当前位置:首页 » 语数英语 » 数学分支图

数学分支图

发布时间: 2021-08-18 04:36:29

⑴ 现代数学分支树形图详细

说得清楚就已经是大师了。
现代的数学不同于19世纪之前的时候了,没有像Hilbert这样能精通很多数学方向的人了,数学爆炸性发展,无数的分支,每个分支也是无数的,要精通一个小分支已经很厉害了。
如果你想多了解这方面的知识,可以先去看看数学的发展史,再去看一些牛人的评论

⑵ 离散数学 分支图各个分支的总边数为多少比如G<n, m>

对于一个无向图而言,它的一个极大连通子图即为一连通支。比如说,一个图由三部分构成,其中每一部分都是连通的,但三个部分之间互相不连通,那么每一部分即为无向图的一个连通分支。此图的连通分支数为3。
更形象些,你把教学楼附近的几棵树合起来看做是一个无向图,树叶和树枝分叉点为图的结点,树枝为图的边,每一棵树是连通的,但树与树之间没有树枝相连。因而,每棵树都可视为一个连通分支,树的个数为连通分枝数。

⑶ 数学的分支有哪些要正确,要全。

主要分基础数学和应用数学,基础数学偏重于理论,包括数论,代数,几何,拓扑,函数,泛函分析,常(偏)微分方程,数学物理方程,概率论,组合数学(这些都是本科大学数学专业学习的课程,我就是数学专业的,学的都是纯理论,没啥用,说白了就是锻炼你的逻辑思维能力);应用数学基本上都是到研究生才学的,分的较细,包括数理统计,运筹学,控制论,计算机的数学基础,可以在企业里面直接用

⑷ 数学有多少分支

数学有26个分支,分别是:

1、数学史

2、数理逻辑与数学基础

3、数论

4、代数学

5、代数几何学

6、几何学

7、拓扑学

8、数学分析

9、非标准分析

10、函数论

11、常微分方程

12、偏微分方程

13、动力系统

14、积分方程

15、泛函分析

16、计算数学

17、概率论

18、数理统计学

19、应用统计数学

20、应用统计数学其他学科

21、运筹学

22、组合数学

23、模糊数学

24、量子数学

25、应用数学(具体应用入有关学科)

26、数学其他学科

(4)数学分支图扩展阅读:

数学各个领域

基础与哲学

为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。数学逻辑专注于将数学置在一坚固的公理架构上,并研究此一架构的结果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。

现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性,千禧年大奖难题中的P/NP问题就是理论计算机科学中的著名问题。

离散数学

离散数学是指对理论计算机科学最有用处的数学领域之总称,这包含有可计算理论、计算复杂性理论及信息论。可计算理论检验电脑的不同理论模型之极限,这包含现知最有力的模型-图灵机。

复杂性理论研究可以由电脑做为较易处理的程度;有些问题即使理论是可以以电脑解出来,但却因为会花费太多的时间或空间而使得其解答仍然不为实际上可行的,尽管电脑硬件的快速进步。

最后,信息论专注在可以储存在特定媒介内的数据总量,且因此有压缩及熵等概念。做为一相对较新的领域,离散数学有许多基本的未解问题。其中最有名的为P/NP问题-千禧年大奖难题之一。一般相信此问题的解答是否定的。

应用数学

应用数学思考将抽象的数学工具运用在解答科学、工商业及其他领域上之现实问题。应用数学中的一重要领域为统计学,它利用概率论为其工具并允许对含有机会成分的现象进行描述、分析与预测。

大部份的实验、调查及观察研究需要统计对其数据的分析。(许多的统计学家并不认为他们是数学家,而比较觉得是合作团体的一份子。)数值分析研究有什么计算方法,可以有效地解决那些人力所限而算不出的数学问题;它亦包含了对计算中舍入误差或其他来源的误差之研究。

⑸ 数学各子学科关系图示

数学分支
算术 初等代数 高等代数 数论 欧式几何 非欧几何 解析几何 射影几何 微分几何 拓扑学 代数几何 分形几何 微积分学 复变函数论 实变函数论 泛函分析 常微分方程 偏微分方程 概率和数理统计 运筹学 数理逻辑 计算数学 模糊数学 突变理论 数学物理学

⑹ 求 大学数学体系、结构图

你这张图太杂,不同专业选学不同模块。不过最先学的是高等数学(里面包版括微积分、解权析几何初步和常微分方程基础)、线性代数(这是代数中的一块内容,主干内容是解线性方程组,代数的研究范围就更广、更抽象了)、概率论和数理统计。
然后再学其他的,有了上述基础,其他的就可以并列、交叉学了。
看你列举出高等数学而不是数学分析,说明你不是数学专业的学生,那么很多分支是你不用学的,先学好最基本的吧。另外,你说的“具体数学”是什么东东?没听说过

⑺ ‘现代全部数学分支’有哪些

希尔伯特的23个问题
希尔伯特(Hilbert D.,1862.1.23~1943.2.14)是二十世纪上半叶德国乃至全世界最伟大的数学家之一。他在横跨两个世纪的六十年的研究生涯中,几乎走遍了现代数学所有前沿阵地,从而把他的思想深深地渗透进了整个现代数学。希尔伯特是哥廷根数学学派的核心,他以其勤奋的工作和真诚的个人品质吸引了来自世界各地的年青学者,使哥廷根的传统在世界产生影响。希尔伯特去世时,德国《自然》杂志发表过这样的观点:现在世界上难得有一位数学家的工作不是以某种途径导源于希尔伯特的工作。他像是数学世界的亚历山大,在整个数学版图上,留下了他那显赫的名字。 1900年,希尔伯特在巴黎数学家大会上提出了23个最重要的问题供二十世纪的数学家们去研究,这就是著名的"希尔伯特23个问题"。 1975年,在美国伊利诺斯大学召开的一次国际数学会议上,数学家们回顾了四分之三个世纪以来希尔伯特23个问题的研究进展情况。当时统计,约有一半问题已经解决了,其余一半的大多数也都有重大进展。 1976年,在美国数学家评选的自1940年以来美国数学的十大成就中,有三项就是希尔伯特第1、第5、第10问题的解决。由此可见,能解决希尔伯特问题,是当代数学家的无上光荣。 下面摘录的是1987年出版的《数学家小辞典》以及其它一些文献中收集的希尔伯特23个问题及其解决情况: 1. 连续统假设 1874年,康托猜测在可列集基数和实数基数之间没有别的基数,这就是著名的连续统假设。1938年,哥德尔证明了连续统假设和世界公认的策梅洛--弗伦克尔集合论公理系统的无矛盾性。1963年,美国数学家科亨证明连续假设和策梅洛--伦克尔集合论公理是彼此独立的。因此,连续统假设不能在策梅洛--弗伦克尔公理体系内证明其正确性与否。希尔伯特第1问题在这个意义上已获解决。 2. 算术公理的相容性 欧几里得几何的相容性可归结为算术公理的相容性。希尔伯特曾提出用形式主义计划的证明论方法加以证明。1931年,哥德尔发表的不完备性定理否定了这种看法。1936年德国数学家根茨在使用超限归纳法的条件下证明了算术公理的相容性。 1988年出版的《中国大网络全书》数学卷指出,数学相容性问题尚未解决。 3. 两个等底等高四面体的体积相等问题 问题的意思是,存在两个等边等高的四面体,它们不可分解为有限个小四面体,使这两组四面体彼此全等。M.W.德恩1900年即对此问题给出了肯定解答。 4. 两点间以直线为距离最短线问题 此问题提得过于一般。满足此性质的几何学很多,因而需增加某些限制条件。1973年,苏联数学家波格列洛夫宣布,在对称距离情况下,问题获得解决。 《中国大网络全书》说,在希尔伯特之后,在构造与探讨各种特殊度量几何方面有许多进展,但问题并未解决。 5.一个连续变换群的李氏概念,定义这个群的函数不假定是可微的 这个问题简称连续群的解析性,即:是否每一个局部欧氏群都有一定是李群?中间经冯·诺伊曼(1933,对紧群情形)、邦德里雅金(1939,对交换群情形)、谢瓦荚(1941,对可解群情形)的努力,1952年由格利森、蒙哥马利、齐宾共同解决,得到了完全肯定的结果。 6.物理学的公理化 希尔伯特建议用数学的公理化方法推演出全部物理,首先是概率和力学。1933年,苏联数学家柯尔莫哥洛夫实现了将概率论公理化。后来在量子力学、量子场论方面取得了很大成功。但是物理学是否能全盘公理化,很多人表示怀疑。 7.某些数的无理性与超越性 1934年,A.O.盖尔方德和T.施奈德各自独立地解决了问题的后半部分,即对于任意代数数α≠0 ,1,和任意代数无理数β证明了αβ 的超越性。 8.素数问题 包括黎曼猜想、哥德巴赫猜想及孪生素数问题等。一般情况下的黎曼猜想仍待解决。哥德巴赫猜想的最佳结果属于陈景润(1966),但离最解决尚有距离。目前孪生素数问题的最佳结果也属于陈景润。 9.在任意数域中证明最一般的互反律 该问题已由日本数学家高木贞治(1921)和德国数学家E.阿廷(1927)解决。 10. 丢番图方程的可解性 能求出一个整系数方程的整数根,称为丢番图方程可解。希尔伯特问,能否用一种由有限步构成的一般算法判断一个丢番图方程的可解性?1970年,苏联的IO.B.马季亚谢维奇证明了希尔伯特所期望的算法不存在。 11. 系数为任意代数数的二次型 H.哈塞(1929)和C.L.西格尔(1936,1951)在这个问题上获得重要结果。 12. 将阿贝尔域上的克罗克定理推广到任意的代数有理域上去 这一问题只有一些零星的结果,离彻底解决还相差很远。 13. 不可能用只有两个变数的函数解一般的七次方程 七次方程 的根依赖于3个参数a、b、c,即x=x (a,b,c)。这个函数能否用二元函数表示出来?苏联数学家阿诺尔德解决了连续函数的情形(1957),维士斯金又把它推广到了连续可微函数的情形(1964)。但如果要求是解析函数,则问题尚未解决。 14. 证明某类完备函数系的有限性 这和代数不变量问题有关。1958年,日本数学家永田雅宜给出了反例。 15. 舒伯特计数演算的严格基础 一个典型问题是:在三维空间中有四条直线,问有几条直线能和这四条直线都相交?舒伯特给出了一个直观解法。希尔伯特要求将问题一般化,并给以严格基础。现在已有了一些可计算的方法,它和代数几何学不密切联系。但严格的基础迄今仍未确立。 16. 代数曲线和代数曲线面的拓扑问题 这个问题分为两部分。前半部分涉及代数曲线含有闭的分枝曲线的最大数目。后半部分要求讨论 的极限环的最大个数和相对位置,其中X、Y是x、y的n次多项式.苏联的彼得罗夫斯基曾宣称证明了n=2时极限环的个数不超过3,但这一结论是错误的,已由中国数学家举出反例(1979)。 17. 半正定形式的平方和表示 一个实系数n元多项式对一切数组(x1,x2,...,xn) 都恒大于或等于0,是否都能写成平方和的形式?1927年阿廷证明这是对的。 18. 用全等多面体构造空间 由德国数学家比勃马赫(1910)、荚因哈特(1928)作出部分解决。 19. 正则变分问题的解是否一定解析 对这一问题的研究很少。C.H.伯恩斯坦和彼得罗夫斯基等得出了一些结果。 20. 一般边值问题 这一问题进展十分迅速,已成为一个很大的数学分支。目前还在继续研究。 21. 具有给定单值群的线性微分方程解的存在性证明 已由希尔伯特本人(1905)和H.罗尔(1957)的工作解决。 22. 由自守函数构成的解析函数的单值化 它涉及艰辛的黎曼曲面论,1907年P.克伯获重要突破,其他方面尚未解决。 23. 变分法的进一步发展出 这并不是一个明确的数学问题,只是谈了对变分法的一般看法。20世纪以来变分法有了很大的发展。 这23问题涉及现代数学大部分重要领域,推动了20世纪数学的发展。赞同12

⑻ 详细的数学分支介绍

1.. 数学史
2.. 数理逻辑与数学基础
a.. 演绎逻辑学 亦称符号逻辑学
b.. 证明论 亦称元数学
c.. 递归论
d.. 模型论
e.. 公理集合论
f.. 数学基础
g.. 数理逻辑与数学基础其他学科
3.. 数论
a.. 初等数论
b.. 解析数论
c.. 代数数论
d.. 超越数论
e.. 丢番图逼近
f.. 数的几何
g.. 概率数论
h.. 计算数论
i.. 数论其他学科
4.. 代数学
a.. 线性代数
b.. 群论
c.. 域论
d.. 李群
e.. 李代数
f.. Kac-Moody代数
g.. 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结
合代数等
h.. 模论
i.. 格论
j.. 泛代数理论
k.. 范畴论
l.. 同调代数
m.. 代数K理论
n.. 微分代数
o.. 代数编码理论
p.. 代数学其他学科
5.. 代数几何学
6.. 几何学
a.. 几何学基础
b.. 欧氏几何学
c.. 非欧几何学 包括黎曼几何学等
d.. 球面几何学
e.. 向量和张量分析
f.. 仿射几何学
g.. 射影几何学
h.. 微分几何学
i.. 分数维几何
j.. 计算几何学
k.. 几何学其他学科
7.. 拓扑学
a.. 点集拓扑学
b.. 代数拓扑学
c.. 同伦论
d.. 低维拓扑学
e.. 同调论
f.. 维数论
g.. 格上拓扑学
h.. 纤维丛论
i.. 几何拓扑学
j.. 奇点理论
k.. 微分拓扑学
l.. 拓扑学其他学科
8.. 数学分析
a.. 微分学
b.. 积分学
c.. 级数论
d.. 数学分析其他学科
9.. 非标准分析
10.. 函数论
a.. 实变函数论
b.. 单复变函数论
c.. 多复变函数论
d.. 函数逼近论
e.. 调和分析
f.. 复流形
g.. 特殊函数论
h.. 函数论其他学科
11.. 常微分方程
a.. 定性理论
b.. 稳定性理论
c.. 解析理论
d.. 常微分方程其他学科
12.. 偏微分方程
a.. 椭圆型偏微分方程
b.. 双曲型偏微分方程
c.. 抛物型偏微分方程
d.. 非线性偏微分方程
e.. 偏微分方程其他学科
13.. 动力系统
a.. 微分动力系统
b.. 拓扑动力系统
c.. 复动力系统
d.. 动力系统其他学科
14.. 积分方程
15.. 泛函分析
a.. 线性算子理论
b.. 变分法
c.. 拓扑线性空间
d.. 希尔伯特空间
e.. 函数空间
f.. 巴拿赫空间
g.. 算子代数
h.. 测度与积分
i.. 广义函数论
j.. 非线性泛函分析
k.. 泛函分析其他学科
16.. 计算数学
a.. 插值法与逼近论
b.. 常微分方程数值解
c.. 偏微分方程数值解
d.. 积分方程数值解
e.. 数值代数
f.. 连续问题离散化方法
g.. 随机数值实验
h.. 误差分析
i.. 计算数学其他学科
17.. 概率论
a.. 几何概率
b.. 概率分布
c.. 极限理论
d.. 随机过程 包括正态过程与平稳过程、点过程等
e.. 马尔可夫过程
f.. 随机分析
g.. 鞅论
h.. 应用概率论 具体应用入有关学科
i.. 概率论其他学科
18.. 数理统计学
a.. 抽样理论 包括抽样分布、抽样调查等
b.. 假设检验
c.. 非参数统计
d.. 方差分析
e.. 相关回归分析
f.. 统计推断
g.. 贝叶斯统计 包括参数估计等
h.. 试验设计
i.. 多元分析
j.. 统计判决理论
k.. 时间序列分析
l.. 数理统计学其他学科
19.. 应用统计数学
a.. 统计质量控制
b.. 可靠性数学
c.. 保险数学
d.. 统计模拟
20.. 应用统计数学其他学科
21.. 运筹学
a.. 线性规划
b.. 非线性规划
c.. 动态规划
d.. 组合最优化
e.. 参数规划
f.. 整数规划
g.. 随机规划
h.. 排队论
i.. 对策论 亦称博弈论
j.. 库存论
k.. 决策论
l.. 搜索论
m.. 图论
n.. 统筹论
o.. 最优化
p.. 运筹学其他学科
22.. 组合数学
23.. 模糊数学
24.. 应用数学 具体应用入有关学科
25.. 数学其他学科

⑼ 数学树状图怎么

01
显性放回
现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”.第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.



02
分析:
从题中文字“记下数字后放回”知本题属于“显性放回”.本题中的事件是摸两次卡片,看卡片的数字,由此可以确定事件包括两个环节.摸第一张卡片,放回去,再摸第二张卡片,所以树状图应该画两层.
第一张卡片的数字可能是1,2,3等3个中的一个,所以第一层应画3个分叉;
第二次摸取卡片,由于放回,第二个球的数字可能是3个中的一个,所以第二层应接在第一层的3个分叉上,每个小分支上,再有3个分叉.
画出树状图,这样共得到3×3=9种情况,从中找出第二次抽取的数字大于第一次抽取的数字的情况,再求出概率.

03
显性不放回
例2 一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4.小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.
(1)共有几种可能的结果;
(2)请用画树状图的方法求两次摸出的乒乓球的数字之积为偶数的概率.



04
分析:
本题属于“显性不放回”.本题中的事件是摸两个乒乓球,看乒乓球的数字,由此可以确定事件包括两个环节,所以树状图应该画两层.第一个乒乓球的数字可能是1,-2,3,-4等4个中的一个,所以第一层应画4个分叉;由于不放回,第二个乒乓球的数字可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.

05
隐形放回
小明骑自行车从家去学校,途经装有红、绿灯的三个路口,假没他在每个路口遇到红灯和绿灯的概率均为,则小明经过这三个路口时,恰有一次遇到红灯的慨率是多少?请用画树状图的方法加以说明.



06
分析:
通过反复分析知本题属于“隐形放回”问题,比较容易出错.其实问题相当于一个口袋里有红球和绿球各1个,放回地随机取三次.本题中的事件是小明骑自行车从家去学校,途经装有红、绿灯的三个路口,由此可以确定事件包括三个环节,所以树状图应该画三层.由于每一个路口可能是红灯,绿灯等2个中的一个,所以每一层的分叉的小分支上都有两个小分叉.

07
隐形不放回
小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用,试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.



08
分析:
从文字中稍加分析知,本题属于“隐性不放回”,而且选取时有指明对象,是水笔和橡皮.本题中的事件是小明有3支水笔为红色、蓝色、黑色;有2块橡皮为白色、灰色,取出1支水笔和1块橡皮配套使用.由此可以确定事件包括两个环节,所以树状图应该画两层.至于水笔和橡皮哪个先取,可以随便,不影响结果,关键是各层的分叉要画对.

09
有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,6)(如图所示)散乱地放在桌子上,若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.





10
分析:
从文字中理解本题属于“隐性不放回”,而且随机选取没有指明对象是计算器还是保护盖,比较容易出错,本题中的事件是从计算器和保护盖中随机取两个,看恰好匹配.由此可以确定事件包括两个环节,取第一个,不放回去,然后再取第二个,所以树状图应该画两层.取第一个可能是A,B,a,b等4个中的一个,所以第一层应画4个分叉;再看第二层,由于不放回,取第二个可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.

⑽ 数学分支有哪些

数学分支有:
1.. 数学史
2.. 数理逻辑与数学基础
a.. 演绎逻辑学 亦称符号逻辑学
b.. 证明论 亦称元数学
c.. 递归论
d.. 模型论
e.. 公理集合论
f.. 数学基础
g.. 数理逻辑与数学基础其他学科
3.. 数论
a.. 初等数论
b.. 解析数论
c.. 代数数论
d.. 超越数论
e.. 丢番图逼近
f.. 数的几何
g.. 概率数论
h.. 计算数论
i.. 数论其他学科
4.. 代数学
a.. 线性代数
b.. 群论
c.. 域论
d.. 李群
e.. 李代数
f.. Kac-Moody代数
g.. 环论 包括交换环与交换代数,结合环与结合代数,非结合环与非结
合代数等
h.. 模论
i.. 格论
j.. 泛代数理论
k.. 范畴论
l.. 同调代数
m.. 代数K理论
n.. 微分代数
o.. 代数编码理论
p.. 代数学其他学科
5.. 代数几何学
6.. 几何学
a.. 几何学基础
b.. 欧氏几何学
c.. 非欧几何学 包括黎曼几何学等
d.. 球面几何学
e.. 向量和张量分析
f.. 仿射几何学
g.. 射影几何学
h.. 微分几何学
i.. 分数维几何
j.. 计算几何学
k.. 几何学其他学科
7.. 拓扑学
a.. 点集拓扑学
b.. 代数拓扑学
c.. 同伦论
d.. 低维拓扑学
e.. 同调论
f.. 维数论
g.. 格上拓扑学
h.. 纤维丛论
i.. 几何拓扑学
j.. 奇点理论
k.. 微分拓扑学
l.. 拓扑学其他学科
8.. 数学分析
a.. 微分学
b.. 积分学
c.. 级数论
d.. 数学分析其他学科
9.. 非标准分析
10.. 函数论
a.. 实变函数论
b.. 单复变函数论
c.. 多复变函数论
d.. 函数逼近论
e.. 调和分析
f.. 复流形
g.. 特殊函数论
h.. 函数论其他学科
11.. 常微分方程
a.. 定性理论
b.. 稳定性理论
c.. 解析理论
d.. 常微分方程其他学科
12.. 偏微分方程
a.. 椭圆型偏微分方程
b.. 双曲型偏微分方程
c.. 抛物型偏微分方程
d.. 非线性偏微分方程
e.. 偏微分方程其他学科
13.. 动力系统
a.. 微分动力系统
b.. 拓扑动力系统
c.. 复动力系统
d.. 动力系统其他学科
14.. 积分方程
15.. 泛函分析
a.. 线性算子理论
b.. 变分法
c.. 拓扑线性空间
d.. 希尔伯特空间
e.. 函数空间
f.. 巴拿赫空间
g.. 算子代数
h.. 测度与积分
i.. 广义函数论
j.. 非线性泛函分析
k.. 泛函分析其他学科
16.. 计算数学
a.. 插值法与逼近论
b.. 常微分方程数值解
c.. 偏微分方程数值解
d.. 积分方程数值解
e.. 数值代数
f.. 连续问题离散化方法
g.. 随机数值实验
h.. 误差分析
i.. 计算数学其他学科
17.. 概率论
a.. 几何概率
b.. 概率分布
c.. 极限理论
d.. 随机过程 包括正态过程与平稳过程、点过程等
e.. 马尔可夫过程
f.. 随机分析
g.. 鞅论
h.. 应用概率论 具体应用入有关学科
i.. 概率论其他学科
18.. 数理统计学
a.. 抽样理论 包括抽样分布、抽样调查等
b.. 假设检验
c.. 非参数统计
d.. 方差分析
e.. 相关回归分析
f.. 统计推断
g.. 贝叶斯统计 包括参数估计等
h.. 试验设计
i.. 多元分析
j.. 统计判决理论
k.. 时间序列分析
l.. 数理统计学其他学科
19.. 应用统计数学
a.. 统计质量控制
b.. 可靠性数学
c.. 保险数学
d.. 统计模拟
20.. 应用统计数学其他学科
21.. 运筹学
a.. 线性规划
b.. 非线性规划
c.. 动态规划
d.. 组合最优化
e.. 参数规划
f.. 整数规划
g.. 随机规划
h.. 排队论
i.. 对策论 亦称博弈论
j.. 库存论
k.. 决策论
l.. 搜索论
m.. 图论
n.. 统筹论
o.. 最优化
p.. 运筹学其他学科
22.. 组合数学
23.. 模糊数学
24.. 应用数学 具体应用入有关学科
25.. 数学其他学科

热点内容
德宏州历史 发布:2025-05-23 04:10:49 浏览:944
化学式hf 发布:2025-05-23 03:35:36 浏览:858
零基础学b超视频教学 发布:2025-05-23 02:08:22 浏览:876
高一历史期末试题 发布:2025-05-22 23:46:40 浏览:782
学美术赚钱 发布:2025-05-22 22:37:49 浏览:740
n97多少钱 发布:2025-05-22 20:56:55 浏览:451
大学数学的题 发布:2025-05-22 20:37:43 浏览:333
金聪老师 发布:2025-05-22 19:44:09 浏览:902
曹冰老师 发布:2025-05-22 19:03:11 浏览:143
上海五年级数学试卷 发布:2025-05-22 18:44:58 浏览:493