生物信息学
生物信来息学是普通高等源学校本科专业,属于生物科学类专业。该专业培养德、智、体、美全面发展,具有较好的分子生物学、计算机科学与技术、数学和统计学素养,掌握生物信息学基本理论和方法,具备生物信息收集、分析、挖掘、利用等方面的基本能力,能在科研机构、高等学校、医疗医药、环境保护等相关部门与行业从事教学、科研、管理、疾病分子诊断、药物设计、生物软件开发、环境微生物监测等工作的高级科学技术人才。
⑵ 有哪些大学有生物信息学
河北农业大学、中国农业大学、
1、河北农业大学
河北农业大学的前身是光绪二十八年(年)创立的直隶农务学堂;1912年改为直隶公立农业专门学校;1921年直隶公立农业专门学校、医务学堂,还有法律、法政、高等师范等学堂合并,组成河北大学;
1931年河北大学解散,河北省立农学院独立办学;1958年河北农学院更名为河北农业大学;1995年与原河北林学院合并组建为新的河北农业大学。
2、中国农业大学
中国农业大学是中国现代农业高等教育的起源地,学校前身是1905年成立的京师大学堂农科大学。1960年被国务院列为全国64所重点大学之一。1984年被中央列为全国重点建设的10所高等院校之一。1995年9月,北京农业大学与北京农业工程大学合并成立“中国农业大学”,江泽民同志亲自题写校名。
3、清华大学
清华大学的前身清华学堂始建于1911年,是清政府设立的留美预备学校,其建校的资金源于1908年美国退还的部分庚子赔款。1912年更名为清华学校。1928年更名为国立清华大学。1937年抗日战争全面爆发后南迁长沙,与国立北京大学、私立南开大学组建国立长沙临时大学。
1938年迁至昆明改名为国立西南联合大学。1946年迁回清华园。1949年中华人民共和国成立,清华大学进入新的发展阶段。1952年全国高等学校院系调整后成为多科性工业大学。1978年以来逐步恢复和发展为综合性的研究型大学。
4、北京大学
北京大学创立于1898年维新变法之际,初名京师大学堂,是中国近现代第一所国立综合性大学,创办之初也是国家最高教育行政机关。1912年改为国立北京大学。1937年南迁至长沙,与国立清华大学和私立南开大学组成国立长沙临时大学,1938年迁至昆明,更名为国立西南联合大学。
1946年复员返回北平。1952年经全国高校院系调整,成为以文理基础学科为主的综合性大学,并自北京城内沙滩等地迁至现址。2000年与原北京医科大学合并,组建为新的北京大学。
5、哈尔滨工业大学
学校始建于1920年,1951年被确定为全国学习国外高等教育办学模式的两所样板大学之一,1954年进入国家首批重点建设的6所高校行列(京外唯一一所),是新中国第一所毕业生直接被授予工程师称号、研究生三年制的理工科大学。
1996年进入国家“211工程”首批重点建设高校。1999年被确定为国家首批按照世界知名高水平大学目标重点建设的9所"985工程"大学之一。2000年与同根同源的哈尔滨建筑大学合并组建新的哈尔滨工业大学。
⑶ 生物信息学主要研究什么
生物信息学的主要是用不同的高大上的编程算法(比如数据挖掘),针对生物体内一回些富含信息的分答子进行解析。
生物体内富含信息的分子最典型的莫过于携带遗传信息的DNA、RNA和携带功能信息(主要是免疫功能信息)的蛋白质。因此对于DNA、RNA的碱基序列的变化和包含信息的解析,以及对于蛋白质四级结构(主要应该还是氨基酸序列)的变化和包含信息的解析应该是生物信息学的主要内容。
⑷ 生物信息学研究意义
顺序所隐藏的信息来预测蛋白质的高级结构,而蛋 白质结构研究的最终目标是阐明肽链的折叠规律, 即所谓破译“第二套生物学密码”。
“基因组计划”积累了大量生物信息。而生物信 息学的任务就是挖掘和利用这些信息,从众多生命 信息中发现统一的,本质的,有用的规律。而这些规 律必将促进生命科学,如结构生物学,生物技术,药 物设计,分子进化等研究工作的进展。
所以,生物信息学将在“后基因组”的时代,发 挥极其重要的作用,这将有助于全部读懂人类基因 组的全部信息,有助于揭示基因组物质结构的复杂 性,有助于生命起源和生物进化问题的最终解决,有 助于识别与鉴定人类特定疾病的相关基因,有助于 药物设计理论和方法的改进和提高。
生物信息学的重要性,对于我们中医药界应该 是很有意义的。这是因为我们可以利用生物信息学 来深入研究中医药的有关问题。
生物信息学研究所需的投资有限却可以做出高 水平的工作。当然,分子生物学数据库是开展生物信 息学研究的重要工具。目前,国际上分子生物学数据 库发展极快,并且这些数据库大部分是开放的,是免 费提供各国科学家使用的。关键在于组织多学科研 究人员的共同参与。我们应该由中医、中药、生物、 生理、药学等各类人员来参与生物信息学的研究、发 挥综合优势、挖掘潜力、充分利用人类基因组数据库 中已有的大量信息,开展富有中医药特色的研究,就 可能取得突破,做出高水平的工作。
再则,我们应该注意当前生物技术在生命科学 研究中的趋势。目前,国际科学界在核酸和蛋白质两 个层次上都发展了从事生物学研究的新的技术手 段,在核酸层次上的新技术是 DNA 芯片技术。在蛋 白质层次上是二维凝胶电泳和测序的质谱技术。 DNA 芯片技术可以对不同组织来源、不同细胞类 型、不同生理状态的基因表达进行监测,从而获得基 因表达的功能谱。 DNA 芯片技术还可以运用于
⑸ 生物信息学就业前景怎么样
生物信息学专业:
专业建设状况:
专业就业:
主干学科:
主要课程:
生物信息学(Bioinformatics)是一门交叉科学,它包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具,来阐明和理解大量生物数据所包含的生物学意义。它随1990年人类基因组计划(HGP)的实施和信息技术的发展而诞生,现已迅速发展成为当今生命科学最具吸引力和重大的前沿领域,为生物学、计算机科学、数学、信息科学等专业的高素质人才提供了更广阔的发展天地。
我国生物学本科教育主要围绕两个专业——生物科学和生物技术进行,而生物信息学相关课程通常作为这两个专业高年级学生的选修课,且要求学生们已修完大部分专业必修课以及一些计算机课程,如C语言等。教学实践表明,这一安排基本上符合国内本科生教育的实际情况,有利于本科生们掌握生物信息学的基本知识和工作原理,激发他们今后深入研究的兴趣。世界上越来越多的政府部门、教育机构和企业都呼吁加快培养各类生物信息学人才。
本专业学生毕业后可在各级生物信息学的研究机构、高等学校、企事业单位以及在研究和成果产业化过程中涉及到生物信息学的相关部门,从事科学研究、教学和管理工作。
生物学、数学、计算机科学。
普通生物学、生物化学、分子生物学、遗传学、生物信息学、计算生物学、基因组学、生物芯片原理与技术、蛋白质组学、模式识别与预测、数据库系统原理、Linux基础及应用、生物软件及数据库、Perl编程基础等。
⑹ 生物信息学和计算生物学有什么区别
一、专业性质不同
1、生物信息学:是研究生物信息的采集、处理、存储、传播,分析和解释等各方面的学科,是,生命科学和计算机科学相结合形成的一门新学科。
2、计算生物学:是生物学的一个分支,是指开发和应用数据分析及理论的方法、数学建模和计算机仿真技术等,用于生物学、行为学和社会群体系统的研究的一门学科。
二、研究内容不同
1、生物信息学:通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。
2、计算生物学:运用计算机的思维解决生物问题,用计算机的语言和数学的逻辑构建和描述并模拟出生物世界。
三、研究方法不同
1、生物信息学:以数据(库)为核心,数据库的建立,生物学数据的检索,生物学数据的处理,生物学数据的利用:计算生物学。
2、计算生物学:各种计算方法已开始广泛应用于药物研究,以及研发创新的、具有自主知识产权的疾病靶标和信息学分析系统等。同时,运用计算生物学,科学家有望直接破译在核酸序列中的遗传语言规律,模拟生命体内的信息流过程,从而认识代谢、发育、进化等一系列规律。
⑺ 生物信息学有哪些方面的应用
1,测序与序列比对(Sequence Alignment)
测序是生物信息学的基础和主要数据来源,可以是人类数据也可以是其他的数据。序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的.
2, 蛋白质结构比对和预测
基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要.
3, 基因识别,非编码区分析研究.
基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等.
4, 分子进化和比较基因组学
分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现.
5, 序列重叠群(Contigs)装配
根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题.
6, 遗传密码的起源
通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材.
7, 基于结构的药物设计
人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益.
8.生物系统的建模和仿真
随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。
9.生物信息学技术方法的研究
生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。
10, 生物图像
没有血缘关系的人,为什么长得那么像呢?
外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合?
有什么生物学基础?基因是不是相似?我不知道,希望专家解答。
11, 其他
如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.
⑻ 生物信息学是干什么的
生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计算机科学相结合形成的一门新学科。
它通过综合利用生物学,计算机科学和信息技术而揭示大量而复杂的生物数据所赋有的生物学奥秘。
生物信息学经历的阶段:
1、前基因组时代(20世纪90年代前) 这一阶段主要是各种序列比较算法的建立、生物数据库的建立、检索工具的开发以及DNA和蛋白质序列分析等。
2、基因组时代(20世纪90年代后至2001年) 这一阶段主要是大规模的基因组测序,基因识别和发现,网络数据库系统地建立和交互界面工具的开发等。
3、后基因组时代(2001至今) 随着人类基因组测序工作的完成,各种模式生物基因组测序的完成,生物科学的发展已经进入了后基因组时代,基因组学研究的重心由基因组的结构向基因的功能转移。
(8)生物信息学扩展阅读:
生物信息学专业:
主干课程:普通生物学、生物化学、分子生物学、遗传学、生物信息学、计算生物学、基因组学、生物芯片原理与技术、蛋白质组学、模式识别与预测、数据库系统原理、Linux基础及应用、生物软件及数据库、Perl编程基础等。
就业前景:学生毕业后可在各级生物信息学的研究机构、高等学校、企事业单位以及在研究和成果产业化过程中涉及到生物信息学的相关部门,从事科学研究、教学和管理工作。
学生主要学习生物信息学的基本理论和方法,受到相关科学实验和科学思维的基本训练,具有较好的分子生物学、计算机科学与技术、数学和统计学素养,具备生物信息的收集、分析、挖掘、利用等方面的基本能力,具有较好的业务素质。
网络-生物信息学
网络-生物信息学专业
⑼ 生物信息学是什么专业啊
生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。
具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。
生物信息学是一门利用计算机技术研究生物系统之规律的学科。