当前位置:首页 » 中学校园 » 中学奥数

中学奥数

发布时间: 2021-09-23 07:59:06

A. 初中奥数

将0~9按除以3的余数分为三类:
0类{0,3,6,9};1类{1,4,7};2类{2,5,8}.
被3整除的数的各位数码之和是3的倍数,3整除6,因此3整除其余数码之和。

对符合要求的数的位数讨论:

一位数:只有6.
两位数:有5个数:60,63,69,36,96.
三位数:除6以外的两个数可以全部来自0类,也可以一个来自1类,一个来自2类。6在百位有3*3+3*3*2=9+18=27个数,6在十位有2*3+3*3*2=24个数,6在个位24个数,共有75个数.
四位数:因为2006不是3的倍数,所以千位一定是1.除6和1外的两个数可以全部来自1类,也可以分别来自0类和2类.6在百位有3*3+3*3*2=27个数,6在十位,个位同样各有27个数,因此共有81个数.

总之所求个数为1+5+75+81=162个数.

B. 初中生学奥数有用吗

初中生学奥数当然有用(提前的话当然更好),能提高思维能力,开拓思维空间回,对学理科有很大的答帮助,当然,也有人持反对意见,但是只要你自己对奥数有兴趣,就肯定能学好(逻辑推理能力要比较强)。但是如果你觉得学习压力实在太大,你也可以不读(可以学文科或其它)。本人从小学就开始学奥数,效果的确很显著。(其实说到底也就是拿一个文凭,工作里基本上无用)当你懂得用简便巧妙的解题方法后,你会发现其实奥数也是很有趣的。根据你自己的情况决定吧,反正学奥数是没有坏处的(就需要脑细胞)。

C. 初中奥数资料

我有,可以发你

D. 初中奥数题

1、解:例如,其中8个被9除都余1,另8个数被9整除.这样的16个数中,任何9个都不能被9整除.
由于任取5个数,其中一定有3个数其和为3的倍数,取这5个数被3除的余数,只能是1,2,0.若5个数被3除的余数中,这三种2都有,则每种余数的数各取一个,其和是3的倍数,如果这5个数被3除只有2种余数,则由抽屉原理知,必有3个数被3除的余数相同.取此3个数,其和是3的倍数.
于是,17个数一定能组成5组,每组3个数,其和是3的倍数.
把这5组数的和为3a,3b,3c,3d,3e.考虑a、b、c、d、e这5个数,由上证,其中必有3个数的和为3的倍数,不妨设a+b+c是3的倍数.于是3a+3b+3c是9的倍数,此时,取和为3a、3b、3c的9个数,其和为9的倍数.即任取17个整数,其中一定可以找到9个数,其和为9的倍数.因此找不到17个满足上述要求的正整数.
2、解:由题意不难推出x、y分别与m的关系
即: 5x=-35-3m 5y=2m+15
x=-7-3m/5 y=2m/5+3
又因为-18<m<-10时有整数解,即知m能被5整除,所以m=-15
所以x=2 y=-3
则x^2+xy+y^2的值等于2^2+2*3+(-3)^2=4+6+9=19
3、解:因为x※y=2(2xy-x-y),所以
4、解:S△OAD=S△OBC=152
S△AEC=S△BED,S△OEC=S△OED
设S△AEC=x,S△OEC=y
则xy =23 2y=3x
又2y+x=152 ,∴4x=152 ,x=158
S△ABE=S△ABC-S△AEC=5-158 =258
∴填258
5、

E. 初中的奥数学什么

、实数
十进制整数及表示方法。整除性,被 2 、 3 、 4 、 5 、 8 、 9 、 11 等数整除的判定。
素数和合数,最大公约数与最小公倍数。
奇数和偶数,奇偶性分析。
带余除法和利用余数分类。
完全平方数。
因数分解的表示法,约数个数的计算。
有理数的表示法,有理数四则运算的封闭性。
2 、代数式
综合除法、余式定理。
拆项、添项、配方、待定系数法。
部分分式。
对称式和轮换对称式。
3 、恒等式与恒等变形
恒等式,恒等变形。
整式、分式、根式的恒等变形。
恒等式的证明。
4 、方程和不等式
含字母系数的一元一次、二次方程的解法。一元二次方程根的分布。
含绝对值的一元一次、二次方程的解法。
含字母系数的一元一次不等式的解法,一元一次不等式的解法。
含绝对值的一元一次不等式。
简单的一次不定方程。
列方程(组)解应用题。
5 、函数
y=|ax+b|,y=|ax2+bx+c| 及 y=ax2+bx+c 的图像和性质。
二次函数在给定区间上的最值。简单分式函数的最值,含字母系数的二次函数。
6 、逻辑推理问题
抽屉原则(概念),分割图形造抽屉、按同余类造抽屉、利用染色造抽屉。
简单的组合问题。
逻辑推理问题,反证法。
简单的极端原理。
简单的枚举法。
7 、几何
四种命题及其关系。
三角形的不等关系。同一个三角形中的边角不等关系,不同三角形中的边角不等关系。
面积及等积变换。
三角形的心(内心、外心、垂心、重心)及其性质。

F. 初中奥数和小学奥数有什么不同,

即使是初中奥数中,数论部分,基本上是与课本内容不相干的。
也可以理解成课本内容的加难。

小学奥数也如此,可以说是与书本没多大关系,也可以理解成课本内容的加难

因为“加难”,难到什么程度就不好说了。

初中奥数的许多内容,都已经超出了高考的范围。小学奥数的难,大不了也不过是加了些初中知识而已

G. 初中奥数题及答案讲解

初一奥数复习题
初一奥数复习题
作者:佚名 文章来源:初中数学竞赛辅导 点击数:1005 更新时间:2006-2-4

2.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.

3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围.

4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.

5.已知方程组

有解,求k的值.

6.解方程2|x+1|+|x-3|=6.

7.解方程组

8.解不等式||x+3|-|x-1||>2.

9.比较下面两个数的大小:

10.x,y,z均是非负实数,且满足:

x+3y+2z=3,3x+3y+z=4,

求u=3x-2y+4z的最大值与最小值.

11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.

19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由.

20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?

21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有

23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?

24.求不定方程49x-56y+14z=35的整数解.

25.男、女各8人跳集体舞.

(1)如果男女分站两列;

(2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴.

问各有多少种不同情况?

26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152?

27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度.

28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天?

29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.

30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元?

31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少?

32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱?

33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益?

34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲?

35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克.

(1)试用新合金中第一种合金的重量表示第二种合金的重量;

(2)求新合金中含第二种合金的重量范围;

(3)求新合金中含锰的重量范围.

2.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以

原式=-b+(a+b)-(c-b)-(a-c)=b.

3.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,

|x+m|+|x-n|=x+m-x+n=m+n.

4.分别令x=1,x=-1,代入已知等式中,得

a0+a2+a4+a6=-8128.

5.②+③整理得

x=-6y, ④

④代入①得 (k-5)y=0.

当k=5时,y有无穷多解,所以原方程组有无穷多组解;当k≠5时, y=0,代入②得(1-k)x=1+k,因为x=-6y=0,所以1+k=0,所以k=-1.

故k=5或k=-1时原方程组有解.

<x≤3时,有2(x+1)-(x-3)=6,所以x=1;当x>3时,有

,所以应舍去.

7.由|x-y|=2得

x-y=2,或x-y=-2,

所以

由前一个方程组得

|2+y|+|y|=4.

当y<-2时,-(y+2)-y=4,所以 y=-3,x=-1;当-2≤y<0时,(y+1)-y=4,无解;当y≥0时,(2+y)+y=4,所以y=1,x=3.

同理,可由后一个方程组解得

所以解为

解①得x≤-3;解②得

-3<x<-2或0<x≤1;

解③得x>1.

所以原不等式解为x<-2或x>0.9.令a=99991111,则

于是

显然有a>1,所以A-B>0,即A>B.

10.由已知可解出y和z

因为y,z为非负实数,所以有

u=3x-2y+4z

11.

所以商式为x2-3x+3,余式为2x-4.



S△EFD=S△BFG-SEFDG=4S△BFD-SEFDG,

所以 S△EFGD=3S△BFD.

设S△BFD=x,则SEFDG=3x.又在△BCE中,G是BC边上的三等分点,所以

S△CEG=S△BCEE,

从而

所以

SEFDC=3x+2x=5x,

所以

S△BFD∶SEFDC=1∶5.

由已知AC‖KL,所以S△ACK=S△ACL,所以

即 KF=FL.

+b1=9,a+a1=9,于是a+b+c+a1+b1+c1=9+9+9,即2(a十b+c)=27,矛盾!

20.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.

21.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以, p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).

22.由题设条件知n=75k=3×52×k.欲使n尽可能地小,可设n=2α3β5γ(β≥1,γ≥2),且有

(α+1)(β+1)(γ+1)=75.

于是α+1,β+1,γ+1都是奇数,α,β,γ均为偶数.故取γ=2.这时

(α+1)(β+1)=25.

所以

故(α,β)=(0,24),或(α,β)=(4,4),即n=20·324·52

23.设凳子有x只,椅子有y只,由题意得

3x+4y+2(x+y)=43,

即 5x+6y=43.

所以x=5,y=3是唯一的非负整数解.从而房间里有8个人.

24.原方程可化为

7x-8y+2z=5.

令7x-8y=t,t+2z=5.易见x=7t,y=6t是7x-8y=t的一组整数解.所以它的全部整数解是

而t=1,z=2是t+2z=5的一组整数解.它的全部整数解是

把t的表达式代到x,y的表达式中,得到原方程的全部整数解是

25.(1)第一个位置有8种选择方法,第二个位置只有7种选择方法,…,由乘法原理,男、女各有

8×7×6×5×4×3×2×1=40320

种不同排列.又两列间有一相对位置关系,所以共有2×403202种不同情况.

(2)逐个考虑结对问题.

与男甲结对有8种可能情况,与男乙结对有7种不同情况,…,且两列可对换,所以共有

2×8×7×6×5×4×3×2×1=80640

种不同情况.

26.万位是5的有

4×3×2×1=24(个).

万位是4的有

4×3×2×1=24(个).

万位是3,千位只能是5或4,千位是5的有3×2×1=6个,千位是4的有如下4个:

34215,34251,34512,34521.

所以,总共有

24+24+6+4=58

个数大于34152.

27.两车错过所走过的距离为两车长之总和,即

92+84=176(米).

设甲火车速度为x米/秒,乙火车速度为y米/秒.两车相向而行时的速度为x+y;两车同向而行时的速度为x-y,依题意有

解之得

解之得x=9(天),x+3=12(天).

解之得x=16(海里/小时).

经检验,x=16海里/小时为所求之原速.

30.设甲乙两车间去年计划完成税利分别为x万元和y万元.依题意得

解之得

故甲车间超额完成税利

乙车间超额完成税利

所以甲共完成税利400+60=460(万元),乙共完成税利350+35=385(万元).

31.设甲乙两种商品的原单价分别为x元和y元,依题意可得

由②有

0.9x+1.2y=148.5, ③

由①得x=150-y,代入③有

0. 9(150-y)+1.2y=148. 5,

解之得y=45(元),因而,x=105(元).

32.设去年每把牙刷x元,依题意得

2×1.68+2(x+1)(1+30%)=[2x+3(x+1)]-0.4,



2×1.68+2×1.3+2×1.3x=5x+2.6,

即 2.4x=2×1.68,

所以 x=1.4(元).

若y为去年每支牙膏价格,则y=1.4+1=2.4(元).

33.原来可获利润4×400=1600元.设每件减价x元,则每件仍可获利(4-x)元,其中0<x<4.由于减价后,每天可卖出(400+200x)件,若设每天获利y元,则

y=(4-x)(400+200x)

=200(4-x)(2+x)

=200(8+2x-x2)

=-200(x2-2x+1)+200+1600

=-200(x-1)2+1800.

所以当x=1时,y最大=1800(元).即每件减价1元时,获利最大,为1800元,此时比原来多卖出200件,因此多获利200元.

34.设乙用x分钟追上甲,则甲到被追上的地点应走了(25+x)分钟,所以甲乙两人走的路程分别是0.4(25+x)千米和0.6x千米.因为两人走的路程相等,所以

0.4(25+x)=0.6x,

解之得x=50分钟.于是

左边=0.4(25+50)=30(千米),

右边= 0.6×50=30(千米),

即乙用50分钟走了30千米才能追上甲.但A,B两镇之间只有28千米.因此,到B镇为止,乙追不上甲.

35.(1)设新合金中,含第一种合金x克(g),第二种合金y克,第三种合金z克,则依题意有

(2)当x=0时,y=250,此时,y为最小;当z=0时,y=500为最大,即250≤y≤500,所以在新合金中第二种合金重量y的范围是:最小250克,最大500克.

(3)新合金中,含锰重量为:

x·40%+y·10%+z·50%=400-0.3x,

而0≤x≤500,所以新合金中锰的重量范围是:最小250克,最大400克.

我知道很混乱,所以就当我是凑热闹的。希望有点帮助,可以从里面挑出来几题吧

H. 初中还有必要学习奥数吗

是否需要学奥数,需要看未来中考定位。准备博裸考的,不管目标是什么学校,无需去学奥数。因为考试内容基本都在大纲内。同样,即使要走自招这条路,但目标不是四大八校这些顶级高中的,也无须学奥数,只要把学校学的知识稍稍拓展一下就足够应付这些学校的自招考试了。

而有把中考目标定在最高级,且准备走自招这条路的孩子,真正喜欢奥数,或者天赋极高,对最少是国家级的顶级竞赛有想法的,可以继续学奥数。

(8)中学奥数扩展阅读:

学奥数注意事项

1、预习奥数题目要注意的

预习是上课前对即将要上的奥数内容进行阅读,了解其梗概,做到心中有数,以便于掌握听课的主动权。预习是独立学习的尝试,对学习内容是否正确理解,能否把握其重点、关键,洞察到隐含的思想方法等,都能及时在听课中得到检验、加强或矫正,有利于提高学习能力和养成自学的习惯;

所以它是奥数学习中的重要一环。在预习奥数时要找出学习新知识所需的知识,并进行回忆或重新温习,一旦发现旧知识掌握得不好,甚至不理解时,就要及时采取措施补上,克服因没有掌握好或遗忘带来的学习障碍,为顺利学习新内容创造条件。

预习时,一般采用边阅读、边思考、边书写的方式,把内容的要点、层次、联系划出来或打上记号,写下自己的看法或弄不懂的地方与问题,最后确定听课时要解决的主要问题或打算,以提高听课的效率。在时间的安排上,预习一般放在复习和作业之后进行,把下次课要学的内容看一遍。

2、听讲时要注意的

听课的方法,除在预习中明确任务,做到有针对性地解决符合自己的问题外,还要集中注意力,把自己思维活动紧紧跟上教师的讲课,开动脑筋,思考教师怎样提出问题,分析问题,解决问题,特别要从中学习奥数思维的方法;

如观察、比较、分析、综合、归纳、演绎、一般化、特殊化等,就是如何运用公式、定理,了解其中隐含着的思想方法。听课时,一方面理解教师讲的内容,思考或回答教师提出的问题,另一方面还要独立思考,鉴别哪些知识已经听懂,哪些还有疑问或有新的问题,并勇于提出自己的看法。

如果课内一时不可能解决,就应把疑问或问题记下,留待自己去解决或请教老师,并继续专心听老师讲课,切勿因一处没有听懂,思维就停留在这里,而影响后面的听课。听课,一定要做笔记!做笔记不是把老师的板书原样抄录一遍,而是把老师的讲课的思路记到例题的旁边,同时要记到脑子里。

3、奥数复习时要注意的

复习就是把学过的奥数知识再进行学习,以达到深入理解、融会贯通、精炼概括、牢固掌握的目的。复习应与听课紧密衔接、边阅读教材边回忆听课内容或查看课堂笔记,及时解决存在的知识缺陷与疑问。

同时,复习还要在理解教材的基础上,沟通知识间的内在联系,找出其重点、关键,然后提炼概括,组成一个知识系统,从而形成或发展扩大数学认知结构。

此外,复习时,不能仅停留在把已学的知识温习记忆一遍的要求上,还要找习题去练习,只有在实践的基础上才能检验出来哪些知识点理解了,哪些知识点没有吃透还需要进一步学习。对之前学过的知识点在过一周后,同学们最好对原来所学知识有目的的复习一下,这样做,这时候你用时不会太多,但效率是极高的。

I. 初中生要学奥数吗

一、不是一定要学习奥数,奥数的只是建议有兴趣和爱好的人学习。

二、2012年8月21日,北版京采取多项措施坚决治权理奥数成绩与升学挂钩,由此可见我国对奥数和升学挂钩是持反对意见的。
三、奥数对青少年的脑力锻炼有着一定的作用,可以通过奥数对思维和逻辑进行锻炼,对学生起到的并不仅仅是数学方面的作用,通常比普通数学要深奥些。如果学有余力的话,建议去学习,增长见闻。

J. 初中奥数用什么教材

奥数系列教程出版的比较多,难度也不尽相同。

1、《奥数教程》系列

作者:单墫、熊斌 领衔编写

每本定价10元多一点

2、《奥赛经典》系列
作者:沈文选 张壵吴仁芳等

初中分几何、代数、组合、数论四卷 每本书的价格是20元多一点儿

3、《从课堂到奥数——初中数学培优竞赛讲座》
作者:朱华伟,齐世荫
分初中七年级、八年级、九年级共三册,每册分培优篇和竞赛篇两大部分。 每本书20元左右。

4、《初中数学竞赛培优教程:基础知识》
作者:李胜宏,马茂年
定价:将近20元

上面的4个系列都是曾经的国家队领队、教练编写的教材。《初中数学竞赛培优教程:基础知识》与《奥数教程》系列 相对基础些。朱华伟老师的教材没有看过,难度不清楚。

热点内容
集美大学师德师风建设实施方案 发布:2025-05-08 11:29:33 浏览:956
小学班主任工作交流材料 发布:2025-05-08 11:28:14 浏览:868
道歉英语作文 发布:2025-05-08 11:14:19 浏览:766
班主任乳房 发布:2025-05-08 10:51:05 浏览:167
生物鼠药 发布:2025-05-08 09:48:13 浏览:303
老师穿黑 发布:2025-05-08 09:09:30 浏览:441
2016考研英语二答案 发布:2025-05-08 08:27:59 浏览:661
幼儿教育设备 发布:2025-05-08 08:07:52 浏览:431
电化教学论文 发布:2025-05-08 05:06:58 浏览:117
家庭教育立法 发布:2025-05-08 04:32:55 浏览:447