高中數學基本初等函數
㈠ 高中基本初等函數概念
初等函數是由基本初等函數經過有限次的四則運算和復合運算所得到的函數。基本初等函數和初等函數在其定義區間內均為連續函數。不是初等函數的函數,稱為非初等函數,如狄利克雷函數和黎曼函數。目前有兩種分類方法:數學分析有六種基本初等函數,高等數學只有五種。
分類方法
高等數學將基本初等函數歸為五類:冪函數、指數函數、對數函數、三角函數、反三角函數[1] 。
數學分析將基本初等函數歸為六類:冪函數、指數函數、對數函數、三角函數、反三角函數、常數函數[2] 。
下面一一介紹這些函數。
冪函數
定義
一般地,形如y=xα(α為有理數)的函數,即以底數為自變數,冪為因變數,指數為常數的函數稱為冪函數。例如函數y=x0 、y=x1、y=x2、y=x-1(註:y=x-1=1/x y=x0時x≠0)等都是冪函數。一般形式如下[1] :
( α為常數,且可以是自然數、有理數,也可以是任意實數或復數。)
性質
冪函數的圖象一定會出現在第一象限內,一定不會出現在第四象限,至於是否出現在第二、三象限內,要看函數的奇偶性;冪函數的圖象最多隻能同時出現在兩個象限內;如果冪函數圖象與坐標軸相交,則交點一定是原點。
冪函數取正值
當α>0時,冪函數y=xα有下列性質:
a、圖像都經過點(1,1)(0,0);
b、函數的圖像在區間[0,+∞)上是增函數;
c、在第一象限內,α>1時,導數值逐漸增大;α=1時,導數為常數;0<α<1時,導數值逐漸減小;
冪函數取負值
當α<0時,冪函數y=xα有下列性質:
a、圖像都通過點(1,1);
b、圖像在區間(0,+∞)上是減函數;(內容補充:若為X-2,易得到其為偶函數。利用對稱性,對稱軸是y軸,可得其圖像在區間(-∞,0)上單調遞增。其餘偶函數亦是如此)
c、在第一象限內,有兩條漸近線(即坐標軸),自變數趨近0,函數值趨近+∞,自變數趨近+∞,函數值趨近0。
冪函數取零
當α=0時,冪函數y=xa有下列性質:
y=x0的圖像是直線y=1去掉一點(0,1)。它的圖像不是直線[1] 。
指數函數
定義
指數函數是數學中重要的函數。應用到值e上的這個函數寫為exp(x)。還可以等價的寫為ex,這里的e是數學常數,就是自然對數的底數,近似等於 2.718281828,還稱為歐拉數。一般形式如下[1] :
(a>0, a≠1)
㈡ 高中有八種基本函數 分別是什麼啊
1、一次函數:一次函數是函數中的一種,一般形如y=kx+b(k,b是常數,k≠0),其中x是自變數,y是因變數。特別地,當b=0時,y=kx(k為常數,k≠0),y叫做x的正比例函數。
2、一次函數:二次函數(quadratic function)的基本表示形式為y=ax²+bx+c(a≠0)。二次函數最高次必須為二次, 二次函數的圖像是一條對稱軸與y軸平行或重合於y軸的拋物線。
3、反比例函數:反比例函數的圖像屬於以原點為對稱中心的中心對稱的雙曲線(hyperbola),反比例函數圖象中每一象限的每一支曲線會無限接近X軸Y軸但不會與坐標軸相交(y≠0)。
4、三角函數:三角函數是基本初等函數之一,是以角度(數學上最常用弧度制,下同)為自變數,角度對應任意角終邊與單位圓交點坐標或其比值為因變數的函數。也可以等價地用與單位圓有關的各種線段的長度來定義。
5、冪函數:冪函數是基本初等函數之一。一般地,y=xα(α為有理數)的函數,即以底數為自變數,冪為因變數,指數為常數的函數稱為冪函數。例如函數y=x0、y=x1、y=x2、y=x-1(註:y=x-1=1/x、y=x0時x≠0)等都是冪函數。
6、指數函數:指數函數是重要的基本初等函數之一。一般地,y=ax函數(a為常數且以a>0,a≠1)叫做指數函數,函數的定義域是 R 。
7、對數函數:一般地,對數函數以冪(真數)為自變數,指數為因變數,底數為常量的函數。
8、反函數:一般來說,設函數y=f(x)(x∈A)的值域是C,若找得到一個函數g(y)在每一處g(y)都等於x,這樣的函數x= g(y)(y∈C)叫做函數y=f(x)(x∈A)的反函數,
記作y=f^(-1)(x) 。反函數y=f ^(-1)(x)的定義域、值域分別是函數y=f(x)的值域、定義域。最具有代表性的反函數就是對數函數與指數函數。
㈢ 高中數學必修一里有基本初等函數Ⅰ,那Ⅱ在哪裡
數學4:基本初等函數II(三角函數)、平面向量、三角恆等變換
㈣ 為什麼高中數學必修一里學的是基本初等函數
你好,基本初等函數是高級函數的基礎,其實高級函數是基本初等函數經過有限次的四則運算和有限次復合而成,學好基本初等函數是最基本的要求,也是你學習高級函數的基礎。
㈤ 高一四種基本初等函數都是什麼
高一數學四種基本初等函數:冥函數、指數函數、對數函數、三角函數。
高中數學五種基本初等函數:冥函數、指數函數、對數函數、三角函數、反三角函數
㈥ 高中數學必修一課後習題(基本初等函數部分)答案
不帶你這么找答案的,買本參考書不就管了,而且函數是中學非常重要的內容,書上大多是基本題,不會把課本定理例題多看看再去想~當然你要純粹找答案當我沒講~
㈦ 高中數學必修四基本初等函數2部分的知識點
值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f(對應關系):A(原象) B(象)」
對於映射f:A→B來說,則應滿足:
(1)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;
(2)集合A中不同的元素,在集合B中對應的象可以是同一個;
(3)不要求集合B中的每一個元素在集合A中都有原象。
6.分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變數的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的並集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復合函數。
二.函數的性質
1.函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數.區間D稱為y=f(x)的單調增區間.
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
1 任取x1,x2∈D,且x1<x2;
2 作差f(x1)-f(x2);
3 變形(通常是因式分解和配方);
4 定號(即判斷差f(x1)-f(x2)的正負);
5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:「同增異減」
注意:函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函數的奇偶性(整體性質)
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
利用定義判斷函數奇偶性的步驟:
1首先確定函數的定義域,並判斷其是否關於原點對稱;
2確定f(-x)與f(x)的關系;
3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1) 湊配法
2) 待定系數法
3) 換元法
4) 消參法
10.函數最大(小)值(定義見課本p36頁)
1 利用二次函數的性質(配方法)求函數的最大(小)值
2 利用圖象求函數的最大(小)值
3 利用函數單調性的判斷函數的最大(小)值: 如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);
㈧ 高中數學必修一基本初等函數
x 是有范圍的0<x<=50,
㈨ 高中數學題(必修一:基本初等函數)
通過恆有公式知道,f(x)為遞增函數,因為比值大於0,則上下同號。當x1<x2時,f(x1)<f(x2).再利用奇函數,單邊遞增。