核一学科
中文名称:核能 英文名称:nuclear energy 其他名称:原子能 定义1:由于原子核内部结构发生变化而释放出的能量。 所属学科:电力(一级学科);核电(二级学科) 定义2:核反应或核跃迁时释放的能量。例如重核裂变、轻核聚变时释放的巨大能量。 所属学科:资源科技(一级学科);能源资源学(二级学科) 核能是可持续发展的能源 据估计,在世界上核裂变的主要燃料铀和钍的储量分别约为490万吨和275万吨。这些裂变燃料足可以用到聚变能时代。轻核聚变的燃料是氘和锂,1升海水能提取30毫克氘,在聚变反应中能产生约等于300升汽油的能量,即"1升海水约等于300升汽油",地球上海水中有40多万亿吨氘,足够人类使用百亿年。地球上的锂储量有2000多亿吨,锂可用来制造氚,足够人类在聚变能时代使用。况且以目前世界能源消费的水平来计算,地球上能够用于核聚变的氘和氚的数量,可供人类使用上千亿年。因此,有关能源专家认为,如果解决了核聚变技术,那么人类将能从根本上解决能源问题。 1. 核工业的主要业务范围 核工业的主要业务范围包括:铀矿勘探、铀矿开采与铀的提取、燃料元件制造、铀同位素分离、反应堆发电、乏燃料后处理、同位素应用以及与核工业相关的建筑安装、仪器仪表、设备制造与加工、安全防护及环境保护。 2. 核燃料循环及其组成 核燃料循环是指核燃料的获得、使用、处理、回收利用的全过程。它是核工业体系中的重要组成部分。核燃料循环通常分为前端和后端两部分,前端包括铀矿勘探、铀矿开采、矿石加工(包括选矿、浸出、提取和沉淀等工序)、精制、转化、浓缩、元件制造等;后端包括对反应堆辐照以后的乏燃料元件进行铀钚分离的后处理以及对放射性废物进行处理、贮存和处置。 3. 铀矿地质勘探 铀是核工业最基本的原料。铀矿地质勘探的目的是查明和研究铀矿床形成的地质条件,总结出铀矿床在时间上和空间上的分布规律,并用此规律指导普查勘探,探明地下的铀矿资源。普查勘探工作的程序为区域地质调查、普查和详查、揭露评价、勘探等,同时还要求工作人员进行地形测量、地质填图、原始资料编录等-系列的基础地质工作。 分散在地壳中的铀元素在各种地质作用下不断集中,最终形成了铀矿物的堆积物,即铀矿床。了解铀矿床的形成过程,对铀矿普查勘探具有十分重要的指导意义。并不是所有的铀矿床都有开采、进行工业利用价值的。据统计,在已发现的170多种铀矿床及含铀矿物中,具有实际开采价值只有14~18%。影响铀矿床工业的两个主要因素是矿石品位和矿床储量。此外,评价的因素还有矿石技术加工性能、矿床开采条件,有用元素综合利用的可能性和交通运输条件等。 4. 铀矿开采 生产铀的第一步是铀矿开采。其任务是从地下矿床中开采出工业品位的铀矿石,或将铀经化学溶浸,生产出液体铀化合物。由于铀矿有放射性,所以铀矿开采其特殊方法。常用的主要有三种:露天开采、地下开采和原地浸出。 露天开采一般用于埋藏较浅的矿体,方法剥离表土和覆盖岩石,使矿石出露,然后进行采矿。 地下开采一般用于埋藏较深的矿体,此种方法的工艺过程比较复杂。与以上两种法方法相比,原地浸出采铀具有生产成本低,劳动强度小等优点,但其应用有一定的局限性,仅适用于具有一定地质、水文地质条件的矿床 。其方法是通过地表钻孔将化学反应剂注入矿带,通过化学反应选择性地溶解矿石中的有用成分--铀,并将浸出液提取出地表,而不使矿石绕围岩产生位移。 核能发电机5. 铀矿石的加工 铀矿石加工的目的是将开采出来的具有工业品位或经放射性选矿的矿加工富集,使其成为含铀较高的中间产品,即通常所说的铀化学浓缩物。将此种铀化学浓缩物精制,进一步加工成易于氢氟化的铀氧化物作为下一步工序的原料。 铀矿石加工的主要步骤包括:矿石品位、磨矿、矿石浸出,母液分离、溶液纯化、沉淀等工序。 为了便于浸出,矿石被开采出来后,必须将其破碎磨细,使铀矿物充分暴露。然后采用一定的工艺,借助一些化学试剂(即浸出剂)或其它手段将矿石中有价值的组分选择性地溶解出来。浸出方法有两种:酸法和碱法。由于浸出液中铀含量低,而且杂质种类多,含量高,所以必须将杂质去除才能确保铀的纯度。实现这一过程,可以选择以下两种方法:离子交换法(又称吸附法)和溶剂萃取法。水冶生产的最后一道工序是将沉淀物洗涤、压滤、干燥,然后得到水冶产品铀化学浓缩物,又称黄饼。 6. 铀的浓缩 为了提高铀-235浓度所进行的铀同位素的分离处理称为浓缩。通过浓缩可以为某些反应堆提供铀-235浓度符合要求的铀燃料,现今所采用的浓缩方法有气体扩散法、分离法、激光法、喷嘴法、电磁分离法、化学分离法等,其中气体扩散法和离心分离法是现代工业上普遍采用的浓缩方法。浓缩处理是以六氟化铀形式进行的。 7. 核燃料元件 经过提纯或浓缩的铀,还不能直接用作核燃料。必须经过化学,物理、机械加工等处理后,制成各种不同形状和品质的元件,才能供反应堆作为燃料来使用。 核燃料元件种类繁多,按组分特征来分,可分为金属型、陶瓷型和弥散型;按几何形状来分,有柱状、棒状、环状、板状、条状、球状、棱柱状元件;按反应堆来分,可以分为试验堆元件,生产堆元件,动力堆元件(包括核电站用的核燃料组件)。 核燃料元件一般都是由芯体和包壳组成的。由于它长期在强辐射、高温、高流速甚至高压的环境下工作,所以对芯片的综合性能、包壳材料的结构和使用寿命都有很高的要求。可见,核燃料元件制造是一种高科技含量的技术。 8. 乏燃料的后处理 经过辐照的燃料元件,从堆内卸出时总是含有一定量未分裂和新生的裂变燃料。乏燃料的后处理的目的就是回收这些裂变燃料如铀-235,铀-233和钚,利用它们再制造新的燃料元件或用做核武器装料。此外,回收转换原料(铀-238,铯-137,锶-90),提取处理所生成的超铀元素以及可用作射线源的某些放射性裂变产物(如铯-137,锶-90等),都有很大的科学和经济价值。但此项工序放射性强,毒性大,容易发生临界事故,所以,在进行乏燃料的后处理时一定要加强安全防护措施。 后处理工艺一般分为四个步骤:冷却与首端处理、化学分离、通过化学转化还原出铀和钚、通过净化分别制成金属铀(或二氧化铀)及钚(或二氧化钚)。冷却与首端处理是冷却将乏燃料组件解体,即脱除元件包壳,溶解燃料芯块。化学分离(即净化与去污过程)是将裂变产物从U-Pu中清除出去,然后用溶剂淬取法将铀-钚分离并分别以硝酸铀酰和硝酸钚溶液形式提取出来。 9. 三废处理与处置 在核工业生产和科研过程中,会产生一些不同程度放射性的固态、液态和气态的废物,简称为"三废"。在这些废物中,放射性物质的含量虽然很低,危害却很大。普通的外界条件(如物理、化学、生物方法)对放射性物质基本上不会起作用。因此在放射性废物处理过程中,除了靠放射性物质的衰变使其放射性衰减外,就只能采取多级净化、去污、压缩减容、焚烧、固化等措施将放射性物质从废物中分离出来,使浓集放射性物质的废物体积尽量减小,并改变其存在的状态,以达安全处置的目的。这个过程称为"三废处理与处置"。
Ⅱ 核医学科的简介
核医学科是利用核科学技术和手段对疾病进行诊断和治疗,是现代医学的主要手段之一。核医学科是医院主要医技科室之一,主要开展核医学检查项目,是辅助临床科室对疾病作出正确诊断的有效手段之一。拥有SPECT、甲状腺功能测定仪等一批先进的设备。本科开展的临床各项诊治工作达到国内先进水平。对甲状腺疾病、肿瘤、冠心病、肾脏疾病等的显像诊断及甲亢、骨转移癌的治疗有一定研究,取得了良好的医疗和社会效益。
Ⅲ 核工业的学科
核工业是一门学科门类多、开拓领域广、技术密集程度高的综合性新兴工业。内它涉及到地容质勘探、采矿、冶金、化工、电力、机械制造、建筑、电机和精密仪表等工业部门和物理、化学、电子学、半导体、计算技术、自动控制、材料学、传热学、医学和生物学等学科领域。一个国家的核工业发展水平,能集中地反映出这个国家的整个工业基础和科学技术水平。
1896年法国物理学家贝克勒尔发现了天然放射性,揭开了现代科学技术崭新的一页。20世纪中叶以来,核科学技术和核工业取得了迅速的发展,实现了从基础理论研究到应用技术研究,从军事利用到和平利用的重大转变。核技术已渗透到各个领域,它在经济建设、科学研究和社会生活中应用广泛,效益明显,是当代技术宝库中的重要组成部分。
Ⅳ 核农学是一门怎样的学科
核农学是研究核素、核射线及有关核技术在农业科学研究和农业生产中的应用及其基础理论的一门学科。它是介于核科学与农业科学间的一门边缘学科——核农学。它的主要研究领域是:辐射遗传和育种学、放射生物学、辐照保藏技术、示踪原子应用等,其应用领域不断扩大,并已取得显著成绩。
在辐射育种方面,中国在这一领域居世界领先地位。应用辐射方法已培育出500多个植物良种,建立了完整的辐射育种程序。今后的发展趋势是扩大应用领域,加强定向诱发突变,提高诱变率和辐射育种基础理论研究。辐照保藏技术具有节约能源,卫生安全,保持食品原来的色、香、味和改善品质等特点,应用越来越广泛,技术也日趋成熟。同位素示踪技术在农业上的应用,解决了农业生产中的土壤、肥料、植物保护、动植物营养代谢及放射免疫等技术关键问题。它对揭示农牧渔业生产规律,改进传统栽培养殖技术,具有重要作用。
昆虫辐射不育技术是现代生物防治虫害的一项新技术,是目前可以灭绝某一虫种的有效手段,今后将加强其应用基础及技术研究。生物的辐射刺激增产已在蚕豆和渔业生产中获得成效。放射生物学和辐射遗传学也在农业科研及生产中起积极的作用。
Ⅳ 核工程与核技术专业什么大学最好
核工程抄与核技术专业大学推荐
6星级专业大学
1、清华大学[6星级]:普通本科 211 985 教育部直属
5星级专业大学
1、哈尔滨工程大学[5星级]:普通本科 211
2、北京大学[5星级]:普通本科 211 985 教育部直属
3、中国科学技术大学[5星级]:普通本科 211 985
4、西安交通大学[5星级]:普通本科 211 985 教育部直属
5、兰州大学[5星级]:普通本科 211 985 教育部直属
Ⅵ 核医学科主要治什么病
其实核医学主要是起到辅助的功能比如检测探测等,我们熟悉的就是癌症的放射治疗。
① 体外脏器显像。有些试剂会有选择性地聚集到人体的某种组织或器官。以发射γ射线的同位素标记这类试剂,将该试剂给患者口服或注射后,利用γ照相机等探测仪器,就可以从体外显示标记试剂在体内分布的情况,了解组织器官的形态和功能。例如硫化Tc胶体经注射进入血液后,能被肝脏的枯氏细胞摄取,探测仪器在体外的记录可显示出肝脏放射性物质的分布,从而可判断肝脏的大小、形态和位置,肝脏是否正常,有无肿块等等。这种检查已成为肝癌诊断的不可缺少的方法。目前脏器显像已广泛用于肝、脑、心、肾、肺等主要组织、器官的形态和功能检查。
同位素脏器显像不但反映脏器形态,而且可显示脏器的生化或生理功能。例如,肝闪烁图反映肝细胞吞噬功能、脑闪烁图反映血脑屏障功能、肺扫描则反映肺灌注或通气功能。闪烁照相还能够对某一器官连续摄影,使医生能够对器官功能和病理变化进行动态观察。
发射计算机断层仪是体外显像的一种先进工具。用它可灵敏地观察到同位素在人体内任一平面的分布,也可以从许多断层影像重现三维形象。采用适当标记试剂时,连闭上眼睛所引起的脑中一定区域内血流量或葡萄糖代谢的细微变化,都可用此仪器测定出来。它在早期诊断疾病上很有发展前途。
② 脏器功能测定。测定器官功能的同位素方法。例如,测定甲状腺摄I离子的数量和速度,以检查甲状腺功能状态;在注射(碘-131)-邻碘马尿酸后,用探测仪器同时记录两侧肾区放射性起落变化曲线,以检查两侧肾脏血流情况、肾小管分泌功能和输尿管通畅程度;在注Cr标记的红细胞后,测定血中放射性消失的速度,以查出红细胞寿命等。
③ 体外放射分析。用竞争放射分析这种超微量分析技术,可以准确测出血、尿等样品中小于10~10克的激素、药物、毒物等成分。用这种方法测定的具有生物活性的物质已达到数百种。中国曾把这种技术用于妊娠早期检查、献血员肝炎病毒检查、肝癌普查等。另外,还可以通过中子活化分析测出头发、指甲、血、尿等样品中的各种微量元素,用来诊断微量元素异常所引起的一些疾病。
核射线有杀伤细胞的能力。用放射性碘治疗甲状腺功能亢进,是内服同位素疗法中最成功的例子。I的β射线可有效地将甲状腺组织破坏,等于进行了一次“无刀手术”P常用于治疗真性红细胞增多症。还可采用放射性磷、锶等同位素敷贴疗法治疗血管瘤、湿疹、角膜炎症等浅表部位的皮肤病和眼科疾病。此外,钴治疗机、电子感应加速器、直线加速器等外照射治疗已成为治疗恶性肿瘤的重要手段,在癌症治疗中所占的比重高达70%左右,而且遍及癌症的绝大部分病种。
Ⅶ 全国大学核工程与核技术专业排名
核工程与核技术专业--2012年本科中国大学分专业排名
080502
核工程与核技术
1、清华大学a+
2、西安交通大学a
3、南华大学a
b+等
(4个):四川大学、成都理工大学、哈尔滨工程大学、上海交通大学
b等
(4个):东华理工大学、苏州大学、兰州大学、华北电力大学
Ⅷ 核工程与核技术 属于哪个学科
它的一级学科是核科学,核工程是工科
Ⅸ 什么是核医学科是什么
1、核医学科是利用核科学技术和手段对疾病进行诊断和治疗,是现代医学的主要手段之一。
2、核医学科是医院主要医技科室之一,主要开展核医学检查项目,是辅助临床科室对疾病作出正确诊断的有效手段之一。
3、拥有SPECT、甲状腺功能测定仪等一批先进的设备。本科开展的临床各项诊治工作达到国内先进水平。
4、对甲状腺疾病、肿瘤、冠心病、肾脏疾病等的显像诊断及甲亢、骨转移癌的治疗有一定研究,取得了良好的医疗和社会效益。
(9)核一学科扩展阅读:
核医学科对人体的危害:
核医学科检查是利用核素的放射性来进行器官的功能测定,比如常用的骨扫描、甲状腺静态显像、肾动态显像等等,核医学科检查都是要利用到核素的放射性的,放射性或多或少都会对人体有一定的影响,但是核素的放射性都在控制的范围之内,不会对人体有大的影响。
同时进行检查完毕之后,进行一定的预防措施,可以减轻对人体的影响,比如骨扫描后可以适当大量饮水、多排尿,加快核素的排泄,减少核素在人体内的滞留对人体产生的影响。
参考资料来源:网络-核医学科