高中數學必修二目錄
Ⅰ 高中數學必修二目錄(人教版)
第一章空間幾何制體
1.1 空間幾何體的結構
1.2空間幾何體的三視圖和直觀圖
閱讀與思考畫法幾何與蒙日
1.3空間幾何體的表面積與體積
探究與發現祖暅原理與柱體、椎體、球體的體積
實習作業
小結
復習參考題
第二章點、直線、平面之間的位置關系
2.1空間點、直線、平面之間的位置關系
2.2直線、平面平行的判定及其性質
2.3直線、平面垂直的判定及其性質
閱讀與思考歐幾里得《原本》與公理化方法
小結
復習參考題
第三章直線與方程
3.1直線的傾斜角與斜率
探究與發現魔術師的地毯
3.2直線的方程
3.3直線的交點坐標與距離公式
閱讀與思考笛卡兒與解析幾何
小結
復習參考題
第四章圓與方程
4.1圓的方程
閱讀與思考坐標法與機器證明
4.2直線、圓的位置關系
4.3空間直角坐標系
信息技術應用用《幾何畫板》探究點的軌跡:圓
小結
復習參考題
Ⅱ 高中數學必修二的內容
高中數學必修2知識點
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
當時,; 當時,; 當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:()直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
注意:各式的適用范圍 特殊的方程如:
平行於x軸的直線:(b為常數); 平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中。
(6)兩直線平行與垂直
當,時,
;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(7)兩條直線的交點
相交
交點坐標即方程組的一組解。
方程組無解 ; 方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點,
則
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解。
二、圓的方程
1、圓的定義:平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。
2、圓的方程
(1)標准方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都採用待定系數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。
3、直線與圓的位置關系:
直線與圓的位置關系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內切,連心線經過切點,只有一條公切線;
當時,兩圓內含; 當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
圓的輔助線一般為連圓心與切線或者連圓心與弦中點
三、立體幾何初步
1、柱、錐、台、球的結構特徵
(1)稜柱:
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)棱錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
幾何特徵:①上下底面是相似的平行多邊形 ②側面是梯形 ③側棱交於原棱錐的頂點
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:定義:以直角梯形的垂直與底邊的腰為旋轉軸,旋轉一周所成
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、
俯視圖(從上向下)
註:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側視圖反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
4、柱體、錐體、台體的表面積與體積
(1)幾何體的表面積為幾何體各個面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)
(3)柱體、錐體、台體的體積公式
(4)球體的表面積和體積公式:V= ; S=
4、空間點、直線、平面的位置關系
公理1:如果一條直線的兩點在一個平面內,那麼這條直線是所有的點都在這個平面內。
應用: 判斷直線是否在平面內
用符號語言表示公理1:
公理2:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線
符號:平面α和β相交,交線是a,記作α∩β=a。
符號語言:
公理2的作用:
①它是判定兩個平面相交的方法。
②它說明兩個平面的交線與兩個平面公共點之間的關系:交線必過公共點。
③它可以判斷點在直線上,即證若干個點共線的重要依據。
公理3:經過不在同一條直線上的三點,有且只有一個平面。
推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理3及其推論作用:①它是空間內確定平面的依據 ②它是證明平面重合的依據
公理4:平行於同一條直線的兩條直線互相平行
空間直線與直線之間的位置關系
① 異面直線定義:不同在任何一個平面內的兩條直線
② 異面直線性質:既不平行,又不相交。
③ 異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線
④ 異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。
求異面直線所成角步驟:
A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。 B、證明作出的角即為所求角 C、利用三角形來求角
(7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那麼這兩角相等或互補。
(8)空間直線與平面之間的位置關系
直線在平面內——有無數個公共點.
三種位置關系的符號表示:aα a∩α=A a‖α
(9)平面與平面之間的位置關系:平行——沒有公共點;α‖β
相交——有一條公共直線。α∩β=b
5、空間中的平行問題
(1)直線與平面平行的判定及其性質
線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,
那麼這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質
兩個平面平行的判定定理
(1)如果一個平面內的兩條相交直線都平行於另一個平面,那麼這兩個平面平行
(線面平行→面面平行),
(2)如果在兩個平面內,各有兩組相交直線對應平行,那麼這兩個平面平行。
(線線平行→面面平行),
(3)垂直於同一條直線的兩個平面平行,
兩個平面平行的性質定理
(1)如果兩個平面平行,那麼某一個平面內的直線與另一個平面平行。(面面平行→線面平行)
(2)如果兩個平行平面都和第三個平面相交,那麼它們的交線平行。(面面平行→線線平行)
7、空間中的垂直問題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
②線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直。
③平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。
(2)垂直關系的判定和性質定理
①線面垂直判定定理和性質定理
判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那麼這條直線垂直這個平面。
性質定理:如果兩條直線同垂直於一個平面,那麼這兩條直線平行。
②面面垂直的判定定理和性質定理
判定定理:如果一個平面經過另一個平面的一條垂線,那麼這兩個平面互相垂直。
性質定理:如果兩個平面互相垂直,那麼在一個平面內垂直於他們的交線的直線垂直於另一個平面。
9、空間角問題
(1)直線與直線所成的角
①兩平行直線所成的角:規定為。
②兩條相交直線所成的角:兩條直線相交其中不大於直角的角,叫這兩條直線所成的角。
③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大於直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規定為。 ②平面的垂線與平面所成的角:規定為。
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角。
求斜線與平面所成角的思路類似於求異面直線所成角:「一作,二證,三計算」。
在「作角」時依定義關鍵作射影,由射影定義知關鍵在於斜線上一點到面的垂線,
在解題時,注意挖掘題設中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線。
(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫二面角的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那麼這兩個平面垂直;反過來,如果兩個平面垂直,那麼所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直於棱的射線得到平面角
垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角
Ⅲ 【人教版】高中數學教材總目錄
總目錄如下:
必修一
第一章 集合
1.集合的含義與表示
2.集合的基本關系
3.集合的基本運算
3.1交集與並集
3.2全集與補集
第二章 函數
1.生活中的變數關系
2.對函數的進一步認識
2.1函數的概念
2.2函數的表示方法
2.3映射
3.函數的單調性
4.二次函數性質的再研究
4.1二次函數的圖像
4.2二次函數的性質
5.簡單的冪函數
第二章 指數函數與對數函數
1.正指數函數
2.指數擴充及其運算性質
2.1指數概念的擴充
2.2指數運算是性質
3.指數函數
3.1指數函數的概念
3.2指數函數 的圖像和性質
3.3指數函數的圖像和性質
4.對數
4.1對數及其運算
4.2換底公式
5.對數函數
5.1對數函數的概念
5.2 的圖像和性質
5.3對數函數的圖像和性質
6.指數函數、冪函數、對數函數增長的比較
第四章 函數的應用
1.函數和方程
1.1利用函數性質判定方程解的存在
1.2利用二分法求方程的近似解
2.實際問題的函數建模
2.1實際問題的函數刻畫
2.2用函數模型解決實際問題
2.3函數建模案例
必修二
第一章 立體幾何初步
1.簡單幾何體
1.1簡單旋轉體
1.2簡單多面體
2.直觀圖
3.三視圖
3.1簡單組合體的三視圖
3.2由三視圖還原成實物圖
4.空間圖形的基本關系與公理
4.1空間圖形基本關系的認識
4.2空間圖形的公理
5.平行關系
5.1平行關系的判定
5.2平行關系的性質
6.垂直關系
6.1垂直關系的判定
6.2垂直關系的性質
7.簡單幾何體的面積和體積
7.1簡單幾何體的側面積
7.2稜柱、棱錐、稜台和圓柱、圓錐、圓台的體積
7.3球的表面積和體積
第二章 解析幾何初步
1.直線和直線的方程
1.1直線的傾斜角和斜率
1.2直線的方程
1.3兩條直線的位置關系
1.4兩條直線的交點
1.5平面直接坐標系中的距離公式
2.圓和圓的方程
2.1圓的標准方程
2.2圓的一般方程
2.3直線與圓、圓與圓的位置關系
3.空間直角坐標系
3.1空間直接坐標系的建立
3.2空間直角坐標系中點的坐標
3.3空間兩點間的距離公式
必修三
第一章 統計
1.從普查到抽樣
2.抽樣方法
2.1簡單隨機抽樣
2.2分層抽樣與系統抽樣
3.統計圖表
4.數據的數字特徵
4.1平均數、中位數、眾數、極差、方差
4.2標准差
5.用樣本估計總體
5.1估計總體的分布
5.2估計總體的數字特徵
6.統計活動:結婚年齡的變化
7.相關性
8.最小二乘估計
第二章 演算法初步
1.演算法的基本思想
1.1演算法案例分析
1.2排序問題與演算法的多樣性
2.演算法框圖的基本結構及設計
2.1順序結構與選擇結構
2.2變數與賦值
2.3循環結構
3.幾種基本語句
3.1條件語句
3.2 循環語句
第三章 概率
1.隨機事件的概率
1.1頻率與概率
1.2生活中的概率
2.古典概型
2.1古典概型的特徵和概率計算公式
2.2建立概率模型
2.3互斥事件
3.模擬方法——概率的應用
必修四
第一章 三角函數
1.周期現象
2.角的概念的推廣
3.弧度制
4.正弦函數和餘弦函數的定義與誘導公式
4.1任意角的正弦函數、餘弦函數的定義
4.2單位圓與周期性
4.3單位圓與誘導公式
5.正弦函數的性質與圖像
5.1從單位圓看正弦函數的性質
5.2正弦函數的圖像
5.3正弦函數的性質
6.餘弦函數的圖像和性質
6.1餘弦函數的圖像
6.2餘弦函數的性質
7.正切函數
7.1正切函數的定義
7.2正切函數的圖像和性質
7.3正切函數的誘導公式
8.函數的圖像
9.三角函數的簡單應用
第二章 平面向量
1.從位移、速度、力到向量
1.1位移、速度和力
1.2向量的概念
2.從位移的合成到向量的加法
2.1向量的加法
2.2向量的減法
3.從速度的倍數到數乘向量
3.1數乘向量
3.2平面向量基本定理
4.平面向量的坐標
4.1平面向量的坐標表示
4.2平面向量線性運算的坐標表示
4.3向量平行的坐標表示
5.從力做的功到向量的數量積
6.平面向量數量積的坐標表示
7.向量應用舉例
7.1點到直線的距離公式
7.2向量的應用舉例
第三章 三角恆等變形
1.同角三角函數的基本關系
2.兩角和與差的三角函數
2.1兩角差的餘弦函數
2.2兩角和與差的正弦、餘弦函數
2.3兩角和與差的正切函數
3.二倍角的三角函數
必修五
第一章 數列
1.數列
1.1數列的概念
1.2數列的函數特性
2.等差數列
2.1等差數列
2.2等差數列的前n項和
3.等比數列
3.1等比數列
3.2等比數列的前n項和
4.數列在日常經濟生活中的應用
第二章 解三角形
1.正弦定理與餘弦定理
1.1正弦定理
1.2餘弦定理
2.三角形中的幾何計算
3.解三角形的實際應用舉例
第三章 不等式
1.不等關系
1.1不等關系
1.2不等關系與不等式
2.一元二次不等式
2.1一元二次不等式的解法
2.2一元二次不等式的應用
3.基本不等式
3.1基本不等式
3.2基本不等式與最大(小)值
4.簡單線性規劃
4.1二元一次不等式(組)與平面區域
4.2簡單線性規劃
4.3簡單線性規劃的應用
選修2-1
第一章 常用邏輯用語
1.命題
2.充分條件與必要條件
2.1充分條件
2.2必要條件
2.3充要條件
3.全稱量詞與存在量詞
3.1全稱量詞與全稱命題
3.2存在量詞與特稱命題
3.3全稱命題與特稱命題的否定
4.邏輯連結詞「且」「或」「非」
4.1邏輯連結詞「且」
4.2邏輯連結詞「或」
4.3邏輯連結詞「非」
第二章 空間向量與立體幾何
1.從平面向量到空間向量
2.空間向量的運算
3.向量的坐標表示和空間向量基本定理
3.1空間向量的標准正交分解與坐標表示
3.2空間向量基本定理
3.3空間向量運算的坐標表示
4.用向量討論垂直與平行
5.夾角的計算
5.1直線間的夾角
5.2平面間的夾角
5.3直線與平面的夾角
6.距離的計算
第三章圓錐曲線與方程
1.橢圓
1.1橢圓及其標准方程
1.2橢圓的簡單性質
2.拋物線
2.1拋物線及其標准方程
2.2拋物線的簡單性質
3.雙曲線
3.1雙曲線及其標准方程
3.2雙曲線的簡單性質
4.曲線與方程
4.1 曲線與方程
4.2圓錐曲線的共同特徵
4.3直線與圓錐曲線的交點
選修2-2
第一章 推理與證明
1.歸納與類比
1.1歸納推理
1.2類比推理
2.綜合法與分析法
2.1綜合法
2.2分析法
3.反證法
4.數學歸納法
第二章 變化率與導數
1.變化的快慢與變化率
2.導數的概念及其幾何意義
2.1導數的概念
2.2導數的幾何意義
3.計算導數
4.導數的四則運演算法則
4.1導數的加法與減法法則
4.2導數的乘法與除法法則
5.簡單復合函數的求導法則
第三章 導數的應用
1.函數的單調性與極值
1.1導數與函數的單調性
1.2函數的極值
2.導數在實際問題中的應用
2.1實際問題中導數的意義
2.2最大值、最小值問題
第四章 定積分
1.定積分的概念
1.1定積分的背景——面積和路程問題
1.2定積分
2.微積分基本定理
3.定積分的簡單應用
3.1平面圖形的面積
3.2簡單幾何體的體積
第五章 數系的擴充與復數的引入
1.數系的擴充與復數的引入
1.1數的概念的擴展
1.2復數的有關概念
2.復數的四則運算
2.1復數的加法與減法
2.2復數的乘法與除法
(3)高中數學必修二目錄擴展閱讀:
人教版即由人民教育出版社出版,簡稱為人教版。
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……)。
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身。
Ⅳ 高中數學目錄!
高中人教版(B)教材目錄介紹
--------------------------------------------------------------------------------
高中數學(B版)必修一
第一章 集合
1.1 集合與集合的表示方法
1.2 集合之間的關系與運算
本章小結
閱讀與欣賞
聰明在於學習,天才由於積累——自學成才的華羅庚
第二章 函數
2.1 函數
2.2 一次函數和二次函數
2.3 函數的應用(Ⅰ)
2.4 函數與方程
本章小結(1)
閱讀與欣賞
函數概念的形成與發展
第三章 基本初等函數(Ⅰ)
3.1 指數與指數函數
3.2 對數與對數函數
3.3 冪函數
3.4 函數的應用(Ⅱ)
實習作業
本章小結
閱讀與欣賞
對數的發明
對數的功績
附錄1 科學計算自由軟體——SCILAB簡介
附錄1 部分中英文詞彙對照表
後記
--------------------------------------------------------------------------------
高中數學(B版)必修二
第一章 立體幾何初步
1.1 空間幾何體
實習作業
1.2 點、線、面之間的位置關系
本章小結
閱讀與欣賞
第二章 平面解析幾何初步
2.1 平面真角坐標系中的基本公式
2.2 直線方程
2.3 圓的方程
2.4 空間直角坐標系
本章小結
閱讀與欣賞
附錄 部分中英文詞彙對照表
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)必修三
第一章 演算法初步
1.1 演算法與程序框圖
1.2 基本演算法語句
1.3 中國古代數學中的演算法案例
本章小結
閱讀與欣賞
附錄 參考程序
第二章 統計
2.1 隨機抽樣
2.2 用樣本估計總體
2.3 變數的相關性
實習作業
本章小結
閱讀與欣賞
附錄 隨機數表
第三章 概率
3.1 隨機現象
3.2 古典概型
3.3 隨機數的含義與應用
3.4 概率的應用
本章小結
閱讀與欣賞
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)必修四
第一章 基本初等函(Ⅱ)
1.1 任意角的概念與弧度制
1.2 任意角的三角函數
1.3 三角函數的圖象與性質
數學建模活動
本章小結
閱讀與欣賞
第二章 平面向量
2.1 向量的線性運算
2.2 向量的分解與向量的坐標運算
2.3 平面向量的數量積
2.4 向量的應用
本章小結
閱讀與欣賞
第三章 三角恆等變換
3.1 和角公式
3.2 倍角公式和半形公式
3.3 三角函數的積化和差與和差化積
本章小結
閱讀與欣賞
附錄 部分中英文詞彙對照表
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)必修五
第一章 解直角三角形
1.1 正弦定理和餘弦定理
1.2 應用舉例
實習作業
本章小結
閱讀與欣賞
第二章 數列
2.1 數列
2.2 等差數列
2.3 等比數列
本章小結
閱讀與欣賞
第三章 不等式
3.1 不等關系與不等式
3.2 均值不等式
3.3 一元二次不等式及其解法
3.4 不等式的實際應用
3.5 二元一次不等式(組)與簡單線性規劃問題
本章小結
附錄 部分中英文詞彙對照表
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)選修1-1
第一章 常用邏輯用語
1.1 命題與量詞
1.2 基本邏輯聯結詞
1.3 充分條件、必要條件與命題的四種形式
本章小結
閱讀與欣賞
第二章 圓錐曲線與方程
2.1 橢圓
2.2 雙曲線
2.3 拋物線
本章小結
閱讀與欣賞
第三章 導數及其應用
3.1 導數
3.2 導數的運算
3.3 導數的應用
本章小結
閱讀與欣賞
附錄 部分中英文詞彙對照表
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)選修1-2
第一章 統計案例
第二章 推理與證明
第三章 數系的擴充與復數的引入
第四章 框圖
高中數學(B版)選修4-5
第一章 不等式的基本性質和證明的基本方法
1.1 不等式的基本性質和一元二次不等式的解法
1.2 基本不等式
1.3 絕對值不等式的解法
1.4 絕對值的三角不等式
1.5 不等式證明的基本方法
本章小結
第二章 柯西不等式與排序不等式及其應用
2.1 柯西不等式
2.2 排序不等式
2.3 平均值不等式(選學)
2.4 最大值與最小值問題,優化的數學模型
本章小結
閱讀與欣賞
第三章 數學歸納法與貝努利不等式
3.1 數學歸納法原理
3.2 用數學歸納法證明不等式,貝努利不等式
本章小結
閱讀與欣賞
附錄 部分中英文詞彙對照表
後記
Ⅳ 高中數學必修三的目錄
第一章抄空間幾何體
1.1
空間幾何體的結構
1.2空間幾何體的三視圖和直觀圖
閱讀與思考畫法幾何與蒙日
1.3空間幾何體的表面積與體積
探究與發現祖暅原理與柱體、椎體、球體的體積
實習作業
小結
復習參考題
第二章點、直線、平面之間的位置關系
2.1空間點、直線、平面之間的位置關系
2.2直線、平面平行的判定及其性質
2.3直線、平面垂直的判定及其性質
閱讀與思考歐幾里得《原本》與公理化方法
小結
復習參考題
第三章直線與方程
3.1直線的傾斜角與斜率
探究與發現魔術師的地毯
3.2直線的方程
3.3直線的交點坐標與距離公式
閱讀與思考笛卡兒與解析幾何
小結
復習參考題
第四章圓與方程
4.1圓的方程
閱讀與思考坐標法與機器證明
4.2直線、圓的位置關系
4.3空間直角坐標系
信息技術應用用《幾何畫板》探究點的軌跡:圓
小結
復習參考題
Ⅵ 高中數學必修2和3的目錄
目錄太簡略了。。找來詳細點的。。
數學 必修2
1. 立體幾何初步
(約18課時)
(1)空間幾何體
①利用實物模型、計算機軟體觀察大量空間圖形,認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。
②能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)製作模型,會用斜二側法畫出它們的直觀圖。
③通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。
④完成實習作業,如畫出某些建築的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求)。
⑤了解球、稜柱、棱錐、台的表面積和體積的計算公式(不要求記憶公式)。
(2)點、線、面之間的位置關系
①藉助長方體模型,在直觀認識和理解空間點、線、面的位置關系的基礎上,抽象出空間線、面位置關系的定義,並了解如下可以作為推理依據的公理和定理。
◆公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內。
◆公理2:過不在一條直線上的三點,有且只有一個平面。
◆公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。
◆公理4:平行於同一條直線的兩條直線平行。
◆定理:空間中如果兩個角的兩條邊分別對應平行,那麼這兩個角相等或互補。
②以立體幾何的上述定義、公理和定理為出發點,通過直觀感知、操作確認、思辨論證,認識和理解空間中線面平行、垂直的有關性質與判定。
操作確認,歸納出以下判定定理。
◆平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。
◆一個平面內的兩條相交直線與另一個平面平行,則這兩個平面平行。
◆一條直線與一個平面內的兩條相交直線垂直,則該直線與此平面垂直。
◆一個平面過另一個平面的垂線,則兩個平面垂直。
操作確認,歸納出以下性質定理,並加以證明。
◆一條直線與一個平面平行,則過該直線的任一個平面與此平面的交線與該直線平行。
◆兩個平面平行,則任意一個平面與這兩個平面相交所得的交線相互平行。
◆垂直於同一個平面的兩條直線平行。
◆兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。
③能運用已獲得的結論證明一些空間位置關系的簡單命題。
2. 平面解析幾何初步
(約18課時)
(1)直線與方程
①在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。
②理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。
③能根據斜率判定兩條直線平行或垂直。
④根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數的關系。
⑤能用解方程組的方法求兩直線的交點坐標。
⑥探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
①回顧確定圓的幾何要素,在平面直角坐標系中,探索並掌握圓的標准方程與一般方程。
②能根據給定直線、圓的方程,判斷直線與圓、圓與圓的位置關系。
③能用直線和圓的方程解決一些簡單的問題。
(3)在平面解析幾何初步的學習過程中,體會用代數方法處理幾何問題的思想。
(4)空間直角坐標系
①通過具體情境,感受建立空間直角坐標系的必要性,了解空間直角坐標系,會用空間直角坐標系刻畫點的位置。
②通過表示特殊長方體(所有棱分別與坐標軸平行)頂點的坐標,探索並得出空間兩點間的距離公式。
解析幾何
1、直線
兩點距離、定比分點 直線方程
|AB|=| |
|P1P2|=
y-y1=k(x-x1)
y=kx+b
2.圓錐曲線
圓 橢 圓
標准方程(x-a)2+(y-b)2=r2
圓心為(a,b),半徑為R
一般方程x2+y2+Dx+Ey+F=0
其中圓心為( ),
半徑r
(1)用圓心到直線的距離d和圓的半徑r判斷或用判別式判斷直線與圓的位置關系
(2)兩圓的位置關系用圓心距d與半徑和與差判斷 橢圓
雙曲線
焦點F1(-c,0),F2(c,0)
(a,b>0,b2=c2-a2)
離心率
准線方程
焦半徑|MF1|=ex0+a,|MF2|=ex0-a 拋物線y2=2px(p>0)
焦點F
准線方程
坐標軸的平移
這里(h,k)是新坐標系的原點在原坐標系中的坐標
[編輯本段]數學 必修3
1. 演算法初步
(約12課時)
(1)演算法的含義、程序框圖
①通過對解決具體問題過程與步驟的分析(如二元一次方程組求解等問題),體會演算法的思想,了解演算法的含義。
②通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中(如三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結構:順序、條件分支、循環。
(2)基本演算法語句:經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本演算法語句——輸入語句、輸出語句、賦值語句、條件語句、循環語句,進一步體會演算法的基本思想。
(3)通過閱讀中國古代數學中的演算法案例,體會中國古代數學對世界數學發展的貢獻。
2. 統計
(約16課時)
(1)隨機抽樣
①能從現實生活或其他學科中提出具有一定價值的統計問題。
②結合具體的實際問題情境,理解隨機抽樣的必要性和重要性。
③在參與解決統計問題的過程中,學會用簡單隨機抽樣方法從總體中抽取樣本;通過對實例的分析,了解分層抽樣和系統抽樣方法。
④能通過試驗、查閱資料、設計調查問卷等方法收集數據。
(2)用樣本估計總體
①通過實例體會分布的意義和作用,在表示樣本數據的過程中,學會列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會它們各自的特點。
②通過實例理解樣本數據標准差的意義和作用,學會計算數據標准差。
③能根據實際問題的需求合理地選取樣本,從樣本數據中提取基本的數字特徵(如平均數、標准差),並作出合理的解釋。
④在解決統計問題的過程中,進一步體會用樣本估計總體的思想,會用樣本的頻率分布估計總體分布,會用樣本的基本數字特徵估計總體的基本數字特徵;初步體會樣本頻率分布和數字特徵的隨機性。
⑤會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題;能通過對數據的分析為合理的決策提供一些依據,認識統計的作用,體會統計思維與確定性思維的差異。
⑥形成對數據處理過程進行初步評價的意識。
(3)變數的相關性
①通過收集現實問題中兩個有關聯變數的數據作出散點圖,並利用散點圖直觀認識變數間的相關關系。
②經歷用不同估算方法描述兩個變數線性相關的過程。知道最小二乘法的思想,能根據給出的線性回歸方程系數公式建立線性回歸方程(參見例2)。
3. 概率
(約8課時)
(1)在具體情境中,了解隨機事件發生的不確定性和頻率的穩定性,進一步了解概率的意義以及頻率與概率的區別。
(2)通過實例,了解兩個互斥事件的概率加法公式。
(3)通過實例,理解古典概型及其概率計算公式,會用列舉法計算一些隨機事件所含的基本事件數及事件發生的概率。
(4)了解隨機數的意義,能運用模擬方法(包括計算器產生隨機數來進行模擬)估計概率,初步體會幾何概型的意義(參見例3)。
(5)通過閱讀材料,了解人類認識隨機現象的過程。
~希望能夠幫助你 。。。
Ⅶ 北師大版高中數學目錄
北師大版高中數學必修一
· 第一章 集合
· 1、集合的基本關系
· 2、集合的含義與表示
· 3、集合的基本運算
· 第二 章函數
· 1、生活中的變數關系
· 2、對函數的進一步認識
· 3、函數的單調性
· 4、二次函數性質的再研究
· 5、簡單的冪函數
· 第三章 指數函數和對數函數
· 1、正整數指數函數
· 2、指數概念的擴充
· 3、指數函數
· 4、對數
· 5、對數函數
· 6、指數函數、冪函數、對數函數增
· 第四章 函數應用
· 1、函數與方程
· 2、實際問題的函數建模
北師大版高中數學必修二
· 第一章 立體幾何初步
· 1、簡單幾何體
· 2、三視圖
· 3、直觀圖
· 4、空間圖形的基本關系與公理
· 5、平行關系
· 6、垂直關系
· 7、簡單幾何體的面積和體積
· 8、面積公式和體積公式的簡單應用
· 第二章 解析幾何初步
· 1、直線與直線的方程
· 2、圓與圓的方程
· 3、空間直角坐標系
北師大版高中數學必修三
· 第一章 統計
· 1、統計活動:隨機選取數字
· 2、從普查到抽樣
· 3、抽樣方法
· 4、統計圖表
· 5、數據的數字特徵
· 6、用樣本估計總體
· 7、統計活動:結婚年齡的變化
· 8、相關性
· 9、最小二乘法
· 第二章 演算法初步
· 1、演算法的基本思想
· 2、演算法的基本結構及設計
· 3、排序問題
· 4、幾種基本語句
· 第三章 概率
· 1、隨機事件的概率
· 2、古典概型
· 3、模擬方法――概率的應用
北師大版高中數學必修四
· 第一章 三角函數
· 1、周期現象與周期函數
· 2、角的概念的推廣
· 3、弧度制
· 4、正弦函數
· 5、餘弦函數
· 6、正切函數
· 7、函數的圖像
· 8、同角三角函數的基本關系
· 第二章 平面向量
· 1、從位移、速度、力到向量
· 2、從位移的合成到向量的加法
· 3、從速度的倍數到數乘向量
· 4、平面向量的坐標
· 5、從力做的功到向量的數量積
· 6、平面向量數量積的坐標表示
· 7、向量應用舉例
· 第三章 三角恆等變形
· 1、兩角和與差的三角函數
· 2、二倍角的正弦、餘弦和正切
· 3、半形的三角函數
· 4、三角函數的和差化積與積化和差
· 5、三角函數的簡單應用
北師大版高中數學必修五
· 第一章 數列
· 1、數列的概念
· 2、數列的函數特性
· 3、等差數列
· 4、等差數列的前n項和
· 5、等比數列
· 6、等比數列的前n項和
· 7、數列在日常經濟生活中的應用
· 第二章 解三角形
· 1、正弦定理與餘弦定理正弦定理
· 2、正弦定理
· 3、餘弦定理
· 4、三角形中的幾何計算
· 5、解三角形的實際應用舉例
· 第三章 不等式
· 1、不等關系
· 1.1、不等式關系
· 1.2、比較大小
2,一元二次不等式
· 2.1、一元二次不等式的解法
· 2.2、一元二次不等式的應用
· 3、基本不等式
3.1 基本不等式
· 3.2、基本不等式與最大(小)值
4 線性規劃
· 4.1、二元一次不等式(組)與平面區
· 4.2、簡單線性規劃
· 4.3、簡單線性規劃的應用
選修1-1
第一章 常用邏輯用語
1命題
2充分條件與必要條件
2.1充分條件
2.2必要條件
2.3充要條件
3全稱量詞與存在量詞
3.1全稱量詞與全稱命題
3.2存在量詞與特稱命題
3.3全稱命題與特稱命題的否定
4邏輯聯結詞「且』』『『或…『非
4.1邏輯聯結詞「且
4.2邏輯聯結詞「或
4.3邏輯聯結詞『『非
第二章圓錐曲線與方程
1橢圓
1.1橢圓及其標准方程
1.2橢圓的簡單性質
2拋物線
2.1拋物線及其標准方程
2.2拋物線的簡單性質
3 曲線
3.1雙曲線及其標准方程
3.2雙曲線的簡單性質
第三章變化率與導數
1變化的快慢與變化率
2導數的概念及其幾何意義
2.1導數的概念
2.2導數的幾何意義
3計算導數
4導數的四則運演算法則
4.1導數的加法與減法法則
4.2導數的乘法與除法法則
第四章導數應用
4.1導數的加法與減法法則
4.2導數的乘法與除法法則
選修1-2
第一章 統計案例
1 回歸分析
1.1 回歸分析
1.2相關系數
1.3可線性化的回歸分析
2獨立性檢驗
2.1條件概率與獨立事件
2.2 獨立性檢驗
2.3獨立性檢驗的基本思想
2.4獨立性檢驗的應用
第二章 框圖
1 流程圖
2結構圖
第三章 推理與證明
1 歸納與類比
1.1歸納推理
1.2類比推理
2 數學證明
3 綜合法與分析法
3.1綜合法
3.2分析法
4反證法
第四章 數系的擴充與復數的引入
1 數系的擴充與復數的引入
1.1數的概念的擴充
1.2復數的有關概念
2復數的四則運算
2.1復數的加法與減法
2.2復數的乘法與除法
選修2-1
第一章 常用邏輯用語
1 命題
2 充分條件與必要條件
3 全稱量詞與存在量詞
4 邏輯聯結詞「且」「或」「非」&…&…(
第二章 空間向量與立體幾何
1 從平面向量到空間向量
2 空間向量的運算
3 向量的坐標表示和空間向量基本定理
4 用向量討論垂直與平行
5 夾角的計算
6 距離的計算
第三章 圓錐曲線與方程
1 橢圓
1.1 橢圓及其標准方程
1.2 橢圓的簡單性質
2 拋物線
2.1 拋物線及其標准方程
2.2 拋物線的簡單性質
3 雙曲線
3.1 雙曲線及其標准方程
3.2 雙曲線的簡單性質
4 曲線與方程
4.1 曲線與方程
4.2 圓錐曲線的共同特徵
4.3 直線與圓錐曲線的交點
選修2-2
第一章 推理與證明
1 歸納與類比
2 綜合法與分析法
3 反證法
4 數學歸納法
第二章 變化率與導數
1 變化的快慢與變化率
2 導數的概念及其幾何意義
2.1導數的概念
2.2導數的幾何意義
3 計算導數
4 導數的四則運演算法則
4.1導數的加法與減法法則
4.2導數的乘法與除法法則
5 簡單復合函數的求導法則
第三章 導數應用
1 函數的單調性與極值
1.1導數與函數的單調性
1.2函數的極值
2 導數在實際問題中的應用
2.1實際問題中導數的意義
2.2最大、最小值問題
第四章 定積分
1 定積分的概念
1.1定積分背景-面積和路程問題
1.2定積分
2 微積分基本定理
3 定積分的簡單應用
3.1平面圖形的面積
3.2簡單幾何體的體積
第五章 數系的擴充與復數的引入
1 數系的擴充與復數的引入
1.1數的概念的擴展
1.2復數的有關概念
2 復數的四則運算
2.1復數的加法與減法
2.2復數的乘法與除法
選修2-3
第一章 計數原理
1.分類加法計數原理和分步乘法計數原理
1.1 分類加法計數原理
1.2 分步乘法計數原理
2.排列
2.1 排列的原理
2.2 排列數公式
3.組合
3.1 組合及組合數公式
3.2 組合數的兩個性質
4.簡單計數問題
5.二項式定理
5.1 二項式定理
5.2 二項式系數的性質
第二章 概率
1.離散型隨機變數及其分布列
2.超幾何分布
3.條件概率與獨立事件
4.二項分布
5.離散型隨機變數均值與方差
5.1 離散型隨機變數均值與方差(一)
5.2 離散型隨機變數均值與方差(二)
6.正態分布
6.1 連續型隨機變數
6.2 正態分布
第三章 統計案例
1.回歸分析
1.1 回歸分析
1.2 相關系數
1.3 可線性化的回歸分析
2.獨立性檢驗
2.1 獨立性檢驗
2.2 獨立性檢驗的基本思想
2.3 獨立性檢驗的應用
選修3-1
第一章 數學發展概述
第二章 數與符號
第三章 幾何學發展史
第四章 數學史上的豐碑----微積分
第五章 無限
第六章 數學名題賞析
選修3-2
選修3-3
第一章 球面的基本性質
1.直線、平面與球面的我誒制關系
2.球面直線與球面距離
第二章 球面上的三角形
1.球面三角形
2.球面直線與球面距離
3.球面三角形的邊角關系
4.球面三角形的面積
第三章 歐拉公式與非歐幾何
1.球面上的歐拉公式
2.簡單多面體的歐拉公式
3.歐氏幾何與球面幾何的比較
選修4-1
第一章 直線、多邊形、圓
1.全等與相似
2.圓與直線
3.圓與四邊形
第二章 圓錐曲線
1.截面欣賞
2.直線與球、平面與球的位置關系
3.柱面與平面的截面
4.平面截圓錐面
5.圓錐曲線的幾何性質
選修4-2
第一章 平面向量與二階方陣
1 平面向量及向量的運算
2 向量的坐標表示及直線的向量方程
3 二階方陣與平面向量的乘法
第二章 幾何變換與矩陣
1 幾種特殊的矩陣變換
2 矩陣變換的性質
第三章 變換的合成與矩陣乘法
1 變換的合成與矩陣乘法
2 矩陣乘法的性質
第四章 逆變換與逆矩陣
1 逆變換與逆矩陣
2 初等變換與逆矩陣
3 二階行列式與逆矩陣
4 可逆矩陣與線性方程組
第五章 矩陣的特徵值與特徵向量
1 矩陣變換的特徵值與特徵向量
2 特徵向量在生態模型中的簡單應用
選修4-3
選修4-4
第一章 坐標系
1 平面直角坐標系
2 極坐標系
3 柱坐標系和球坐標系
第二章 參數方程
1 參數方程的概念
2 直線和圓錐曲線的參數方程
3 參數方程化成普通方程
4 平擺線和漸開線
選修4-5
第一章不等關系與基本不等式
l不等式的性質
2含有絕對值的不等式
3平均值不等式
4不等式的證明
5不等式的應用
第二章幾個重妻的不等式
1柯西不等式
2排序不等式
3數學歸納法與貝努利不等式
選修4-6
第一章 帶余除法與書的進位制
1、整除與帶余除法
2、二進制
第二章 可約性
1、素數與合數
2、最大公因數與輾轉相除法
3、算術基本定理及其應用
4、不定方程
第三章 同餘
1、同餘及其應用
2、歐拉定理
還在更新。
Ⅷ 人教版高中數學目錄
高中人教版(B)教材目錄介紹
--------------------------------------------------------------------------------
高中數學(B版)必修一
第一章 集合
1.1 集合與集合的表示方法
1.2 集合之間的關系與運算
本章小結
閱讀與欣賞
聰明在於學習,天才由於積累——自學成才的華羅庚
第二章 函數
2.1 函數
2.2 一次函數和二次函數
2.3 函數的應用(Ⅰ)
2.4 函數與方程
本章小結(1)
閱讀與欣賞
函數概念的形成與發展
第三章 基本初等函數(Ⅰ)
3.1 指數與指數函數
3.2 對數與對數函數
3.3 冪函數
3.4 函數的應用(Ⅱ)
實習作業
本章小結
閱讀與欣賞
對數的發明
對數的功績
附錄1 科學計算自由軟體——SCILAB簡介
附錄1 部分中英文詞彙對照表
後記
--------------------------------------------------------------------------------
高中數學(B版)必修二
第一章 立體幾何初步
1.1 空間幾何體
實習作業
1.2 點、線、面之間的位置關系
本章小結
閱讀與欣賞
第二章 平面解析幾何初步
2.1 平面真角坐標系中的基本公式
2.2 直線方程
2.3 圓的方程
2.4 空間直角坐標系
本章小結
閱讀與欣賞
附錄 部分中英文詞彙對照表
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)必修三
第一章 演算法初步
1.1 演算法與程序框圖
1.2 基本演算法語句
1.3 中國古代數學中的演算法案例
本章小結
閱讀與欣賞
附錄 參考程序
第二章 統計
2.1 隨機抽樣
2.2 用樣本估計總體
2.3 變數的相關性
實習作業
本章小結
閱讀與欣賞
附錄 隨機數表
第三章 概率
3.1 隨機現象
3.2 古典概型
3.3 隨機數的含義與應用
3.4 概率的應用
本章小結
閱讀與欣賞
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)必修四
第一章 基本初等函(Ⅱ)
1.1 任意角的概念與弧度制
1.2 任意角的三角函數
1.3 三角函數的圖象與性質
數學建模活動
本章小結
閱讀與欣賞
第二章 平面向量
2.1 向量的線性運算
2.2 向量的分解與向量的坐標運算
2.3 平面向量的數量積
2.4 向量的應用
本章小結
閱讀與欣賞
第三章 三角恆等變換
3.1 和角公式
3.2 倍角公式和半形公式
3.3 三角函數的積化和差與和差化積
本章小結
閱讀與欣賞
附錄 部分中英文詞彙對照表
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)必修五
第一章 解直角三角形
1.1 正弦定理和餘弦定理
1.2 應用舉例
實習作業
本章小結
閱讀與欣賞
第二章 數列
2.1 數列
2.2 等差數列
2.3 等比數列
本章小結
閱讀與欣賞
第三章 不等式
3.1 不等關系與不等式
3.2 均值不等式
3.3 一元二次不等式及其解法
3.4 不等式的實際應用
3.5 二元一次不等式(組)與簡單線性規劃問題
本章小結
附錄 部分中英文詞彙對照表
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)選修1-1
第一章 常用邏輯用語
1.1 命題與量詞
1.2 基本邏輯聯結詞
1.3 充分條件、必要條件與命題的四種形式
本章小結
閱讀與欣賞
第二章 圓錐曲線與方程
2.1 橢圓
2.2 雙曲線
2.3 拋物線
本章小結
閱讀與欣賞
第三章 導數及其應用
3.1 導數
3.2 導數的運算
3.3 導數的應用
本章小結
閱讀與欣賞
附錄 部分中英文詞彙對照表
後記
?/P>
--------------------------------------------------------------------------------
高中數學(B版)選修1-2
第一章 統計案例
第二章 推理與證明
第三章 數系的擴充與復數的引入
第四章 框圖
高中數學(B版)選修4-5
第一章 不等式的基本性質和證明的基本方法
1.1 不等式的基本性質和一元二次不等式的解法
1.2 基本不等式
1.3 絕對值不等式的解法
1.4 絕對值的三角不等式
1.5 不等式證明的基本方法
本章小結
第二章 柯西不等式與排序不等式及其應用
2.1 柯西不等式
2.2 排序不等式
2.3 平均值不等式(選學)
2.4 最大值與最小值問題,優化的數學模型
本章小結
閱讀與欣賞
第三章 數學歸納法與貝努利不等式
3.1 數學歸納法原理
3.2 用數學歸納法證明不等式,貝努利不等式
本章小結
閱讀與欣賞
附錄 部分中英文詞彙對照表
後記