数学序列
⑴ 数学序列题目 F = ( 1 2 3 4 5 3 2 4 5 1) G= ( 1 2 3 4 5 4 3 5 1 2 )
f=452
⑵ 数学数列。
不一定是等差数列,例如:1、2、4、6、8、10、12、14不是等差数列
如果一个数列,从第二项起版,每一项与它的前权一项的差等于同一个常数,则这个数列是等差数列,这个常数叫做等差数列的公差;
如果一个数列,从第二项起,每一项与它的前一项的比等于同一个常数,则这个数列是等比数列,这个常数叫做等比数列的公比。
⑶ 数学数列的公式是什么
等差数列的通项公式为:an=a1+(n-1)d,或an=am+(n-m)d。
等比数列的通项公式是:An=A1×q^(n-1)。
任意两项am,an的关系为an=am·q^(n-m)。等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。
等比数列:一个数列从第2项起,每一项与它的前一项的比等于同一个常数,且每一项都不为0(常数)。这个常数叫做等比数列的公比,公比通常用字母q表示。
等差数列:一个数列从第二项起,每一项与它的前一项的差等于同一个常数。而这个常数叫做等差数列的公差,公差通常用字母d表示。
(3)数学序列扩展阅读:
数列的函数理解:
数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
函数不一定有解析式,同样数列也并非都有通项公式。
⑷ 数学 序列
9 - 7 - 8 - 6 - 7 - 5 - 6 - 3 这组数字中我们可以看出:9-7、 8-6和7-5之间都相差2,且都是成两个等差数列,即出现内:9,8,7和7,6,5,而第容四组:6-3中,6可与前面的(987)成一个等差数列,而3与前面的(765)不能成为一个数列,根据前面的规律,我们可以得出这样的结论:6后面应该是4,而不是3,即成为这样的9 - 7 - 8 - 6 - 7 - 5 - 6 - 4的数列。
⑸ 【初中数学】在数学中,序列是什么怎么表示序列{ak}是什么意思
在数学中,序列就是按照
一定的顺序排列的一列数,
其实就是数列的意思。
序列{ak}就是数列:专
a1,a2,a3,…属,ak,…
(这里仅仅是把平时习惯
写成n的序号写成了K而已)。
可能是你习惯了数列的叫法,
说成序列一时不适应罢了。
⑹ 数学数列.
把a1=1代入n a(n+1)=2(n+1)an
得a2=4
同理,a2=4代入n a(n+1)=2(n+1)an
得a3=12
所以b1=a1/1=1 b2=a2/2=2 b3=a3/3=4
⑺ 高中数学数列
①等差数列和等比数列有通项公式 ②累加法:用于递推公式为 ,且f(n)可以求和 ③累乘法:用于递推公式为 且f(n)可求积 ④构造法:将非等差数列、等比数列,转换成相关的等差等比数列 ⑤错位相减法:用于形如数列由等差×等比构成:如an=n·2^n
⑻ 数学数列的公式
高中数学数列所有公式高中数学“数列”的所有有关公式 等比数列:
若q=1 则S=n*a1
若q≠1
推倒过程:
S=a1+a1*q+a1*q^2+……+a1*q^(n-1)
等式两边同时乘q
S*q=a1*q+a1*q^2+a1*q^3+……+a1*q^
1式-2式 有
S=a1*(1-q^n)/(1-q)
等差数列
推倒过程:
S=a1+(a1+d)+(a1+2d)+……(a1+(n-1)*d)
把这个公式倒着写一遍
S=(a1+(n-1)*d) +(a1+(n-2)*d)+(a1+(n-3)*d)+……+a1
上两式相加有
S=(2a1+(n-1)d)*n/2=n*a1+n*(n-1)*d/2
一、 等差数列
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列的通项公式为:
an=a1+(n-1)d (1)
前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。
,
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)*项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
项数=(末项-首项)/公差+1
等差数列的应用:
日常生活中,人们常常用到等差数列如:在给各种产品的尺寸划分级别
时,当其中的最大尺寸与最小尺寸相差不大时,长安等差数列进行分级。
若为等差数列,且有ap=q,aq=p.则a(p+q)=-(p+q)。
若为等差数列,且有an=m,am=n.则a(m+n)=0。
等比数列:
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
(1)等比数列的通项公式是:An=A1*q^(n-1)
(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)
且任意两项am,an的关系为an=am·q^(n-m)
(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)若m,n,p,q∈N*,则有:ap·aq=am·an,
等比中项:aq·ap=2ar ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。 希望可以帮助您哦!!!
⑼ 数学序列微积分
同学,最后一道题我的做法你能看懂吗 ?
或许有点问题,好像可以用另一种方法做,但我没有想起来
用定积分做肯定可以,但是方法可能不是我的方法
你可以问一问老师
不懂请追问