控制工程学科
A. 控制理论与控制工程的学科介绍
该学科为交叉学科,不同的大学该学科均有不同的侧重点:
控制理论与控制工程学科是以工程系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的理论、方法和技术。控制理论是学科的重要基础和核心内容,控制工程是学科的背景动力和发展目标。本学科的智能控制方向主要包括模糊控制、专家系统、神经元网络、遗传算法等方面的研究,特别强调的是上述方法的交叉及其在工业过程控制方面的应用。故障诊断方向主要研究当控制系统一旦发生故障时,仍能保证闭环系统稳定,且满足规定的性能指标。利用获得的实时数据对生产过程进行在线监测及故障诊断,根据系统的运行状态制定相应的控制策略,使系统工作在最佳状态。鲁棒控制方向主要研究被控对象参数变化后,控制系统仍能稳定可靠的工作,并在某种意义下保证系统的最优性。信号处理方向主要研究控制系统中的信号处理问题,包括非线性系统的鲁棒滤波器的设计,自适应滤波器、噪声抵消器、小波分析等。
控制理论与控制工程是研究运动系统的行为、受控后的运动状态以及达到预期动静态性能的一门综合性学科。在理论方面,利用各种数学工具描述系统的动静态特性,以建模、预测、优化决策及控制为主要研究内容。在应用方面,将理论上的研究成果与计算机技术、网络技术和现代检测技术相结合,形成各种新型的控制器或控制系统。研究内容涵盖从基础理论到工程设计与实现技术的多个层次,应用遍及从工业生产过程到航空航天系统以及社会经济系统等极其广泛的领域。离散控制理论在计算中也有很广泛的应用,例如,开方:
开方公式:X(n+1)=Xn+[A/X^(k-1)-Xn]1/k.
例如我们开3次方,即K=3;
公式:X(n+1)=Xn+[A/X^2-Xn]1/3
例如,A=5,5在1的3次方和2的3次方之间,X0无论取1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0都可以。假如我们取2为初始值:
第一步:2+(5/2x2-2)1/3=1.7=X1
第二步:1.7+(5/1.7x1.7-1.7)1/3=1.71=X3
第三步:1.71+(5/1.71x1.71-1.71)1/3=1.709=X4
第四步:1.709+(5/1.709x1.709-1.709)1/3=1.7099=X5
每计算一次,比上一次多取一位数,计算次数与精确度成正比。取值偏大公式会自动调小,例如第一步和第二步,取值偏小公式会自动调大,例如第三步,第四步。
B. 控制科学与工程专业学什么
控制科学与工程(0811)一、适用学科
控制科学与工程(0811)
控制理论与控制工程(081101)
检测技术与自动化装置(081102)
模式识别与智能系统(081104)
导航、制导与控制(081105)
二、培养目标
控制科学与工程一级学科,是研究对象的状态信息获取与处理;根据目标和对象状态,控制和决策的规律,研究控制和决策的实施,以及研究实现控制与决策的设备和系统的应用基础学科及应用学科。它综合了数学、力学、系统科学、计算机科学与技术、信息与通信工程、电气工程、仪器科学与技术、机械工程、航空航天科学技术、生物学等学科的理论、方法,形成了完善的理论体系和实践范畴。本学科在国民经济和国防技术领域内起重要的促进和支撑作用,在工学门类中占有不可替代的地位。本学科重视理论研究和工程技术研究相结合,重视培养学生的系统观点、理论研究能力和工程实践能力。
因此,在控制科学与工程的人才培养方面,一方面必须加强学生对现有基础理论及工程技术的深刻理解与掌握,又必须面向未来,向学生介绍21世纪的前沿科学的知识,使北航该学科成为21世纪高素质控制科学与工程科技创新人才培养和成长的摇篮。
三、培养方向
1、先进飞行控制技术
2、精确导航与制导技术
3、先进仿真技术
4、系统可靠性与安全性
5、复杂系统的控制与决策
6、非线性控制系统理论及应用
7、鲁棒与容错控制理论及应用
8、智能控制理论与应用
9、交通系统控制与决策
10、图像处理与模式识别
11、智能系统
12、网络化系统
13、自动测试技术
14、航空航天仪表15、自动化装置
C. 控制科学与工程学科排名前十的大学本硕毕业,就业可以去哪些公司
控制理论与控制工程近几年在信息领域专业中的发展成效尤为突出,其在智能控制、人工神经网络、模糊控制、非线性系统及其控制、生物信息学等研究领域都有广泛的应用。
由于控制理论与控制工程始终站在经济建设和技术革命的前沿,并且某程度上直接推动工农业的自动化和现代化进程,所以近些年控制理论与控制工程一直属于比较热门的专业。本专业毕业的优秀研究生就业前景还是不错的。
本专业培养的优秀研究生可在以下几个方向工作:
1、可以从事本专业或相邻专业的教学。
2、从事科研以及相关的技术、管理及研究工作。
3、可以在霍尼韦尔、和利时、西门子等自动化企业工作。
控制理论与控制工程相关职位
热工控制工程师,控制工程师,发动机研究,硬件测试工程师,控制系统硬件设计,控制研发工程师,自控工程师,工业控制系统测试工程师,航空总线技术应用工程师。
D. 请问大学一级学科“自动化”与“控制科学与控制工程”是一个意思吗
自动化”与“控制科学与控制工程”是一个意思。控制科学与工程在本科阶段称为“自动化”,研究生阶段称为“控制科学与工程”。
自动化专业是以数学与自动控制理论为主要理论基础,以电子技术、计算机信息技术、传感器与检测技术等为主要技术手段,利用各种自动化装置分析与设计各类控制系统,为人类生产生活服务的一门专业。
控制科学与工程本学科是研究控制的理论、方法、技术及其工程应用的学科,以控制论、系统论、信息论为基础,研究各应用领域内的共性问题,即为了实现控制目标,应如何建立系统的模型,分析其内部与环境信息,采取何种控制与决策行为。
(4)控制工程学科扩展阅读:
自动化专业的研究方向:
1、过程控制方向。以自动控制、计算机技术为支撑,针对实际工业生产过程实现自动控制,由信号检测与变换、过程控制、计算机控制系统、智能控制和现场总路线控制技术等组成方向主干课。
2、嵌入式系统方向。注重对嵌入式系统设计与软件设计能力的培养,理论结合实践,通过课堂教学、实验等多种形式的学习,培养嵌入式系统方向的专业人才;由嵌入式系统设计、嵌入式实时操作系统、DSP技术、先进显示技术、控制电机等组成方向主干课。
3、运动控制、机器人方向。注重对学生电机系统分析与控制能力的培养,理论联系实践,通过实验培养机器人方向的专业人才,为学生以后在相关领域就业与深造打下坚实基础;由电子控制技术、力学、电机拖动、运动控制理论等组成方向主干课。
4、人工智能方向。以信息处理与模式识别的理论技术为核心,以数学方法与计算机为主要工具,研究对各种媒体信息进行处理、分类和理解的方法,并在此基础上构造具有某些智能特性的系统;由计算机编程语言、机器学习算法、模式识别导论、应用统计学组成方向主干课。
参考资料来源:网络—自动化专业
参考资料来源:网络—控制科学与工程
E. 控制科学与工程的具体专业
控制科学与工程这是研究生阶段的一个学科大类,其下有二级学科专业:“控制理论与控制工程”、“检测技术与自动装置”、“系统工程”、“模式识别与智能系统”、“导航、制导与控制”、“企业信息化系统与工程”和“生物信息学”,二级学科专业下面还会有多种方向。
现在有些学校在本科也有这个专业“控制科学与工程”,但更多的是以“自动化”代替。
这就是个分类,比如文科》历史学(一级学科)》近代史学(二级学科专业)》湖南近代史方向
如满意回答,还望采纳。
F. 控制理论与控制工程专业方向问题
个人感觉,前三个抄是理论和应用都有的,比较容易接触到实际的工程实践。将来找工作就有实践经验了。
后两者,鲁棒是比较偏理论的研究,容错也算是鲁棒的一个特性,这类技术真正应用到实际工程中的较少,而且实际中还用不到这么复杂的控制,所以也是偏理论的,这样的话找工作就不容易了,如果想要继续读博搞科研可以考虑。
其实说句心里话,楼主给出的方向都是名称听起来很牛叉,但都没有实际表明具体究竟是做什么的,很多实际中说得比较多的,比如嵌入式,单片机,楼宇自动化,开关电源控制,PLC控制,这些才是企业公司招聘时所列写的专业名称。
由于研究生是导师制,你进实验室具体学什么是看导师的专业特长,虽然分的是某个研究方向,可是大部分并不是严格按照这个方向去研究的。
导师指导学生一定是他自己比较熟悉的方向,我就知道模式识别专业导师跟导航制导的老师一个实验室的情况。他们一起做项目,虽然学生专业不同,但就学习同样的知识,所以建议最好去问问该专业的学长,他们比较清楚到底他们导师的研究方向,这样从这里边挑选一个比较好的。
简单来说,哪个实验室实践项目多,那么谁的就业就会好。
最后预祝考研成功!
G. 控制科学与工程具体做什么
控制科学与工程在本科阶段称为“自动化”,研究生阶段称为“控制科学与工程”。
本学科点在理论研究与工程实践相结合、学科交叉和军民结合等方面具有明显的特色与优势,对经济发展和国家安全发挥了重大作用,服务领域覆盖互联网、人工智能、通信、IT、智能制造、金融管理、教育咨询、科学研究等领域,工作形式涵盖技术研发、管理咨询、教学科研等。
(7)控制工程学科扩展阅读:
一、研究方向
控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。它对于各具体应用领域具有一般方法论的意义,而与各领域具体问题的结合,又形成了控制工程丰富多样的内容。
本学科的这一特点,使它对相关学科的发展起到了有力的推动作用,并在学科交叉与渗透中表现出突出的活力。例如:它与信息科学和计算机科学的结合开拓了知识工程和智能机器人领域。
二、学科关系
“控制理论与控制工程”学科以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、优化、设计和实现的理论、方法和技术。本学科培养从事控制理论与控制工程领域的研究、设计、开发和系统集成等方面的高级专门人才。
本专业方向主要研究线性与非线性控制、自适应控制、变结构控制、鲁棒控制、智能控制、模糊控制、神经元控制、预测控制、推理控制、容错控制、多变量控制、量子控制、系统辨识、过程建模与优化、故障诊断与预报、离散事件动态系统。
复杂系统的优化与调度、智能优化与智能维护、复杂性理论研究、高性能调速与伺服、运动体导航与制导、机器人与机器视觉、多传感器集成与融合,多自主体合作与对抗、嵌入式系统、传感器网络、软测量技术、电力电子技术、现场总线技术、系统集成技术、网络控制与流媒体技术,以及将上述技术与方法加以集成的综合自动化技术等。
H. 控制理论与控制工程专业
本科专业是自动化,到了研究省阶段以后就不再这么称了,控制科学与回工程是这个阶段的一级答学科,控制理论与控制工程是这个学科下的二级学科。就业还是可以的,但是由于很多工科学校都有这个专业,也成为目前社会中自动控制的人才越来越多,但是对于工业化的中国,这个专业还算比较热。对女生歧视是不会的,但是这个专业有些方向确实是不适合女生,比如PLC这样的大型工业控制,很多时候是要出差的,还要一些体力支持。这方面女生是比较弱一些。但是你可以考虑其他的方向,最有前途的是嵌入式,自动控制的精英教育,但是这个比较难学的很精,DSP,单片机编程到时还是比较适合女生的,先学好这些,对于工作很有好处。如果要以后转到嵌入式方向也比较轻松,要有信心,相信你一定行的,好好学吧。
I. 控制科学的二级学科
本学科下设五个二级学科:控制理论与控制工程,检测技术与自动化装置,系统工程,模式识别与智能系统,导航、制导与控制。各二级学科的主要研究范畴及相互联系如下。
“控制理论与控制工程”学科以工程领域内的控制系统为主要对象,以数学方法和计算机技术为主要工具,研究各种控制策略及控制系统的建模、分析、综合、设计和实现的理论、技术和方法。
“检测技术与自动化装置”是研究被控对象的信息提取、转换、传递与处理的理论、方法和技术的一门学科。它的理论基础涉及现代物理、控制理论、电子学、计算机科学和计量科学等,主要研究领域包括新的检测理论和方法,新型传感器,自动化仪表和自动检测系统,以及它们的集成化、智能化和可靠性技术。
“系统工程”是为了解决日益复杂的社会实践问题而形成的从整体出发合理组织、控制和管理各类系统的综合性的工程技术学科。系统工程以工业、农业、交通、军事、资源。环境、经济、社会等领域中的各种复杂系统为主要对象,以系统科学、控制科学、信息科学和应用数学为理论基础,以计算机技术为基本工具,以优化为主要目的,采用定量分析为主、定性定量相结合的综合集成方法,研究解决带有一般性的系统分析、设计、控制和管理问题。
“模式识别与智能系统”主要研究信息的采集、处理与特征提取,模式识别与分析,人工智能以及智能系统的设计。它的研究领域包括信号处理与分析,模式识别,图象处理与计算机视觉,智能控制与智能机器人,智能信息处理,以及认知、自组织与学习理论等。
“导航、制导与控制”是以数学、力学、控制理论与工程、信息科学与技术、系统科学、计算机技术、传感与测量技术、建模与仿真技术为基础的综合性应用技术学科。该学科研究航空、航天、航海、陆行各类运动体的位置。方向、轨迹、姿态的检测、控制及其仿真,是国防武器系统和民用运输系统的重要核心技术之一。
自动控制已经成为高技术的重要组成部分。当前,我国的经济建设正在蓬勃发展,各行各业的经济效益提高和技术的进步都与本学科密切相关。因此,加强本学科的建设,更多更好地培养本学科高层次综合型人才,是我国社会主义建设的迫切需要。
J. 控制科学与控制工程下的4个二级学科有什么区别
1、研究内容不同:
控制科学与工程在本科阶段称为“自动化”,研究生阶段称为“控制科学与工程”。本学科是研究控制的理论、方法、技术及其工程应用的学科,以控制论、系统论、信息论为基础,研究各应用领域内的共性问题;
即为了实现控制目标,应如何建立系统的模型,分析其内部与环境信息,采取何种控制与决策行为;而与各应用领域的密切结合,又形成了控制工程丰富多样的内容。
控制工程是处理自动控制系统各种工程实现问题的综合性工程技术。包括对自动控制系统提出要求(即规定指标)、进行设计、构造、运行、分析、检验等过程。
2、起源不同:
控制工程是在电气工程和机械工程的基础上发展起来的。
控制科学与工程是20世纪最重要的科学理论和成就之一,它的各阶段的理论发展及技术进步都与生产和社会实践需求密切相关。11世纪我国北宋时代发明的水运仪象台就体现了闭环控制的思想。到18世纪,近代工业采用了蒸汽机调速器。
但直到20世纪20年代逐步建立了以频域法为主的经典控制理论并在工业中获得成功应用,才开始形成一门新兴的学科——控制科学与工程。此后,经典控制理论继续发展并在工业中获得了广泛的应用。
在空间技术发展的推动下,50年代又出现了以状态空间法为主的现代控制理论,并相继发展了若干相对独立的学科分支,使本学科的理论和研究方法更加丰富。
60年代以来,随着计算机技术的发展,许多新方法和技术进入工程化、产品化阶段,显著加快了工业技术更新的步伐。
(10)控制工程学科扩展阅读:
控制科学研究方向包括:
1、智能控制与信息处理技术;
2、网络控制技术;
3、电力电子与运动控制新技术;
4、计算机测控与网络技术;
5、楼宇智能化技术;
6、大系统的控制方法及应用;
7、智能决策方法及应用;
8、图像算法与机器视觉及应用;
9、语言识别生成及应用;
10、惯性技术;
11、导航控制系统;
12、制导、控制与仿真。