當前位置:首頁 » 語數英語 » 數學黑洞

數學黑洞

發布時間: 2020-11-19 04:58:12

數學黑洞

Q我357010273
面談
談完再給也成

Ⅱ 數學黑洞指什麼問題

一個任意四位數,把四個數字分別組成一個最大的數和一個最小的數,作差,得新的四位數,重復此過程,7次內必得6174.
數學被譽為「科學之母」,在現代科技的發展中起著定海神針般的作用,而現代的戰爭更是被認為將是一場「數學家和信息學家的戰爭」。在信息戰中,要運用數學作大量的模擬運算,運用數學在空間作精確的定位,運用數學對導彈作精密制導,運用數學來研究保密通信的演算法,運用數學作為網路攻擊利器。
在天文學上有著著名的「黑洞」現象,無獨有偶,在數學中也有這種神密的黑洞現象,對於數學黑洞,無論怎樣設值,在規定的處理法則下,最終都將得到固定的一個值,就像宇宙中的黑洞可以將任何物質(包括運行速度最快的光)牢牢吸住,不使它們逃脫一樣。這就對密碼的設值破解開辟了一個新的思路。本文將為大家介紹兩個比較有名的數學黑洞,供大家學習參考。
【一】123黑洞
數學中的123就跟英語中的ABC一樣平凡和簡單。然而,按以下運算順序,就可以觀察到這個最簡單的
黑洞值:①數:設定一個任意的數,例如:1234567890,
②偶:數出該數數字中的偶數個數,在本例中為2,4,6,8,0,總共有 5 個。
③奇:數出該數數字中的奇數個數,在本例中為1,3,5,7,9,總共有 5 個。
④總:數出該數數字的總個數,本例中為 10 個。
⑤新數:將答案按 「偶-奇-總」 的位序,排出得到新數為:5510。
⑥重復:將新數5510按②、③、④的演算法重復運算,可得到新數:134。
⑦重復:將新數134按②、③、④的演算法重復運算,可得到新數:123。
結論:對數1234567890,按上述演算法,最後必得出123的結果,我們可以用計算機寫出程序,測試出對任意一個數經有限次重復後都會是123。換言之,任何數的最終結果都無法逃逸123黑洞。
【二】6174黑洞
比123黑洞更為引人關注的是6174黑洞值,它的演算法如下:
①數:設定一個4位數字不全相同的4位數,例如1234(也可取重復數字,如2244等,只要4個數字不全相同就行);
②大數:取這4個數字能構成的最大數,本例為:4321;
③小數:取這4個數字能構成的最小數,本例為:1234;
④差:求出大數與小數之差,本例為:4321-1234=3087;
⑤重復:對新數3087按②、③、④的演算法求得新數為:8730-0378=8352;
⑥重復:對新數8352按②、③、④的演算法求得新數為:8532-2358=6174;
⑦結論:對任何只要不是4位數字全相同的4位數,按上述演算法,不超過7次計算,最終結果都無法逃出6174黑洞;
比起123黑洞來,6174黑洞對首個設定的數值有所限制,但是,從實戰的意義上來考慮,6174黑洞在信息戰中的運用更具有應用意義。

Ⅲ 數學黑洞是什麼

數學中的123就跟英語中的ABC一樣平凡和簡單。然而,你按以下運算順序,就可以觀察到這個最簡單的黑洞值:
設定一個任意數字串,數出這個數中的偶數個數,奇數個數,及這個數中所包含的所有位數的總數,
例如:1234567890,
偶:數出該數數字中的偶數個數,在本例中為2,4,6,8,0,總共有 5 個。
奇:數出該數數字中的奇數個數,在本例中為1,3,5,7,9,總共有 5 個。
總:數出該數數字的總個數,本例中為 10 個。
新數:將答案按 「偶-奇-總」 的位序,排出得到新數為:5510。
重復:將新數5510按以上演算法重復運算,可得到新數:134。
重復:將新數134按以上演算法重復運算,可得到新數:123。
結論:對數1234567890,按上述演算法,最後必得出123的結果,我們可以用計算機寫出程序,測試出對任意一個數經有限次重復後都會是123。換言之,任何數的最終結果都無法逃逸123黑洞。
為什麼有數學黑洞「西西弗斯串」呢?
(1)當是一個一位數時,如是奇數,則k=0,n=1,m=1,組成新數011,有k=1,n=2,m=3,得到新數123;
如是偶數,則k=1,n=0,m=1,組成新數101,又有k=1,n=2,m=3,得到123。
(2)當是一個兩位數時,如是一奇一偶,則k=1,n=1,m=2,組成新數112,則k=1,n=2,m=3,得到123;
如是兩個奇數,則k=0,n=2,m=2,組成022,則k=3,n=0,m=3,得303,則k=1,n=2,m=3,也得123;
如是兩個偶數,則k=2,n=0,m=2,得202,則k=3,n=0,m=3,由前面亦得123。
(3)當是一個三位數時,如三位數是三個偶數字組成,則k=3,n=0,m=3,得303,則k=1,n=2,m=3,得123;
如是三個奇數,則k=0,n=3,m=3,得033,則k=1,n=2,m=3,得123;
如是兩偶一奇,則k=2,n=1,m=3,得213,則k=1,n=2,m=3,得123;
如是一偶兩奇,則k=1,n=2,m=3,立即可得123。
(4)當是一個M(M>3)位數時,則這個數由M個數字組成,其中N個奇數數字,K個偶數數字,M=N+K。
由KNM聯接生產一個新數,這個新數的位數要比原數小。重復以上步驟,一定可得一個三位新數knm。
「123數學黑洞(西西弗斯串)」現象已由中國回族學者秋屏先生於2010年5月18日作出嚴格的數學證明,並推廣到六個類似的數學黑洞(「123」、「213」、「312」、「321」、「132」和「231」),請看他的論文:《「西西弗斯串(數學黑洞)」現象與其證明》(正文網址鏈接在「數學黑洞」詞條下「參考資料」中,可點擊閱讀)。自此,這一令人百思不解的數學之謎已被徹底破解。此前,美國賓夕法尼亞大學數學教授米歇爾·埃克先生僅僅對這一現象作過描述介紹,卻未能給出令人滿意的解答和證明。

Ⅳ 什麼是數學黑洞

在數學中也有這種神秘的黑洞現象,對於數學黑洞,無論怎樣設值,在規定的處理法則下,最終都將得到固定的一個值,再也跳不出去了,就像宇宙中的黑洞可以將任何物質(包括運行速度最快的光)牢牢吸住,不使它們逃脫一樣。這就對密碼的設值破解開辟了一個新的思路。
【一】123黑洞
(即西西弗斯串)
數學中的123就跟英語中的ABC一樣平凡和簡單。然而,按以下運算順序,就可以觀察到這個最簡單的
黑洞值:
設定一個任意數字串,數出這個數中的偶數個數,奇數個數,及這個數中所包含的所有位數的總數,
例如:1234567890,
偶:數出該數數字中的偶數個數,在本例中為2,4,6,8,0,總共有 5 個。
奇:數出該數數字中的奇數個數,在本例中為1,3,5,7,9,總共有 5 個。
總:數出該數數字的總個數,本例中為 10 個。
新數:將答案按 「偶-奇-總」 的位序,排出得到新數為:5510。
重復:將新數5510按以上演算法重復運算,可得到新數:134。
重復:將新數134按以上演算法重復運算,可得到新數:123。
結論:對數1234567890,按上述演算法,最後必得出123的結果,我們可以用計算機寫出程序,測試出對任意一個數經有限次重復後都會是123。換言之,任何數的最終結果都無法逃逸123黑洞。
【二 】 任意N位數的歸斂的卡普雷卡爾黑洞
取任何一個4位數(4個數字均為同一個數字的例外),將組成該數的4個數字重新組合成可能的最大數和可能的最小數,再將兩者的差求出來;對此差值重復同樣的過程(例如:開始時取數8028,最大的重新組合數為8820,最小的為0288,二者的差8532。重復上述過程得出8532-2358=6174),最後總是達到卡普雷卡爾黑洞:6174。稱之「黑洞」是指再繼續運算,都重復這個數,「逃」不出去。把以上計算過程稱為卡普雷卡爾運算,這個現象稱歸斂,其結果6174稱歸斂結果。
一, 任意N位數都會類似4位數那樣歸斂(1、2位數無意義) . 3位數歸斂到唯一一個數495; 4位數歸斂到唯一一個數6174; 7位數歸斂到唯一一個數組( 8個7位數組成的循環數組______稱歸斂組);其它每個位數的數歸斂結果分別有若干個,歸斂數和歸斂組兼而有之(如14位數____共有9×10的13次方個數____的歸斂結果有6個歸斂數,21個歸斂組).
一旦進入歸斂結果,繼續卡普雷卡爾運算就在歸斂結果反復循環,再也「逃」不出去。
歸斂組中各數可以按遞進順序交換位置 (如a → b → c 或 b → c → a 或c → a → b)
歸斂結果可以不經過卡普雷卡爾運算就能從得出.
某個既定位數的數,它的歸斂結果的個數是有限的,也是確定的.
二,較多位數的數(命它為N)的歸斂結果是由較少位數的數(命它為n, N>n)的歸斂結果,嵌加進去一些特定的數或數組而派生形成. 4、6、8、9、11、13的歸斂結果中的8個稱基礎數根.它們是派生所有任意N位數的歸斂結果的基礎.
1, 嵌加的數分三類.
第一類是數對型,有兩對: 1)9,0 2)3,6
第二類是數組型,有一組:
7,2
5,4
1,8
第三類是數字型,有兩個:
1) 5 9 4
2) 8 6 4 2 9 7 5 3 1
2, 嵌入數的一部分嵌入前段中大於或等於嵌入數的最末一個數字的後鄰位置。另一部分嵌入後段相應位置_____使與嵌入前段的數形成層狀組數結構。
594隻能嵌入n=3+3К 這類數。如9、12、15、18…….位.
3, (9,0)、(3,6)兩對數可以單獨嵌入或與數組型、數字型組合嵌入。
數組
7,2
5,4
1,8
必須「配套」嵌入並按順序: (7,2)→(5,4)→(1,8) 或 (5,4)→(1,8)→(7,2)
或 (1,8) →(7,2) →(5,4)。
4, 可以嵌如一次、二次或若干次 (則形成更多位數的歸斂結果).
任意N 位數的歸斂結果都 「隱藏」在這N位數中, 卡普雷卡爾運算只是找出它們而不是新造成它們.
參考資料:
1, 美國《新科學家》,1992,12,19
2, 中國《參考消息》,1993,3,14-17
3, 王景之: ⑴ 也談數學「黑洞」——關於卡普雷卡爾常數
⑵ 我演算得到的一部分歸斂結果
4, 天山草 : 能夠進行任意多位數卡普雷卡爾(卡布列克) 運算的程序。
【三】自戀性數字
除了0和1自然數中各位數字的立方之和與其本身相等的只有153、370、371和407(此四個數稱為「水仙花數」)。例如為使153成為黑洞,我們開始時取任意一個可被3整除的正整數。分別將其各位數字的立方求出,將這些立方相加組成一個新數然後重復這個程序。
除了「水仙花數」外,同理還有四位的「玫瑰花數」(有:1634、8208、9474)、五位的「五角星數」(有54748、92727、93084),當數字個數大於五位時,這類數字就叫做「自冪數」。

Ⅳ 數學黑洞153

任意找一個3的倍數的數,先把這一個數每一個數位上的數都立方,再相加,得到一個新數,然後把這個新數的每一個數位上的數都立方、相加·······重復下去將會得到一個固定的數153

Ⅵ 數學黑洞(神奇的數字495)

證明

Ⅶ 什麼是數學黑洞

編輯本段基本內容 茫茫宇宙之中,存在著這樣一種極其神秘的天體叫「黑洞」(black hole)。黑洞的物質密度極大,引力極強,任何物質經過它的附近,都要被它吸引進去,再也不能出來,包括光線也是這樣,因此是一個不發光的天體黑洞的名稱由此而來。由於不發光,人們無法通過肉眼或觀測儀器發覺它的存在,而只能理論計算或根據光線經過其附近時產生的彎曲現象而判斷其存在。雖然理論上說,銀河系中作為恆星演化終局的黑洞總數估計在幾百萬到幾億個之間,但至今被科學家確認了的黑洞只有天鵝座X-1、大麥哲倫雲X-3、AO602-00等極有限的幾個。證認黑洞成為21世紀的科學難題之一。
數學被譽為「科學之母」,在現代科技的發展中起著定海神針般的作用,而現代的戰爭更是被認為將是一場「數學家和信息學家的戰爭」。在信息戰中,要運用數學作大量的模擬運算,運用數學在空間作精確的定位,運用數學對導彈作精密制導,運用數學來研究保密通信的演算法,運用數學作為網路攻擊利器。
無獨有偶,在數學中也有這種神秘的黑洞現象,對於數學黑洞,無論怎樣設值,在規定的處理法則下,最終都將得到固定的一個值,再也跳不出去了,就像宇宙中的黑洞可以將任何物質(包括運行速度最快的光)牢牢吸住,不使它們逃脫一樣。這就對密碼的設值破解開辟了一個新的思路。
【一】123黑洞
(即西西弗斯串)
數學中的123就跟英語中的ABC一樣平凡和簡單。然而,按以下運算順序,就可以觀察到這個最簡單的
黑洞值:
設定一個任意數字串,數出這個數中的偶數個數,奇數個數,及這個數中所包含的所有位數的總數,
例如:1234567890,
偶:數出該數數字中的偶數個數,在本例中為2,4,6,8,0,總共有 5 個。
奇:數出該數數字中的奇數個數,在本例中為1,3,5,7,9,總共有 5 個。
總:數出該數數字的總個數,本例中為 10 個。
新數:將答案按 「偶-奇-總」 的位序,排出得到新數為:5510。
重復:將新數5510按以上演算法重復運算,可得到新數:134。
重復:將新數134按以上演算法重復運算,可得到新數:123。
結論:對數1234567890,按上述演算法,最後必得出123的結果,我們可以用計算機寫出程序,測試出對任意一個數經有限次重復後都會是123。換言之,任何數的最終結果都無法逃逸123黑洞。
【二 】 任意N位數的歸斂的卡普雷卡爾黑洞
取任何一個4位數(4個數字均為同一個數字的例外),將組成該數的4個數字重新組合成可能的最大數和可能的最小數,再將兩者的差求出來;對此差值重復同樣的過程(例如:開始時取數8028,最大的重新組合數為8820,最小的為0288,二者的差8532。重復上述過程得出8532-2358=6174),最後總是達到卡普雷卡爾黑洞:6174。稱之「黑洞」是指再繼續運算,都重復這個數,「逃」不出去。把以上計算過程稱為卡普雷卡爾運算,這個現象稱歸斂,其結果6174稱歸斂結果。
一, 任意N位數都會類似4位數那樣歸斂(1、2位數無意義) . 3位數歸斂到唯一一個數495; 4位數歸斂到唯一一個數6174; 7位數歸斂到唯一一個數組( 8個7位數組成的循環數組______稱歸斂組);其它每個位數的數歸斂結果分別有若干個,歸斂數和歸斂組兼而有之(如14位數____共有9×10的13次方個數____的歸斂結果有6個歸斂數,21個歸斂組).
一旦進入歸斂結果,繼續卡普雷卡爾運算就在歸斂結果反復循環,再也「逃」不出去。
歸斂組中各數可以按遞進順序交換位置 (如a → b → c 或 b → c → a 或c → a → b)
歸斂結果可以不經過卡普雷卡爾運算就能從得出.
某個既定位數的數,它的歸斂結果的個數是有限的,也是確定的.
二,較多位數的數(命它為N)的歸斂結果是由較少位數的數(命它為n, N﹥n)的歸斂結果,嵌加進去一些特定的數或數組而派生形成. 4、6、8、9、11、13的歸斂結果中的8個稱基礎數根.它們是派生所有任意N位數的歸斂結果的基礎.
1, 嵌加的數分三類.
第一類是數對型,有兩對: 1)9,0 2)3,6
第二類是數組型,有一組:
7,2
5,4
1,8
第三類是數字型,有兩個:
1) 5 9 4
2) 8 6 4 2 9 7 5 3 1
2, 嵌入數的一部分嵌入前段中大於或等於嵌入數的最末一個數字的後鄰位置。另一部分嵌入後段相應位置_____使與嵌入前段的數形成層狀組數結構。
594隻能嵌入n=3+3К 這類數。如9、12、15、18…….位.
3, (9,0)、(3,6)兩對數可以單獨嵌入或與數組型、數字型組合嵌入。
數組
7,2
5,4
1,8
必須「配套」嵌入並按順序: (7,2)→(5,4)→(1,8) 或 (5,4)→(1,8)→(7,2)
或 (1,8) →(7,2) →(5,4)。
4, 可以嵌如一次、二次或若干次 (則形成更多位數的歸斂結果).
任意N 位數的歸斂結果都 「隱藏」在這N位數中, 卡普雷卡爾運算只是找出它們而不是新造成它們.
參考資料:
1, 美國《新科學家》,1992,12,19
2, 中國《參考消息》,1993,3,14-17
3, 王景之: ⑴ 也談數學「黑洞」——關於卡普雷卡爾常數
⑵ 我演算得到的一部分歸斂結果
4, 天山草 : 能夠進行任意多位數卡普雷卡爾(卡布列克) 運算的程序。
【三】自戀性數字
除了0和1自然數中各位數字的立方之和與其本身相等的只有153、370、371和407(此四個數稱為「水仙花數」)。例如為使153成為黑洞,我們開始時取任意一個可被3整除的正整數。分別將其各位數字的立方求出,將這些立方相加組成一個新數然後重復這個程序。
除了「水仙花數」外,同理還有四位的「玫瑰花數」(有:1634、8208、9474)、五位的「五角星數」(有54748、92727、93084),當數字個數大於五位時,這類數字就叫做「自冪數」。

Ⅷ 「數學黑洞」舉例子

,

Ⅸ 數學黑洞是幾

123黑洞:數學中的123就跟英語中的ABC一樣平凡和簡單。然而,按以下運算順序,就可以觀察到這個最簡單的
黑洞值:
設定一個任意數字串,數出這個數中的偶數個數,奇數個數,及這個數中所包含的所有位數的總數,
例如:1234567890,
偶:數出該數數字中的偶數個數,在本例中為2,4,6,8,0,總共有 5 個。
奇:數出該數數字中的奇數個數,在本例中為1,3,5,7,9,總共有 5 個。
總:數出該數數字的總個數,本例中為 10 個。
新數:將答案按 「偶-奇-總」 的位序,排出得到新數為:5510。
重復:將新數5510按以上演算法重復運算,可得到新數:134。
重復:將新數134按以上演算法重復運算,可得到新數:123。
任意N位數的歸斂的卡普雷卡爾黑洞(6174):取任何一個4位數(4個數字均為同一個數字的例外),將組成該數的4個數字重新組合成可能的最大數和可能的最小數,再將兩者的差求出來;對此差值重復同樣的過程(例如:開始時取數8028,最大的重新組合數為8820,最小的為0288,二者的差8532。重復上述過程得出8532-2358=6174),最後總是達到卡普雷卡爾黑洞:6174。稱之「黑洞」是指再繼續運算,都重復這個數,「逃」不出去。把以上計算過程稱為卡普雷卡爾運算,這個現象稱歸斂,其結果6174稱歸斂結果

Ⅹ 數學黑洞有哪些 黑洞是什麼

123黑洞——任意N位數的歸斂的卡普雷卡爾黑洞 。
取任何一個4位數(4個數字均為同一個數字的例外),將組成該數的4個數字重新組合成可能的最大數和可能的最小數,再將兩者的差求出來;對此差值重復同樣的過程(例如:開始時取數8028,最大的重新組合數為8820,最小的為0288,二者的差8532。重復上述過程得出8532-2358=6174),最後總是達到卡普雷卡爾黑洞:6174。稱之「黑洞」是指再繼續運算,都重復這個數,「逃」不出去。把以上計算過程稱為卡普雷卡爾運算,這個現象稱歸斂,其結果6174稱歸斂結果。
一, 任意N位數都會類似4位數那樣歸斂(1、2位數無意義) . 3位數歸斂到唯一一個數495; 4位數歸斂到唯一一個數6174; 7位數歸斂到唯一一個數組( 8個7位數組成的循環數組______稱歸斂組);其它每個位數的數歸斂結果分別有若干個,歸斂數和歸斂組兼而有之(如14位數____共有9×10的13次方個數____的歸斂結果有6個歸斂數,21個歸斂組).
一旦進入歸斂結果,繼續卡普雷卡爾運算就在歸斂結果反復循環,再也「逃」不出去。
歸斂組中各數可以按遞進順序交換位置 (如a → b → c 或 b → c → a 或c → a → b)
歸斂結果可以不經過卡普雷卡爾運算就能從得出.
某個既定位數的數,它的歸斂結果的個數是有限的,也是確定的.
二,較多位數的數(命它為N)的歸斂結果是由較少位數的數(命它為n, N>n)的歸斂結果,嵌加進去一些特定的數或數組而派生形成. 4、6、8、9、11、13的歸斂結果中的8個稱基礎數根.它們是派生所有任意N位數的歸斂結果的基礎. (即西西弗斯串)
數學中的123就跟英語中的ABC一樣平凡和簡單。然而,按以下運算順序,就可以觀察到這個最簡單的
黑洞值:
設定一個任意數字串,數出這個數中的偶數個數,奇數個數,及這個數中所包含的所有位數的總數,
例如:1234567890,
偶:數出該數數字中的偶數個數,在本例中為2,4,6,8,0,總共有 5 個。
奇:數出該數數字中的奇數個數,在本例中為1,3,5,7,9,總共有 5 個。
總:數出該數數字的總個數,本例中為 10 個。
新數:將答案按 「偶-奇-總」 的位序,排出得到新數為:5510。
重復:將新數5510按以上演算法重復運算,可得到新數:134。
重復:將新數134按以上演算法重復運算,可得到新數:123。
結論:對數1234567890,按上述演算法,最後必得出123的結果,我們可以用計算機寫出程序,測試出對任意一個數經有限次重復後都會是123。換言之,任何數的最終結果都無法逃逸123黑洞。
「123數學黑洞(西西弗斯串)」現象已由中國回族學者秋屏先生於2010年5月18日作出嚴格的數學證明,請看他的論文:《「數學黑洞(西西弗斯串)」現象與其證明》(正文網址在「擴展閱讀」中)。自此,這一令人百思不解的數學之謎已被徹底破解。此前,美國賓夕法尼亞大學數學教授米歇爾·埃克先生僅僅對這一現象作過描述介紹,卻未能給出令人滿意的解答和證明。

熱點內容
師生問候英文 發布:2025-05-15 12:33:11 瀏覽:332
教師三年個人發展規劃 發布:2025-05-15 08:59:20 瀏覽:116
校長師德師風情況總結 發布:2025-05-15 07:26:18 瀏覽:72
科高教育 發布:2025-05-15 04:51:38 瀏覽:764
人教版二年級語文試卷 發布:2025-05-15 03:39:22 瀏覽:833
葉開語文 發布:2025-05-15 03:38:08 瀏覽:879
北京假體隆鼻多少錢 發布:2025-05-15 02:49:41 瀏覽:117
年度師德師風自查報告 發布:2025-05-15 02:16:35 瀏覽:334
是在下輸了是什麼梗 發布:2025-05-15 01:59:54 瀏覽:289
教育課 發布:2025-05-15 00:39:16 瀏覽:887