當前位置:首頁 » 語數英語 » 數學的起源

數學的起源

發布時間: 2020-11-20 04:11:15

⑴ 古希臘數學的起源

其實這個問題太廣泛了,
古希臘數學中的很多思想都被應用到了後來的數學發展中,如芝諾的幾個悖論,幾乎引領了整個數學一半歷史的發展,至今大家都在津津樂道於飛矢不動悖論和阿克琉斯追不上烏龜悖論等一些有趣的數學現象,而曲線圖形面積的求取在古希臘採取了多種的方法,畢達哥拉斯學派創建的割補法對後世影響至深,後來的很多問題中應用了割補的思想,乃至後來的積分無窮小、多邊形逼近圓等諸多的數學問題都從中獲益。
其實古希臘數學給人更多的是一種思維的啟示,具體的公式定理不太多,從根號二引發的第一次數學危機開始,古希臘數學漸漸走下神壇,人類數學更多的開始向西歐偏斜,但是不可否認,古希臘數學帶來的深遠影響是綿延至今的

⑵ 數學起源於哪一年

數學起源於公元前4世紀。
公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。
從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。
公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」

⑶ 數學起源於什麼

數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……).[1]
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標.雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用.
具體的,有用來探索由數學核心至其他領域上之間的連結的子領域:由邏輯、集合論(數學基礎)、至不同科學的經驗上的數學(應用數學)、以較近代的對於不確定性的研究(混沌、模糊數學)。
就縱度而言,在數學各自領域上的探索亦越發深入。
定義
亞里士多德把數學定義為「數量科學」,這個定義直到18世紀。從19世紀開始,數學研究越來越嚴格,開始涉及與數量和量度無明確關系的群論和投影幾何等抽象主題,數學家和哲學家開始提出各種新的定義。這些定義中的一些強調了大量數學的演繹性質,一些強調了它的抽象性,一些強調數學中的某些話題。即使在專業人士中,對數學的定義也沒有達成共識。數學是否是藝術或科學,甚至沒有一致意見。[8]許多專業數學家對數學的定義不感興趣,或者認為它是不可定義的。有些只是說,「數學是數學家做的。」
數學定義的三個主要類型被稱為邏輯學家,直覺主義者和形式主義者,每個都反映了不同的哲學思想學派。都有嚴重的問題,沒有人普遍接受,沒有和解似乎是可行的。
數學邏輯的早期定義是本傑明·皮爾士(Benjamin Peirce)的「得出必要結論的科學」(1870)。在Principia Mathematica,Bertrand Russell和Alfred North Whitehead提出了被稱為邏輯主義的哲學程序,並試圖證明所有的數學概念,陳述和原則都可以用符號邏輯來定義和證明。數學的邏輯學定義是羅素的「所有數學是符號邏輯」(1903)。
直覺主義定義,從數學家L.E.J. Brouwer,識別具有某些精神現象的數學。直覺主義定義的一個例子是「數學是一個接著一個進行構造的心理活動」。直觀主義的特點是它拒絕根據其他定義認為有效的一些數學思想。特別是,雖然其他數學哲學允許可以被證明存在的對象,即使它們不能被構造,但直覺主義只允許可以實際構建的數學對象。
正式主義定義用其符號和操作規則來確定數學。 Haskell Curry將數學簡單地定義為「正式系統的科學」。[33]正式系統是一組符號,或令牌,還有一些規則告訴令牌如何組合成公式。在正式系統中,公理一詞具有特殊意義,與「不言而喻的真理」的普通含義不同。在正式系統中,公理是包含在給定的正式系統中的令牌的組合,而不需要使用系統的規則導出。[2]

⑷ 數學的由來是

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。

代數學可以說是最為人們廣泛接受的「數學」。可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一。幾何學則是最早開始被人們研究的數學分支。

直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起。從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程,而其後更發展出更加精微的微積分。

(4)數學的起源擴展閱讀

數學的演進大約可以看成是抽象化的持續發展,或是題材的延展.而東西方文化也採用了不同的角度,歐洲文明發展出來幾何學,而中國則發展出算術。第一個被抽象化的概念大概是數字(中國的算籌),其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。

除了認知到如何去數實際物件的數量,史前的人類亦了解如何去數抽象概念的數量,如時間—日、季節和年。算術(加減乘除)也自然而然地產生了。

更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加人使用的奇普,歷史上曾有過許多各異的記數系統。

古時,數學內的主要原理是為了研究天文,土地糧食作物的合理分配,稅務和貿易等相關的計算。數學也就是為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的,這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。

⑸ 數學起源

1,什麼是數學?
數學本身是一個歷史的概念,數學的內涵隨著時代的變化而變化,給數學下一個一勞永逸的定義是不可能的。我們在這里就從歷史的角度來談談「什麼是數學」這個問題。
公元前6世紀前,數學主要是關於「數」的研究。這一時期在古埃及、巴比倫、印度與中國等地區發展起來的數學,主要是計數、初等算術與演算法,幾何學則可以看作是應用算術。從公元前6世紀開始,希臘數學的興起,突出了對「形」的研究。數學於是成為了關於數與形的研究。
公元前4世紀的希臘哲學家亞里士多德將數學定義為「數學是量的科學。」(其中「量」的涵義是模糊的,不能單純理解為「數量」。)
直到16世紀,英國哲學家培根將數學分為「純粹數學」與「混合數學」。在17世紀,笛卡兒認為:「凡是以研究順序和度量為目的科學都與數學有關。」在19世紀,根據恩格斯的論述, 數學可以定義為:「數學是研究現實世界的空間形式與數量關系的科學。」
從20世紀80年代開始,學者們將數學簡單的定義為關於「模式」的科學:「數學這個領域已被稱為模式的科學, 其目的是要揭示人們從自然界和數學本身的抽象世界中所觀察到的結構和對稱性。」

二.數與形的概念的產生
人類在蒙昧時代就已具有識別事物多寡的能力。原始人在採集、狩獵等生產活動中首先注意到一隻羊與許多羊、一頭狼與整群狼在數量上的差異。通過一隻羊與許多羊、一頭狼與整群狼的比較,就逐漸看到了一隻羊、一頭狼、一條魚、一棵樹等等之間存在著某種共通的東西(即它們的單位性)。當對數的認識變得越來越明確時,人們感到有必要以某種方式來表達事物的這一屬性,於是導致了記數。

古代的記數方法:
1. 手指計數:利用兩只手的十個手指。亞里士多德指出:十進制的廣泛採用,
只不過是我們絕大多數人生來具有10個手指這一事實的結果。
2. 石子記數:在地上擺小石子,但記數的石子堆很難長久保存。
3. 結繩記數:在一根繩子上打結來表示事物的多少。比如今天獵到五頭羊,就
以在繩子上打五個結來表示;約定三天後再見面,就在繩子上打三個結,過一天解一個結;等等。
秘魯的印加族人(印第安人中的一部分)古時(公元前1500年前)每收進一捆莊稼,就在繩上打個結,用來記錄收獲的多少。
中國古代文獻《周易 系辭下》有「上古結繩而治」之說。「結繩而治」即結繩記數或結繩記事。
結繩記數這種方法,不但在遠古時候使用,而且一直在某些民族中沿用下來。宋朝人在一本書中說:「韃靼無文字,每調發軍馬,即結草為約,使人傳達,急於星火。」這是用結草來調發軍馬,傳達要調的人數。
其他如藏族、彝族等,雖都有文字,但在一般不識字的人中間都還長期使用這種方法。中央民族大學就收藏著一副高山族的結繩,由兩條繩子組成:每條上有兩個結,再把兩條繩結在一起。
4. 刻痕記數:1937年在維斯托尼斯(摩拉維亞)發現一根40萬年前的幼狼前
肢骨,7英寸長,上面有55道很深的刻痕。這是已發現的用刻痕方法計數的最早資料。直到今天,在歐、亞、非大陸的某些地方,仍然有一些牧人用在棒上刻痕的方法來計算他們的牲畜。

直到距今大約五千年前,終於出現了書寫記數以及相應的記數系統。我們介紹幾種古老文明的早期記數系統。(按時代順序)
1. 古埃及的象形數字(公元前3400年左右)
2. 巴比倫楔形文字(公元前2400年左右)
3. 中國甲骨文數字(公元前1600年左右)
4. 希臘阿提卡數字(公元前500年左右)
5. 中國籌算數碼(公元前500年左右)
6. 印度婆羅門數字(公元前300年左右)
7. 瑪雅數字(?)

而我們現代廣泛使用的是阿拉伯數字。其實,這些阿拉伯數字並不是阿拉伯人發明創造的,而是發源於古印度,後來被阿拉伯人掌握、改進,並傳到了西方,西方人便將這些數字稱為阿拉伯數字。以後,以訛傳訛,世界各地都認同了這個說法。

與數的概念形成一樣,人類最初的幾何知識也是他們從對形的直覺中萌發出來的,例如,不同種族的人都注意到了圓月和挺拔的松樹在形象上的區別。幾何學便是建立在對這類從自然界提取出來的「形」的總結的基礎之上。例如,一個平面只不過是一片平地的表面,而一條直線則是拉緊了的一段繩子,來自希臘文的英文Hypotenuse(斜邊、弦)原先的意思就是「拉緊」。同樣,三角形、圓、正方形、長方形等一系列幾何形式的概念也來自於人們的觀察和實踐。
在不同的地區,幾何學的這種實踐來源方向不盡相同。
1. 古埃及幾何學:正如古羅馬歷史學家希羅多德所指出的,埃及的幾何學是「尼
羅河的饋贈」。一年一度的尼羅河洪水沖毀了某個人的土地,那麼他就必須向
法老報告所受的損失。法老會派專人來測量所失去的土地,再按相應的比例減稅。這樣一來,幾何學就產生並發展起來了。這類專門負責測量事物的人有專門的名稱,叫做「司繩」。
2. 巴比倫人的幾何學:也是源於實際的測量,它的重要特徵是其算術性質,至
少在公元前1600年,他們就已熟悉長方形、直角三角形和等腰三角形和某些梯形的面積計算。
3. 古印度幾何學:起源與宗教實踐密切相關,公元前8世紀至5世紀形成的所
謂「繩法經」,便是關於祭壇與寺廟建造中的幾何問題及其求解法則的記載。
4. 古代中國幾何學:起源更多地與天文觀測相聯系。中國最早的數學經典《周
髀算經》(至晚在公元前2世紀成書)事實上是一部討論西周初年天文測量中所用數學方法的著作

⑹ 數學的來歷

大約在300萬年前,處於原始社會的人類用在繩子上打結的方法來記數,並以繩結的大小來表示野獸的大小。數的概念就是這樣逐漸發展起來的。在距今約五六千年前,古埃及人較早地學會了農業生產。尼羅河每年7月定期泛濫,11月洪水逐漸減退。

當時古埃及的農業制度,是國王分配同樣大小的正方形土地給每一個人,耕種的人每年提取收獲的一部分交租。如果洪水沖垮了他們所耕種的土地,他們可以報告國王,國王就派人前來調查並將損失的那一部分測量出來,這樣,他們可以相應地少交一些租。

這種對於土地的測量,最終產生了幾何學。實際上,幾何學本來就是「土地測量」的意思。數學就是從「結繩記數」和「土地測量」開始的。距今兩千年前,在歐洲東南部生活的古希臘人,繼承和發展了這些數學知識,並將數學發展成為一門科學。

古希臘文明毀滅後,阿拉伯人將他們的文化保存下來並加以發展,後來又傳回歐洲,數學重新得到繁榮,並最終導致了近代數學的創立。

(6)數學的起源擴展閱讀:

在中國古代,數學叫作算術,又稱算學,最後才改為數學。中國古代的算術是六藝之一(六藝中稱為「數」)。

數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題。從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分。其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見。從那時開始,其發展便持續不斷地有小幅度的進展。但當時的代數學和幾何學長久以來仍處於獨立的狀態。

現今數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展。數學家也研究純數學,也就是數學本身,而不以任何實際應用為目標。雖然有許多工作以研究純數學為開端,但之後也許會發現合適的應用。

⑺ 數學的起源

數學小故事:數學的起源:數學是一門最古老的學科,它的起源可以上溯到一萬專多年以前。但是,公元1000年以前的屬資料留存下來的極少。迄今所知,只有在古代埃及和巴比倫發現了比較系統的數學文獻。
遠在1 萬5千年前人類就已經能相當逼真地描繪出人和動物的形象。這是萌發圖形意識的最早證據。後來就逐漸開始了對圓形和直線形的追求,因而成為數學圖形的最早的原型。在日常生活和生產實踐中又逐漸產生了計數意識和計數系統,人類摸索過多種記數方法,有開始的結繩記數,用石塊記數,語言點數進一步用符號,逐步發展到今天我們所用的數字。圖形意識和計數意識發展到一定程度,又產生了度量意識。
這一系列的發展演變逐漸形成了今天我們所熟悉的完整的數學這一門學科,它包括算術、幾何、代數、三角、微積分、統計和概率(其實它一開始是人們為了鑽研賭博而來的呢)……等等各個分支,而且還在不斷發展下去。
看這就是數學的起源,你們知道嗎?

⑻ 數學的來歷

數學」一詞是來自希臘語,字面意思有學習、科學之意。它起源於人類早期的生產活動,其基本概念的精煉早在古埃及、美索不達米亞及古印度就已經出現。

在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」)。


向左轉|向右轉


(8)數學的起源擴展閱讀:

發展

一、商周數學

大約4000年前夏朝的建立,標志著中國進入了奴隸社會。隨著社會的發展,商代出現了比較成熟的文字---甲骨文,西周則演變為金文,即刻在青銅器上的銘文。

二、秋戰國時代的數學

春秋戰國時代,中國正經歷著由奴隸社會到封建社會的巨大變革,學術思想十分活躍.這一時期形成的諸子百家,對科學文化影響極大。數學園地更是生機盎然,朝氣勃勃。

四、周髀算經

《周髀》是西漢初期的一部天文、數學著作。髀是量日影的標桿(亦稱表),因書中記載了不少周代的天文知識,故名《周髀》。唐初鳳選定數學課本時,取名《周髀算經》。

⑼ 數學的來歷 50字

數學」一詞是來自希臘語,字面意思有學習、科學之意。它起源於人類早期的生產活動,其基本概念的精煉早在古埃及、美索不達米亞及古印度就已經出現。

人類歷史發展和社會生活中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本工具。

基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態。

代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支。

(9)數學的起源擴展閱讀:

許多如數、函數、幾何等的數學對象反應出了定義在其中連續運算或關系的內部結構.數學就研究這些結構的性質,例如:數論研究整數在算數運算下如何表示。

此外,不同結構卻有著相似的性質的事情時常發生,這使得通過進一步的抽象,然後通過對一類結構用公理描述他們的狀態變得可能,需要研究的就是在所有的結構里找出滿足這些公理的結構.因此,我們可以學習群、環、域和其他的抽象系統。

把這些研究(通過由代數運算定義的結構)可以組成抽象代數的領域.由於抽象代數具有極大的通用性,它時常可以被應用於一些似乎不相關的問題,例如一些古老的尺規作圖的問題終於使用了伽羅瓦理論解決了,它涉及到域論和群論。

代數理論的另外一個例子是線性代數,它對其元素具有數量和方向性的向量空間做出了一般性的研究.這些現象表明了原來被認為不相關的幾何和代數實際上具有強力的相關性.組合數學研究列舉滿足給定結構的數對象的方法。

熱點內容
電視劇有哪些 發布:2025-06-19 15:14:47 瀏覽:482
轉變教育觀念 發布:2025-06-19 14:40:56 瀏覽:709
英語rap 發布:2025-06-19 13:46:51 瀏覽:845
教育大改革 發布:2025-06-19 10:44:43 瀏覽:576
源新生物 發布:2025-06-19 10:33:49 瀏覽:595
班主任與三兄弟 發布:2025-06-19 10:00:20 瀏覽:269
小學安全教育ppt 發布:2025-06-19 09:35:03 瀏覽:56
2015年度師德總結 發布:2025-06-19 09:32:47 瀏覽:30
2017高考全國1理科數學 發布:2025-06-19 07:41:32 瀏覽:424
歷史霸氣名字 發布:2025-06-19 07:38:25 瀏覽:656