数学解方程公式
Ⅰ 数学,用公式法解方程
教你公式法的格式套路:
因为a= ,b= ,c=
△=b^2-4ac= >(或<或=)0
则x=(-b﹢﹣根号△)/2a=
故x1= ,x2= 。
Ⅱ 六年级数学解方程公式式
方程形式
一般式
(a、b、c是实数,a≠)
配方式
a(x+b/2a)^2=(b^2-4ac)/4a
两根式
a(x-x1)(x-x2)=0
公式法
x=(-b±√b^2-4ac)/2a求根公式
十字相乘法
x^2+(p+q)x+pq=(x+p)(x+q)
编辑本段解法
分解因式法
因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
如
1.解方程:x^2+2x+1=0
解:利用完全平方公式因式解得:(x+1)^2=0
解得:x1= x2=-1
2.解方程x(x+1)-2(x+1)=0
解:利用提公因式法解得:(x-2)(x+1)=0
即 x-2=0 或 x+1=0
∴ x1=2,x2=-1
3.解方程x²-4=0
解:(x+2)(x-2)=0
x+2=0或x-2=0
∴ x1=-2,x2= 2
十字相乘法公式:
x^2+(p+q)x+pq=(x+p)(x+q)
例:
1. ab+2b+a-b- 2
=ab+a+b^2-b-2
=a(b+1)+(b-2)(b+1)
=(b+1)(a+b-2)
公式法
(可解全部一元二次方程)求根公式
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根
1.当Δ=b^2-4ac<0时 x无实数根(初中)
2.当Δ=b^2-4ac=0时 x有两个相同的实数根 即x1=x2
3.当Δ=b^2-4ac>0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a
来求得方程的根
配方法
(可解全部一元二次方程)
如:解方程:x^2+2x-3=0
解:把常数项移项得:x^2+2x=3
等式两边同时加1(构成完全平方式)得:x^2+2x+1=4
因式分解得:(x+1)^2=4
解得:x1=-3,x2=1
用配方法的小口诀:
二次系数化为一
常数要往右边移
一次系数一半方
两边加上最相当
开方法
(可解部分一元二次方程)
如:x^2-24=1
解:x^2=25
x=±5
∴x1=5 x2=-5
均值代换法
(可解部分一元二次方程)
ax^2+bx+c=0
同时除以a,得到x^2+bx/a+c/a=0
设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)
根据x1·x2=c/a
求得m。
再求得x1, x2。
如:x^2-70x+825=0
均值为35,设x1=35+m,x2=35-m (m≥0)
x1·x2=825
所以m=20
所以x1=55, x2=15。
一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)(韦达定理)
一般式:a^2+bx+c=0的两个根x1和x2关系:
x1+x2= -b/a
x1·x2=c/a
Ⅲ 数学解方程
方程形式一般式(a、b、c是实数,a≠0)配方式 a(x+b/2a)^2=(b^2-4ac)/4a 两根式 a(x-x1)(x-x2)=0 公式法 x=(-b±√b^2-4ac)/2a求根公式十字相乘法 x^2+(p+q)x+pq=(x+p)(x+q)编辑本段解法分解因式法因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。如 1.解方程:x^2+2x+1=0 解:利用完全平方公式因式解得:(x+1)^2=0 解得:x1= x2=-1 2.解方程x(x+1)-2(x+1)=0 解:利用提公因式法解得:(x-2)(x+1)=0 即 x-2=0 或 x+1=0 ∴ x1=2,x2=-1 3.解方程x2-4=0 解:(x+2)(x-2)=0 x+2=0或x-2=0 ∴ x1=-2,x2= 2 十字相乘法公式: x^2+(p+q)x+pq=(x+p)(x+q) 例: 1. ab+2b+a-b- 2 =ab+a+b^2-b-2 =a(b+1)+(b-2)(b+1) =(b+1)(a+b-2) 公式法(可解全部一元二次方程)求根公式首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac0时 x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a 来求得方程的根配方法(可解全部一元二次方程)如:解方程:x^2+2x-3=0 解:把常数项移项得:x^2+2x=3 等式两边同时加1(构成完全平方式)得:x^2+2x+1=4 因式分解得:(x+1)^2=4 解得:x1=-3,x2=1 用配方法的小口诀:二次系数化为一常数要往右边移一次系数一半方两边加上最相当开方法(可解部分一元二次方程)如:x^2-24=1 解:x^2=25 x=±5 ∴x1=5 x2=-5 均值代换法(可解部分一元二次方程) ax^2+bx+c=0 同时除以a,得到x^2+bx/a+c/a=0 设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0) 根据x1·x2=c/a 求得m。再求得x1, x2。如:x^2-70x+825=0 均值为35,设x1=35+m,x2=35-m (m≥0) x1·x2=825 所以m=20 所以x1=55, x2=15。一元二次方程根与系数的关系(以下两个公式很重要,经常在考试中运用到)(韦达定理)一般式:a^2+bx+c=0的两个根x1和x2关系: x1+x2= -b/a x1·x2=c/a
Ⅳ 数学 解方程
先打开括号,并且变号。
(x^-x)-4(x^-x)-12=0
解:x^-x-4x^+4x-12=0
-3x^+3x-12=0
x^-x+4=0
由b^-4ac代入方程得出(-1)^-4x4<0
所以此方程无解
Ⅳ 小学数学解方程公式讲解
小学数学中解方程的列式依据是小学阶段常见的数量关系。解方程的过程主要是各种运算定律和加减法、乘除法各部分之间的关系,例如:被减数等于差加减数;一个因数等于积除以另一个因数。。。。。。。我就不一一列举了。
Ⅵ 初二数学解方程的公式法
ax^2+bx+c=0中.
若判别式(符号打不出..)大于或等于0
则x=-b+(根号下判别式)/2a或-b-(根号下判别式)/2a
Ⅶ 数学解方程有几种方法
1、估算法:刚学解方程时的入门方法。直接估计方程的解,然后代入原方程验证。
2、应用等式的性质进行解方程。
3、合并同类项:使方程变形为单项式
4、移项:将含未知数的项移到左边,常数项移到右边
例如:3+x=18
解:x=18-3
x=15
5、去括号:运用去括号法则,将方程中的括号去掉。
4x+2(79-x)=192
解: 4x+158-2x=192
4x-2x+158=192
2x+158=192
2x=192-158
x=17
6、公式法:有一些方程,已经研究出解的一般形式,成为固定的公式,可以直接利用公式。可解的多元高次的方程一般都有公式可循。
7、函数图像法:利用方程的解为两个以上关联函数图像的交点的几何意义求解。
(7)数学解方程公式扩展阅读
解方程依据
1、移项变号:把方程中的某些项带着前面的符号从方程的一边移到另一边,并且加变减,减变加,乘变除以,除以变乘;
2、等式的基本性质
性质1:等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。
(1)a+c=b+c
(2)a-c=b-c
性质2:等式的两边同时乘或除以同一个不为0的数,所得的结果仍是等式。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:
a×c=b×c 或a/c=b/c
性质3:若a=b,则b=a(等式的对称性)。
性质4:若a=b,b=c则a=c(等式的传递性)。
Ⅷ 数学解方程的所有公式
您好!建议您可以在网上下一个解方程式的软件或者是在网上搜集一下,从初中到大学都有这样的公式.
Ⅸ 用公式法解方程,数学中的公式法是什么
解方程ax2+bx+c=0 (a≠0)
先计算b^2-4ac是否大于等于0,
1.如果b^2-4ac>0 那么就有不相等的两个实根
2.如果b^2-4ac=0 那么就有两个相等的实根
3.如果b^2-4ac=0 那么就无解
前两种可以用
公式法
x=[-b±根号下(b^2-4ac)]/(2a)
Ⅹ 小学数学解方程所有数学方程的公式
1、题目中提供的数量关系
2、常见数量关系
如:速度×时间=路程
效率×时间=总量
等等