考研統考數學
⑴ 數學專業考研 是全國統考嗎
不是
不用到他們學校考試
只是試題是他們自己出的
考試就在你所在地報名考試
⑵ 考研數學考的是什麼內容
考研時的知識點基本上都是高數、線代與概率論的知識點。一般統考不會超過課本知識,但是難度比課本習題難度大很多。一般可以參考每年的數學考研大綱。數學一考研數學內容:
高等數學
一、函數、極限、連續
考試內容:函數的概念及表示法函數的有界性、單調性、周期性和奇偶性復合函數、反函數、分段函數和隱函數
二、一元函數微分學
考試內容:導數和微分的概念導數的幾何意義和物理意義函數的可導性與連續性之間的關系平面曲線的切線和法;線導數和微分的四則運算基本初等函數的導數復合函數、反函數、隱函數以及參數方程所確定的函數的微分法高階導數。
一階微分形式的不變性微分中值定理洛必達(L'Hospital)法則函數單調性的判別函數的極值函數圖形的凹凸性、拐點及漸近線函數圖形的描繪函數的最大值與最小值弧微分曲率的概念曲率圓與曲率半徑
四、向量代數和空間解析幾何
考試內容:向量的概念向量的線性運算向量的數量積和向量積向量的混合積兩向量垂直、平行的條件兩向量的夾角向量的坐標表達式及其運算單位向量方向數與方向餘弦曲面方程和空間曲線方程的概念
平面方程直線方程平面與平面、平面與直線、直線與直線的夾角以及平行、垂直的條件點到平面和點到直線的距離球面柱面旋轉曲面常用的二次曲面方程及其圖形空間曲線的參數方程和一般方程空間曲線在坐標面上的投影曲線方程
五、多元函數微分學
考試內容:多元函數的概念二元函數的幾何意義二元函數的極限與連續的概念有界閉區域上多元連續函數的性質多元函數的偏導數和全微分全微分存在的必要條件和充分條件多元復合函數、隱函數的求導法二階偏導數方向導數和梯度空間曲線的切線和法平面曲面的切平面和法線二元函數的二階泰勒公式多元函數的極值和條件極值多元函數的最大值、最小值及其簡單應用
六、多元函數積分學
考試內容:二重積分與三重積分的概念、性質、計算和應用兩類曲線積分的概念、性質及計算兩類曲線積分的關系格林(Green)公式平面曲線積分與路徑無關的條件二元函數全微分的原函數兩類曲面積分的概念、性質及計算兩類曲面積分的關系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及計算曲線積分和曲面積分的應用
七、無窮級數
考試內容常數項級數的收斂與發散的概念收斂級數的和的概念級數的基本性質與收斂的必要條件幾何級數與級數及其收斂性正項級數收斂性的判別法交錯級數與萊布尼茨定理任意項級數的絕對收斂與條件收斂函數項級數的收斂域與和函數的概念冪級數及其收斂半徑、收斂區間(指開區間)和收斂域
冪級數的和函數冪級數在其收斂區間內的基本性質簡單冪級數的和函數的求法初等函數的冪級數展開式函數的傅里葉(Fourier)系數與傅里葉級數狄利克雷(Dirichlet)定理函數在上的傅里葉級數函數在上的正弦級數和餘弦級數
八、常微分方程
考試內容:常微分方程的基本概念變數可分離的微分方程齊次微分方程一階線性微分方程伯努利(Bernoulli)方程全微分方程可用簡單的變數代換求解的某些微分方程可降階的高階微分方程線性微分方程解的性質及解的結構定理二階常系數齊次線性微分方程高於二階的某些常系數齊次線性微分方程簡單的二階常系數非齊次線性微分方程歐拉(Euler)方程微分方程的簡單應用
線性代數
一、行列式
考試內容行列式的概念和基本性質行列式按行(列)展開定理
二、矩陣
考試內容:矩陣的概念矩陣的線性運算矩陣的乘法方陣的冪方陣乘積的行列式矩陣的轉置逆矩陣的概念和性質矩陣可逆的充分必要條件伴隨矩陣矩陣的初等變換初等矩陣矩陣的秩矩陣的等價分塊矩陣及其運算
三、向量
考試內容:向量的概念向量的線性組合與線性表示向量組的線性相關與線性無關向量組的極大線性無關組等價向量組向量組的秩向量組的秩與矩陣的秩之間的關系向量空間及其相關概念維向量空間的基變換和坐標變換過渡矩陣向量的內積線性無關向量組的正交規范化方法規范正交基正交矩陣及其性質
四、線性方程組
考試內容:線性方程組的克拉默(Cramer)法則齊次線性方程組有非零解的充分必要條件非齊次線性方程組有解的充分必要條件線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解解空間非齊次線性方程組的通解
五、矩陣的特徵值和特徵向量
考試內容:矩陣的特徵值和特徵向量的概念、性質相似變換、相似矩陣的概念及性質矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特徵值、特徵向量及其相似對角矩陣
六、二次型
考試內容:二次型及其矩陣表示合同變換與合同矩陣二次型的秩慣性定理二次型的標准形和規范形用正交變換和配方法化二次型為標准形二次型及其矩陣的正定性
概率論與數理統計
一、隨機事件和概率
考試內容:隨機事件與樣本空間事件的關系與運算完備事件組概率的概念概率的基本性質古典型概率幾何型概率條件概率概率的基本公式事件的獨立性獨立重復試驗
二、隨機變數及其分布
考試內容:隨機變數隨機變數分布函數的概念及其性質離散型隨機變數的概率分布連續型隨機變數的概率密度常見隨機變數的分布隨機變數函數的分布
三、多維隨機變數及其分布
考試內容:多維隨機變數及其分布二維離散型隨機變數的概率分布、邊緣分布和條件分布二維連續型隨機變數的概率密度、邊緣概率密度和條件密度隨機變數的獨立性和不相關性常用二維隨機變數的分布兩個及兩個以上隨機變數簡單函數的分布
四、隨機變數的數字特徵
考試內容:隨機變數的數學期望(均值)、方差、標准差及其性質隨機變數函數的數學期望矩、協方差、相關系數及其性質
五、大數定律和中心極限定理
考試內容:切比雪夫(Chebyshev)不等式切比雪夫大數定律伯努利(Bernoulli)大數定律辛欽(Khinchine)大數定律棣莫弗-拉普拉斯(DeMoivre-Laplace)定理列維-林德伯格(Levy-Lindberg)定理
六、數理統計的基本概念
考試內容:總體個體簡單隨機樣本統計量樣本均值樣本方差和樣本矩分布分布分布分位數正態總體的常用抽樣分布
七、參數估計
考試內容:點估計的概念估計量與估計值矩估計法最大似然估計法估計量的評選標准區間估計的概念單個正態總體的均值和方差的區間估計兩個正態總體的均值差和方差比的區間估計
八、假設檢驗
考試內容:顯著性檢驗假設檢驗的兩類錯誤單個及兩個正態總體的均值和方差的假設檢驗
(2)考研統考數學擴展閱讀:
一、須使用數學一的招生專業
1.工學門類中的力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、網路工程、電子信息工程、計算機科學與技術、土木工程、測繪科學與技術、交通運輸工程、船舶與海洋工程、航空宇航科學與技術、兵器科學與技術、核科學與技術、生物醫學工程等20個一級學科中所有的二級學科、專業。
2.授工學學位的管理科學與工程一級學科。
二、須使用數學二的招生專業
工學門類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中所有的二級學科、專業。
三、須選用數學一或數學二的招生專業(由招生單位自定)
工學門類中的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較高的二級學科、專業選用數學一,對數學要求較低的選用數學二。
四、須使用數學三的招生專業
1.經濟學門類的各一級學科。
2.管理學門類中的工商管理、農林經濟管理一級學科。
3.授管理學學位的管理科學與工程一級學科。
⑶ 考研統考與自主命題的區別
考研統考與自主命題的區別:
1.自主命題的學校不採取統考的專業課考試題目,公共課英語,數學,政治是統考的題目。
考研統考一般有國家統一命題,統一組織考試,統一劃定分數線。自主命題是學校自己出題進行研究生錄取考試,有的學校直接用國家的英語和政治試題,這種考研時間和國家統考時間一致,有的是所有的考試科目都有自己出題。
2.統考的難度一般低於自主命題。目前來看,考研統考的成績相對高些,進行調劑比較容易些。自主命題,題目相對難些,考試分數可能比較低,在調劑的時候有所影響。
3.應用國家統考試卷的學校大部分普通高校,自主命題的學校多數是知名高校。
(3)考研統考數學擴展閱讀
考研政治、考研英語、考研數學為全國統考,其中考研英語分為考研英語一和考研英語二。考研數學分為考研數學一、考研數學二、考研數學三。
從2010年開始,全國碩士研究生入學考試的英語試卷分為了英語(一)和英語(二)。英語(一)即原統考「英語」。英語(二)主要是為高等院校和科研院所招收專業學位碩士研究生而設置的具有選拔性質的統考科目。
參考資料網路考研統考
⑷ 考研的數學是國家統考,還是所要報考的學校自己出題呀
這個要看具體的哪一所學校了。
考研是先選學校,然後在按照該校的考試要求,指定科目以及參考書復習的。
一般院校數學是全國統一考試,但是也有部分院校會自己出題。
如果統一考試,該校會指明數學要求,一般工科是考數一,弱一點就只要數二。
如果本校出卷子,則會說明參考書的和考試大綱。
專業課也是如此。不像高考先考再報,考研是先選學校再准備最後考試的。
⑸ 考研數學分析是不是全國統考啊
數學分析屬於數學類專業課,各學校自行出題,你考哪個學校最好找到該校本身使用的數學分析教材和習題集。
高等數學才是國家統考。
⑹ 考研數學是全國統考還是各院校自主出題
考研數學是全國統考。
考研科目共四門,兩門公共課、一門基礎課(數學或專業基礎)、一門專業課。
兩門公共課分別是政治、英語。一門基礎課是數學或專業基礎。一門專業課(分為13大類)分為哲學、經濟學、法學、教育學、文學、歷史學、理學、工學、農學、醫學、軍事學、管理學、藝術學等。
其中法碩、西醫綜合、教育學、歷史學、心理學、計算機、農學等屬統考專業課;其他非統考專業課都是各高校自主命題。
針對考研的數學科目,根據各學科、專業對碩士研究生入學所應具備的數學知識和能力的不同要求,碩士研究生入學統考數學試卷分為3種:其中針對工科類的為數學一、數學二。
針對經濟學和管理學類的為數學三(2009年之前管理類為數學三,經濟類為數學四,2009年之後大綱將數學三數學四合並)。具體不同專業所使用的試卷種類有具體規定。
(6)考研統考數學擴展閱讀:
一、招生試卷種類
1、須使用數學一的招生專業
1)工學門類中的力學、機械工程、光學工程、儀器科學與技術、冶金工程、動力工程及工程熱物理、電氣工程、電子科學與技術、信息與通信工程、控制科學與工程、網路工程、電子信息工程。
計算機科學與技術、土木工程、測繪科學與技術、交通運輸工程、船舶與海洋工程、航空宇航科學與技術、兵器科學與技術、核科學與技術、生物醫學工程等20個一級學科中所有的二級學科、專業。
2)授工學學位的管理科學與工程一級學科。
2、須使用數學二的招生專業
工學門類中的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程等5個一級學科中所有的二級學科、專業。
3、須選用數學一或數學二的招生專業(由招生單位自定)
工學門類中的材料科學與工程、化學工程與技術、地質資源與地質工程、礦業工程、石油與天然氣工程、環境科學與工程等一級學科中對數學要求較高的二級學科、專業選用數學一,對數學要求較低的選用數學二。
4、須使用數學三的招生專業
1)經濟學門類的各一級學科。
2)管理學門類中的工商管理、農林經濟管理一級學科。
3)授管理學學位的管理科學與工程一級學科。
二、命題原則
1、科學性與公平性原則
作為公共基礎課,考研數學試題以基礎性、生活類試題為主,盡量避免過於廣大考生來說過於專業和抽象難懂的內容。
2、覆蓋全面的原則
考研數學試題的內容要求涵蓋所有考綱所要求考核的內容,尤其涵蓋數(一)、數(二)、數(三)、數(四)相區別之處。
3、控制難易度的原則
考研數學試題要求以中等偏上題為主,考試及格率控制在30-40%,平均分(滿分150分)控制在75分左右。
4、控制題量的原則
考研數學試題的題量控制在20-22道之間(一般6道填空題,6道選擇題,10道大題),保證考生基本能答完試題並有時間檢查。
數學試卷的結構是總共20道題,填空5個,選擇5個,大的綜合題10個,其中高數6個,線性代數和概率論各2個。
⑺ 全國研究生統一考試中數學一,二,三分別代表什麼意思
考研的數學分為四種,分別是數學一、數學二、數學三、數學四
數學一是一般的理工科要考的,如計算機/材料等理工專業 高等數學佔60%,線性代數20%,概率論20%
數學二是對數學要求略微低一點的專業要考的,但他與數學一基本相當。如紡織專業 不考無窮級數、線面積分、概率統計
數學三是偏向於經濟類別的考生,如經濟管理 偏向概率
數學四是其它對數學要求相對低的學科,對概率要求不高!
⑻ 考研數學一二三的考試內容和科目的區別,
1、碩士研究生考試數學科目分為三類,最大的區別在於知識面的要求上:數學一最廣,數學三其次,數學二最低。
2、數學一:
考試內容:a.高等數學(函數、極限、連續、一元函數微積分學、向量代數與空間解析幾何、多元函數的微積分學、無窮級數、常微分方程);b.線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型);c.概率論與數理統計(隨機事件和概率、隨機變數及其概率分布、二維隨機變數及其概率分布、隨機變數的數字特徵、大數定律和中心極限定理、數理統計的基本概念、參數估計、假設檢驗)。
適用專業:a.工學門類的力學,機械工程,光學工程,儀器學與技術,冶金工程,動力學工程及工程物理,電氣工程,電子科學與技術,信息與通信工程,控制科學與工程,計算機科學與技術,土木工程,水利工程,測繪科學與技術,交通運輸工程,船舶與海洋工程,航空宇航科學與技術,兵器科學與技術,核科學與技術,生物醫學工程等一級學科中所有的二級學科,專業。工學門類的材料與工程,化學工程與技術,地質資源與地質工程,礦業工程,石油與天然氣工程,環境科學與工程等一級學科中對數學要求較高的二級學科,專業。b.管理學門類中的管理科學與工程一級學科。
3、數學二:
考試內容:a.高等數學(函數、極限、一元函數微積分學、常微分方程);b.線性代數(行列陣、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量)。
適用專業:工學門類的紡織科學與工程、輕工技術與工程、農業工程、林業工程、食品科學與工程第一級學科中所有的二級學科、專業。
4、數學三:
考試內容:a.微積分(函數、極限、連續、一元函數微積分學、多元函數微積分學、無窮級數、常微分方程與差分方程);b.線性代數(行列式、矩陣、向量、線性方程組、矩陣的特徵值和特徵向量、二次型);c.概率論與數理統計(隨機事件和概率、隨機變數及其概率分布、二維隨機變數及其概率分布、隨機變數的數字特徵、大數定律和中心極限定理、數理統計的基本概念、參數估計、假設檢驗)。
適用專業:a.經濟學門類的理論經濟學一級學科中的所有二級學科、專業;b.經濟學門類的應用經濟學一級學科中的統計學科、專業、統計學、數量經濟學、國民經濟學、區域經濟學、財政學(含稅收學)、金融學(含保險學)、產業經濟學、財政學(含稅收學)、金融學(含保險學)、產業經濟、國際貿易學、勞動經濟學、國防經濟。c.管理學門類的工程管理一級學科中的二級學科、專業;企業管理(含財務管理、市場營銷、人力資源管理)、技術經濟及管理、會計學、旅遊管理。d.管理學門類的農林經濟管理一級學科中的所有二級學科、專業。