与元数学之差别的奠基人之一,发明和发展了大量的思想观念。

『陆』 世界近现代著名的数学家

Green 格林(有很多姓绿的人,反正都很牛)
S.Lie 李 (创造了著名的Lie群,是近代数学物理中最重要的一个概念)
Euler 欧拉(后来双目失明了,但是其伟大很少有人能与之相比)Gauss 高斯(有些人不需要说明,Gauss就是一个)
Sturm 斯图谟(那个Liouvel-Sturm定理的人,项武义先生很推崇他)
Riemann 黎曼(不知道这个名字,就是说不知道世界上存在着数学家)
Neumann 诺伊曼(造了第一台电脑,人类历史上最后一个数学物理的全才)
Caratheodory 卡拉西奥多礼(外测度的创立者,曾经是贵族)
Newton 牛顿(名字带牛,实在是牛)
Jordan 约当(Jordan标准型,Poincare前的法国数学界精神领袖)
Laplace 拉普拉斯(这人的东西太多了,到处都有)
Wiener 维纳(集天才变态于一身的大家,后来在MIT做教授)
Thales 泰勒斯(古希腊著名哲学家,有一个他囤积居奇发财的轶事)
Maxwell 麦克斯韦(电磁学中的Maxwell方程组)
Riesz 黎茨(泛函里的Riesz表示定理,当年匈牙利数学竞赛第一)
Fourier 傅立叶(巨烦无比的Fourier变换,他当年黑过Galois)
Noether 诺特(最最伟大的女数学家,抽象代数之母)
Kepler 开普勒(研究行星怎么绕着太阳转的人)
Kolmogorov 柯尔莫戈洛夫(苏联的超级牛人烂人,一生桀骜不驯)
Borel 波莱尔(学过数学分析和实分析都知道此人)
Sobolev 所伯列夫(著名的Sobolev空间,改变了现代PDE的写法)
Dirchlet 狄利克雷(Riemann的老师,伟大如他者廖若星辰)
Lebesgue 勒贝格(实分析的开山之人,他的名字经常用来修饰测度这个名词)
Leibniz 莱不尼兹(和Newton争谁发明微积分,他的记号使微积分容易掌握)
Abel 阿贝尔(天才,有形容词形式的名字不多,Abelian就是一个)
Lagrange 拉格朗日(法国姓L的伟人有三个,他,Laplace,Legendre)
Ramanujan 拉曼奴阳(天资异禀,死于思乡病)
Ljapunov 李雅普诺夫(爱微分方程和动力系统,但更爱他的妻子)
Holder 赫尔得(Holder不等式,L-p空间里的那个)
Poisson 泊松(概率中的Poisson过程,也是纯数学家)
Nikodym 发音很难的说(有著名的Ladon-Nikodym定理)
H.Hopf 霍普夫(微分几何大师,陈省身先生的好朋友)
Pythagoras 毕达哥拉斯(就是勾股定理在西方的发现者)
Baire 贝尔(著名的Baire纲)
Haar 哈尔(有个Haar测度,一度哥廷根的大红人)
Fermat 费马(Fermat大定理,最牛的业余数学家,吹牛很牛的)
Kronecker 克罗内克(牛人,迫害Cantor至疯人院)
E.Laudau 朗道(巨富的数学家,解析数论超牛)
Markov 马尔可夫(Markov过程)
Wronski 朗斯基(微分方程中有个Wronski行列式,用来解线性方程组的)
Zermelo 策梅罗(集合论的专家,有以他的名字命名的公理体系)
Rouche 儒契(在复变中有Rouche定理Rouche函数)
Taylor 泰勒(Taylor有很多,最熟的一个恐怕是Taylor展开的那个)
Urysohn 乌里松(在拓扑中有著名的Urysohn定理)Frechet 发音巨难的说,泛函中的Frechet空间
Picard 皮卡(大小Picard定理,心高气敖,很没有人缘)
Schauder 肖德尔(泛函中有Schauder基Schauder不动点定理)
Poincare 彭加莱(数学界的莎士比亚)Peano 皮亚诺(有Peano公理,和数学归纳法有关系)Zorn 佐恩(Zorn引理,看起来显然的东西都用这个证明)

『柒』 世界上最伟大的四位数学家是谁

世界公认的三大著名数学家为:阿基米德、牛顿与高斯。他们为科学发展作出了巨大贡献。此外,伟大的数学家还有欧拉、拉格朗日、冯·诺依曼等。

1、阿基米德(公元前287年-公元前212年)

伟大的古希腊哲学家、网络式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”

2、艾萨克·牛顿(1643年1月4日-1727年3月31日)

爵士,英国皇家学会会长,英国著名的物理学家,网络全书式的“全才”,著有《自然哲学的数学原理》、《光学》。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。

3、约翰·卡尔·弗里德里希·高斯(1777年4月30日-1855年2月23日)

生于布伦瑞克,卒于哥廷根。德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。享有“数学王子”的美誉。

高斯发现了质数分布定理和最小二乘法。高斯专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

4、莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日)

瑞士数学家、自然科学家。欧拉是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。

5、约翰·冯·诺依曼(1903年12月28日-1957年2月8日)

美籍匈牙利数学家、计算机科学家、物理学家,是20世纪最重要的数学家之一。冯·诺依曼是布达佩斯大学数学博士,在现代计算机、博弈论、核武器和生化武器等领域内的科学全才之一,被后人称为“计算机之父”、“博弈论之父”。

(7)世界著名数学家扩展阅读:

数学家是对世界数学的发展作出创造性工作的人士,将其所学知识运用于其工作上(特别是解决数学问题)。数学家专注于数、数据、集合、结构、空间、变化。一般认为,历史上可考的最早的数学家是古希腊的泰勒斯。

近代现代中国世界著名数学家有胡明复、冯祖荀、姜立夫、陈建功、熊庆来、苏步青、江泽涵、许宝騄、华罗庚、陈省身、林家翘、吴文俊、陈景润、丘成桐、冯康、周伟良、萧荫堂、钟开莱等。

『捌』 世界十大数学家排名的一的是谁

给你复制他人的答案你看下
世界十大科学家
一 牛顿
艾萨克·牛顿爵士,FRS(Sir Isaac Newton,1642年12月25日-1727年3月20日)是一位英格兰物理学家、数学家、天文学家、自然哲学家和炼金术士.他在1687年发表的论文《自然哲学的数学原理》里,对万有引力和三大运动定律进行了描述.这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础.他通过论证开普勒行星运动定律与他的引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;从而消除了对太阳中心说的最后一丝疑虑,并推动了科学革命.
二 爱因斯阿尔伯特·爱因斯坦 (Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人.
十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,重新考查了物理学的基本概念,在理论上作出了根本性的突破.他的一些成就大大推动了天文学的发展.他
的量子理论对天体物理学、特别是理论天体物理学都有很大的影响.理论天体物理学的第一个成熟的方面——恒星大气理论,就是在量子理论和辐射理论的基础上建立起来的.爱因斯坦的狭义相对论成功地揭示了能量与质量之间的关系,解决了长期存在的恒星能源来源的难题.其广义相对论也解决了一个天文学上多年的不解之谜,并推断出后来被验证了的光线弯曲现象.
三 希尔伯特1862~1943
希尔伯特是对二十世纪数学有深刻影响的数学家之一.他领导了著名的格廷根学派,使格廷根大学成为当时世界数学研究的重要中心,并培养了一批对现代数学发展做出重大贡献的杰出数学家.希尔伯特的数学工作可以划分为几个不同的时期,每个时期他几乎都集中精力研究一类问题.按时间顺序,他的主要研究内容有:不变量理论、代数数域理论、几何基础、积分方程、物理学、一般数学基础,其间穿插的研究课题有:狄利克雷原理和变分法、华林问题、特征值问题、“希尔伯特空间”等.在这些领域中,他都做出了重大的或开创性的贡献.希尔伯特认为,科学在每个时代都有它自己的问题,而这些问题的解决对于科学发展具有深远意义
.四 麦克斯韦(James Clerk Maxwell 1831--1879)
麦克斯韦主要从事电磁理论、分子物理学、统计物理学、光学、力学、弹性理论方面的研究.尤其是他建立的电磁场理论,将电学、磁学、光学统一起来,是19世纪物理学发展的最光辉的成果,是科学史上最伟大的综合之一.他预言了电磁波的存在.这种理论遇见后来得到了充分的实验验证.他为物理学树起了一座丰碑.造福于人类的无线电技术,就是以电磁场理论为基础发展起来的.
五 门捷列夫
门捷列夫的最大贡献是发现了化学元素周期律.今称门捷列夫周期律.1869年2月 ,门捷列夫编制了一份包括当时已知的全部63种元素的周期表(表1).同年3月,他委托N.A.缅舒特金在俄国化学会上宣读了题为《元素的属性与原子量的关系》的论文,阐述了元素周期律的要点:①按照原子量的大小排列起来的元素,在性质上呈现明显的周期性.②原子量的大小决定元素的特征.③应该预料到许多未知单质的发现,例如,预料应有类似铝和硅的,原子量位于65~75之间的元素.④已知某些元素的同类元素后,有时可以修正该元素的原子量.
六 高斯(1777年4月30日—1855年2月23日)
德国著名数学家、物理学家、天文学家、大地测量学家.高斯被认为是最重要的数学家,并有数学王子的美誉.高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献.他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理.高理的数论研究
总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一.高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径.高斯在1816年左右就得到非欧几何的原理.他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理.他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来.1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论.高斯的曲面理论后来由黎曼发展.
高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来.其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等.
七 欧拉(1707-1783)
18世纪最优秀的数学家,也是历史上最伟大的数学家之一,被称为“分析的化身”.欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.可以说欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文(七十余卷,牛顿全集八卷,高斯全集十二卷),其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".
八 居里夫人(1867~1934)
1898年法国物理学家贝可勒尔(Antoine Henri
Becquerel)发现含铀矿物能放射出一种神秘射线,但未能揭示出这种射线的奥秘.玛丽和她的丈夫彼埃尔·居里(Pierre curie)共同承担了研究这种射线的工作.他们在极其困难的条件下,对沥青铀矿进行分离和分析,终于在1898年7月和12月先后发现两种新元素.居里夫人即玛丽居里(Marie Curie),是一位原籍为波兰的法国科学家.她与她的丈夫皮埃尔居里(Pierre
Curie)都是放射性的早期研究者,他们发现了放射性元素钋(Po)和镭(Ra),并因此与法国物理学家亨利.贝克勒尔(Henry Becquerel)分享了1903年诺贝尔物理学奖.之后,居里夫人继续研究了镭在在化学和医学上的应用,并且因分离出纯的金属镭而又获得1911年诺贝尔化学奖.
九 莱布尼茨1646.7.1.—1716.11.14
德国最重要的自然科学家、数学家、物理学家、历史学家和哲学家,一个举世罕见的科学天才,和牛顿同为微积分的创建人.他博览群书,涉猎网络,对丰富人类的科学知识宝库做出了不可磨灭的贡献.
十 拉普拉斯(1749~1827)
拉普拉斯是天体力学的主要奠基人,是天体演化学的创立者之一,是分析概率论的创始人,是应用数学的先躯.拉普拉斯用数学方法证明了行星的轨道大小只有周期性变化,这就是著名拉普拉斯的定理.他发表的天文学、数学和物理学的论文有270多篇,专著合计有4006多页.其中最有代表性的专著有《天体力学》、《宇宙体系论》和《概率分析理论》.1796年,他发表《宇宙体系论》.因研究太阳系稳定性的动力学问题被誉为法国的牛顿和天体力学之父.

『玖』 世界上有哪些著名数学家

中国的华罗庚,封建社会的祖冲之。等等。

热点内容
教育大改革 发布:2025-06-19 10:44:43 浏览:576
源新生物 发布:2025-06-19 10:33:49 浏览:595
班主任与三兄弟 发布:2025-06-19 10:00:20 浏览:269
小学安全教育ppt 发布:2025-06-19 09:35:03 浏览:56
2015年度师德总结 发布:2025-06-19 09:32:47 浏览:30
2017高考全国1理科数学 发布:2025-06-19 07:41:32 浏览:424
历史霸气名字 发布:2025-06-19 07:38:25 浏览:656
2017中考伴我行化学 发布:2025-06-19 07:02:32 浏览:500
物理公式w 发布:2025-06-19 06:51:42 浏览:98
癌生物学 发布:2025-06-19 03:40:25 浏览:903