當前位置:首頁 » 語數英語 » 小學階段數學重點

小學階段數學重點

發布時間: 2021-08-03 05:45:52

① 小學一至六年級數學重點

填空:
1、2/5的(5)倍是2。
2、6千米的(
2/3)是4千米。
3、1/5÷(1/5)=1/4÷(1/4)=1/3÷(1/3)=1/2÷(1/2).
4、4/5噸黃豆可榨油7/25噸,要榨1噸油,需黃豆(
20/7
)噸,一噸黃豆可以榨(
7/20)噸油。
5、一根2米長的繩子,平均剪成5段,每段長(
2/5)米,每段是這根繩子的(
1/5)。
6、要做100個零件,每天做3/10,3天做(90)個。
7、6÷3/5的意義是(已知兩個因數的積是6,其中一個因數是3/5,求另一個因數是多少)。
選擇:
1、有黑、蘭兩種顏色的鋼筆20枝,它們的數量比可能是(
c
)。
a、7:4
b、3:4
c、3:2
d、2:5
2、36/21里有(a)個2/7。
a、6
b、7
c、8
d、9
計算:
1、17×11/23+17÷23/12
=17×11/23+17×12/23
=17×(11/23+12/23)
=17×1
=17
應用:
1、甲、乙兩筐梨的重量比是5:3,從甲筐中取出12千克放入乙筐,這是乙筐比甲筐梨多8千克,兩筐梨共重多少千克?
2、甲在銀行存款比乙多560元,甲第一次取出自己存款的1/6,第二次又取出200元,這時甲的存款還比乙多120元,甲、乙存款各多少元?
3、潤發超市賣出啤酒,八月份賣出的箱數與七月份賣出的箱數比數是4:5.八月份賣出了180箱,七月份買了多少箱?
4、大小兩瓶油共重2.7千克。大瓶的油用去0.2千克後,剩下的油與小瓶內油的重量比是3:2,求大、小瓶子里分別裝有多少千克油?
提問者:
zhoufurong08

② 小學數學知識重點

看書
書上都有
看所有的概念
概念最重要
一定要看概念呀!!!!!!!

③ 小學數學知識點有哪些

數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.

(同學們開講)

學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.

④ 小學的數學知識點總結歸納

1、數與代數:數的認識、數的運算、式與方程、比和比例。

2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。

3、統計與可能性:量的計量、統計、可能性。

4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。

(4)小學階段數學重點擴展閱讀:

整數

1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。

2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。

3、計數單位

一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。

每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4、數位

計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。

5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。

如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。

因為35能被7整除,所以35是7的倍數,7是35的約數。

7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

解比例的依據是比例的基本性質。

11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y

百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化法。

16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)

17、互質數:公因數只有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公因數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

分數計算到最後,得數必須化成最簡分數。

個位上是0、2、4、6、8的數,都能被2整,即能用2進行

約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。

32、一天的時間:一天有24小時,一小時60分,1分60秒

⑤ 小學數學知識點總結

數學概念整理:

整數部分:

十進制計數法;一(個)、十、百、千、萬……都叫做計數單位。其中「一」是計數的基本單位。10個1是10,10個10是100……每相鄰兩個計數單位之間的進率都是十。這種計數方法叫做十進制計數法
整數的讀法:從高位一級一級讀,讀出級名(億、萬),每級末尾0都不讀。其他數位一個或連續幾個0都只讀一個「零」。
整數的寫法:從高位一級一級寫,哪一位一個單位也沒有就寫0。
四捨五入法:求近似數,看尾數最高位上的數是幾,比5小就捨去,是5或大於5捨去尾數向前一位進1。這種求近似數的方法就叫做四捨五入法。
整數大小的比較:位數多的數較大,數位相同最高位上數大的就大,最高位相同比看第二位較大就大,以此類推。

小數部分:

把整數1平均分成10份、100份、1000份……這樣的一份或幾份是十分之幾、百分之幾、千分之幾……這些分數可以用小數表示。如1/10記作0.1,7/100記作0.07。
小數點右邊第一位叫十分位,計數單位是十分之一(0.1);第二位叫百分位,計數單位是百分之一(0.01)……小數部分最大的計數單位是十分之一,沒有最小的計數單位。小數部分有幾個數位,就叫做幾位小數。如0.36是兩位小數,3.066是三位小數
小數的讀法:整數部分整數讀,小數點讀點,小數部分順序讀。
小數的寫法:小數點寫在個位右下角。
小數的性質:小數末尾添0去0大小不變。化簡
小數點位置移動引起大小變化:右移擴大左縮小,1十2百3千倍。
小數大小比較:整數部分大就大;整數相同看十分位大就大;以此類推。

分數和百分數

■分數和百分數的意義
1、 分數的意義:把單位「 1」 平均分成若干份,表示這樣的一份或者幾份的數,叫做分數。在分數里,表示把單位「 1」 平均分成多少份的數,叫做分數的分母;表示取了多少份的數,叫做分數的分子;其中的一份,叫做分數單位。
2、 百分數的意義:表示一個數是另一個數的百分之幾的數,叫做百分數。也叫百分率或百分比。百分數通常不寫成分數的形式,而用特定的「%」來表示。百分數一般只表示兩個數量關系之間的倍數關系,後面不能帶單位名稱。
3、 百分數表示兩個數量之間的倍比關系,它的後面不能寫計量單位。
4、 成數:幾成就是十分之幾。
■分數的種類

按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數
■分數和除法的關系及分數的基本性質
1、 除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當於分子,而不能說成被除數就是分子。
2、 由於分數和除法有密切的關系,根據除法中「商不變」的性質可得出分數的基本性質。
3、 分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。
■約分和通分
1、 分子、分母是互質數的分數,叫做最簡分數。
2、 把一個分數化成同它相等但分子、分母都比較小的分數,叫做約分。
3、 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
4、 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
5、 通分的方法:先求出原來幾個分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
■倒 數
1、 乘積是1的兩個數互為倒數。
2、 求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。
3、 1的倒數是1,0沒有倒數
■分數的大小比較
1、 分母相同的分數,分子大的那個分數就大。
2、 分子相同的分數,分母小的那個分數就大。
3、 分母和分子都不同的分數,通常是先通分,轉化成通分母的分數,再比較大小。
4、 如果被比較的分數是帶分數,先要比較它們的整數部分,整數部分大的那個帶分數就大;如果整數部分相同,再比較它們的分數部分,分數部分大的那個帶分數就大。
■百分數與折數、成數的互化:
例如:三折就是30%,七五折就是75%,成數就是十分之幾,如一成就是牐 闖砂俜質 褪?0%,則六成五就是65%。
■納稅和利息:
稅率:應納稅額與各種收入的比率。
利率:利息與本金的百分率。由銀行規定按年或按月計算。
利息的計算公式:利息=本金×利率×時間

百分數與分數的區別主要有以下三點:
1.意義不同。百分數是「表示一個數是另一個數的百分之幾的數。」它只能表示兩數之間的倍數關系,不能表示某一具體數量。如:可以說 1米 是 5米 的 20%,不可以說「一段繩子長為20%米。」因此,百分數後面不能帶單位名稱。分數是「把單位『1』平均分成若干份,表示這樣一份或幾份的數」。分數不僅 可以表示兩數之間的倍數關系,如:甲數是3,乙數是4,甲數是乙數的?;還可以表示一定的數量,如:犌Э恕 米等。
2.應用范圍不同。百分數在生產、工作和生活中,常用於調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。
3.書寫形式不同。百分數通常不寫成分數形式,而採用百分號「%」來表示。如:百分之四十五,寫作:45%;百分數的分母固定為100,因此,不論百分數 的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分 數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。

數的整除

■整除的意義

整數a除以整數b(b≠0),除得的商正好是整數而沒有餘數,我們就說a能被b整除(也可以說b能整除a)
除盡的意義 甲數除以乙數,所得的商是整數或有限小數而余數也為0時,我們就說甲數能被乙數除盡,(或者說乙數能除盡甲數)這里的甲數、乙數可以是自然數,也可以是小數(乙數不能為0)。
■約數和倍數

1、如果數a能被數b整除,a就叫b的倍數,b就叫a的約數。2、一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。3、一個數的倍數的個數是無限的,其中最小的是它本身,它沒有最大的倍數。
■奇數和偶數

1、能被2整除的數叫偶數。例如:0、2、4、6、8、10……註:0也是偶數 2、不能被2整除的數叫基數。例如:1、3、5、7、9……

■整除的特徵

1、能被2整除的數的特徵:個位上是0、2、4、6、8。

2、能被5整除的數的特徵:個位上是0或5。

3、能被3整除的數的特徵:一個數的各個數位上的數之和能被3整除,這個數就能被3 整除。
■質數和合數

1、一個數只有1和它本身兩個約數,這個數叫做質數(素數)。

2、一個數除了1和它本身外,還有別的約數,這個數叫做合數。

3、1既不是質數,也不是合數。

4、自然數按約數的個數可分為:質數、合數

5、自然數按能否被2整除分為:奇數、偶數
■分解質因數

1、每個合數都可以寫成幾個質數相乘的形式,這幾個質數叫做這個合數的質因數。例如:18=3×3×2,3和2叫做18的質因數。

2、把一個合數用幾個質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。
3、幾個數公有的因數叫做這幾個數的公因數。其中最大的一個叫這幾個數的最大公因數。公因數只有1的兩個數,叫做互質數。幾個數公有的倍數叫做這幾個數的公倍數。其中最大的一個叫這幾個數的最大公倍數。
4、特殊情況下幾個數的最大公約數和最小公倍數。(1)如果幾個數中,較大數是較小數的倍數,較小數是較大數的約數,則較大數是它們的最小公倍數,較小數是它們的最大公約數。(2)如果幾個數兩兩互質,則它們的最大公約數是1,小公倍數是這幾個數連乘的積。

■奇數和偶數的運算性質:
1、相鄰兩個自然數之和是奇數,之積是偶數。
2、奇數+奇數=偶數,奇數+偶數=奇數,偶數+偶數=偶數;奇數-奇數=偶數,

奇數-偶數=奇數,偶數-奇數=奇數,偶數-偶數=偶數;奇數×奇數=奇數,奇數×偶數=偶數,偶數×偶數=偶數。

整數、小學、分數四則混合運算

■四則運算的法則

1、加法a、整數和小數:相同數位對齊,從低位加起,滿十進一b、同分母分數:分母不變,分子相加;異分母分數:先通分,再相加

2、減法a、整數和小數:相同數位對齊,從低位減起,哪一位不夠減,退一當十再減b、同分母分數:分母不變,分子相減;異分母分數:先通分,再相減

3、乘法a、整數和小數:用乘數每一位上的數去乘被乘數,用哪一位上的數去乘,得數的末位就和哪一位對起,最後把積相加,因數是小數的,積的小數位數與兩位因數的小數位數相同b、分數:分子相乘的積作分子,分母相乘的積作分母。能約分的先約分,結果要化簡

4、除法a、整數和小數:除數有幾位,先看被除數的前幾位,(不夠就多看一位),除到被除數的哪一位,商就寫到哪一位上。除數是小數是,先化成整數再除,商中的小數點與被除數的小數點對齊b、甲數除以乙數(0除外),等於甲數除以乙數的倒數

■運算定律

加法交換律 a+b=b+a

結合律 (a+b)+c=a+(b+c)

減法性質 a-b-c=a-(b+c)

a-(b-c)=a-b+c

乘法交換律 a×b=b×a

結合律 (a×b)×c=a×(b×c)

分配律 (a+b)×c=a×c+b×c

除法性質 a÷(b×c)=a÷b÷c

a÷(b÷c)=a÷b×c

(a+b)÷c=a÷c+b÷c

(a-b)÷c=a÷c-b÷c
商不變性質m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)

■積的變化規律:在乘法中,一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數。

推廣:一個因數擴大A倍,另一個因數擴大B倍,積擴大AB倍。
一個因數縮小A倍,另一個因數縮小B倍,積縮小AB倍。

■商不變規律:在除法中,被除數和除數同時擴大(或縮小)相同的倍數,商不變。

推廣:被除數擴大(或縮小)A倍,除數不變,商也擴大(或縮小)A倍。
被除數不變,除數擴大(或縮小)A倍,商反而縮小(或擴大)A倍。

■利用積的變化規律和商不變規律性質可以使一些計算簡便。但在有餘數的除法中要注意余數。

如:8500÷200= 可以把被除數、除數同時縮小100倍來除,即85÷2= ,商不變,但此時的余數1是被縮小100被後的,所以還原成原來的余數應該是100。

簡易方程

■用字母表示數

用字母表示數是代數的基本特點。既簡單明了,又能表達數量關系的一般規律。

■用字母表示數的注意事項
1、數字與字母、字母和字母相乘時,乘號可以簡寫成「•「或省略不寫。數與數相乘,乘號不能省略。
2、當1和任何字母相乘時,「 1」 省略不寫。
3、數字和字母相乘時,將數字寫在字母前面。

■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,應注意書寫格式

■等式與方程
表示相等關系的式子叫等式。
含有未知數的等式叫方程。
判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式。所以,方程一定是等式,但等式不一定是方程。

■方程的解和解方程
使方程左右兩邊相等的未知數的值,叫方程的解。
求方程的解的過程叫解方程。

■在列方程解文字題時,如果題中要求的未知數已經用字母表示,解答時就不需要寫設,否則首先演將所求的未知數設為x。

■解方程的方法
1、直接運用四則運算中各部分之間的關系去解。如x-8=12
加數+加數=和 一個加數=和-另一個加數
被減數-減數=差 減數=被減數-差 被減數=差+減數
被乘數×乘數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=除數×商
2、先把含有未知數x的項看作一個數,然後再解。如3x+20=41
先把3x看作一個數,然後再解。
3、按四則運算順序先計算,使方程變形,然後再解。如2.5×4-x=4.2,
要先求出2.5×4的積,使方程變形為10-x=4.2,然後再解。
4、利用運算定律或性質,使方程變形,然後再解。如:2.2x+7.8x=20
先利用運算定律或性質使方程變形為(2.2+7.8)x=20,然後計算括弧裡面使方程變形為10x=20,最後再解。

比和比例

■比和比例應用題
在工業生產和日常生活中,常常要把一個數量按照一定的比例來進行分配,這種分配方法通常叫「按比例分配」。
■解題策略
按比例分配的有關習題,在解答時,要善於找准分配的總量和分配的比,然後把分配的比轉化成分數或份數來進行解答
■正、反比例應用題的解題策略
1、審題,找出題中相關聯的兩個量
2、分析,判斷題中相關聯的兩個量是成正比例關系還是成反比例關系。
3、設未知數,列比例式
4、解比例式
5、檢驗,寫答語

數感和符號感

■在數學教學中發展學生的數感主要指,使學生具有應用數字表示具體的數據和數量關系的能力;能夠判定不同的算術運算,有能力進行計算,並具有選擇適當方法(心算、筆算、使用計算器)實施計算的經驗;能根據數據進行推論,並對數據和推論的精確性和可靠性進行檢驗,等等。
■培養學生的數感的目的就在於使學生學會數學地思考,學會用數學的方法理解和解釋現實問題。
■ 數感的培養有利於學生提出問題和解決問題能力的提高。學生在遇到問題時,自覺主動地與一定的數學知識和技能建立起聯系,這樣才有可能建構與具體事物相聯系 的數學模型。具備一定的數感是完成這類任務的重要條件。如,怎樣為參加學校運動會的全體運動員編號?這是一個實際問題,沒有固定的解法,你可以用不同的方 式編,而不同的編排方案可能在實用性和便捷性上是不同的。如,從號碼上就可以分辨出年級和班級,區分出男生和女生,或很快的知道一名隊員是參加哪類項目。

■ 數概念本身是抽象的,數概念的建立不是一次完成的,學生理解和掌握數的概念要經歷一個過程。讓學生在認識數的過程中,更多地接觸和經歷有關的情境和實例, 在現實的背景下感受和體驗會使學生更具體更深刻地把握數的概念,建立數感。在認識數的過程中,讓學生說一說自己身邊的數,生活中用到的數,如何用數表示周 圍的事物等,會讓學生感覺到數就在自己身邊,運用數可以簡單明了地表示許多現象。估計一頁書的字數,一本書有多少頁,一把黃豆有多少粒等,這些對具體數量 的感知與體驗,是學生建立數感的基礎,這對學生理解數的意義會有很大的幫助。
■無論在哪個學段,都應鼓勵學生用自己獨特的方式表示具體的情境中的數量關系和變化規律,這是發展學生符號感的決定性因素。
■引進字母表示,是學習數學符號、學會用符號表示具體情境中隱含的數量關系和變化規律的重要一步。盡可能從實際問題中引入,使學生感受到字母表示的意義。
第一,用字母表示運演算法則、運算定律以及計算公式。演算法的一般化,深化和發展了對數的認識。
第二,用字母表示現實世界和各門學科中的各種數量關系。例如,勻速運動中的速度v、時間t和路程s的關系是s=vt。
第三,用字母表示數,便於從具體情境中抽象出數量關系和變化規律,並確切地表示出來,從而有利於進一步用數學知識去解決問題。例如,我們用字母表示實際問題中的未知量,利用問題中的相等關系列出方程。
■字母和表達式在不同場合有不同的意義。如:
5=2x+1表示x所滿足的一個條件,事實上,x這里只佔一個特殊數的位置,可以利用解方程找到它的值;
Y=2x表示變數之間的關系,x是自變數,可以取定義域內任何數,y是因變數,y隨x的變換而變化;
(a+b)(a-b)=a-b表示一個一般化的演算法,表示一個恆等式;
如果a和b分別表示矩形的長和寬,S表示矩形的面積,那麼S=ab表示計算矩形面積公式,同時也表示矩形的面積隨長和寬的變化而變化。
■如何培養學生的符號感
要盡可能在實際問題情境中幫助學生理解符號以及表達式、關系式意義,在解決實際問題中發展學生的符號感。
必須要對符號運算進行訓練,要適當地、分階段地進行一定數量的符號運算。但是並不主張進行過繁的形式運算訓練。
學生的符號感的發展不是一朝一夕就可以完成的,而是應該貫穿於數學學習的全過程,伴隨著學生數學思維的提高逐步發展。

量的計算

■事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
■數+單位名稱=名數
只帶有一個單位名稱的叫做單名數。
帶有兩個或兩個以上單位名稱的叫做復名數
高級單位的數如把米改成厘米 低級單位的數如把厘米改成米
■只帶有一個單位名稱的數叫做單名數。如:5小時, 3千克 (只有一個單位的)
帶有兩個或兩個以上單位名稱的叫做復名數。如:5小時6分,3千克500克(有兩個單位的)
56平方分米=(0.56)平方米 就是單名數轉化成單名數
560平方分米=(5)平方米(60平方分米) 就是單名數轉化成復名數的例子.
■高級單位與低級單位是相對的.比如,"米"相對於分米,就是高級單位,相對於千米就是低級單位.
■常用計算公式表
(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
(4)正方形周長=邊長× 4,計算公式s= 4a i
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式v=a bh
(9)圓的面積=圓周率×半徑平方,計算公式s=лr2
(10)正方體體積=棱長×棱長×棱長,計算公式v=a3
(11)長方體和正方體的體積都可以寫成底面積×高,計算公式v=sh
(12)圓柱的體積=底面積×高,計算公式v=s h

■1年12個月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,閏年2月29天
■閏年年份是4的倍數,整百年份須是400的倍數。
■平年一年365天,閏年一年366天。
■公元1年—100年是第一世紀,公元1901—2000是第二十世紀。

平面圖形的認識和計算

■三角形
1、三角形是由三條線段圍成的圖形。它具有穩定性。從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高。一個三角形有三條高。
2、三角形的內角和是180度
3、三角形按角分,可以分為:銳角三角形、直角三角形、鈍角三角形
4、三角形按邊分,可以分為:等腰三角形、等邊三角形、不等邊三角形
■四邊形
1、四邊形是由四條線段圍成的圖形。
2、任意四邊形的內角和是360度。
3、只有一組對邊平行的四邊形叫梯形。
4、兩組對邊分別平行的四邊形叫平行四邊形,它容易變形。長方形、正方形是特殊的平行四邊形;正方形是特殊的長方形。
■圓
圓是平面上的一種曲線圖形。同圓或等圓的直徑都相等,直徑等於半徑的2倍。圓有無數條對稱軸。圓心確定圓的位置,半徑確定圓的大小。
■扇形 由圓心角的兩條半徑和它所對的弧圍成的圖形。扇形是軸對稱圖形。
■軸對稱圖形
1、如果一個圖形沿著一條直線對折,兩邊的圖形能夠完全重合,這個圖形叫做軸對稱圖形;這條窒息那叫做對稱軸。
2、線段、角、等腰三角形、長方形、正方形等都是軸對稱圖形,他們的對稱軸條數不等。
■周長和面積
1、平面圖形一周的長度叫做周長。
2、平面圖形或物體表面的大小叫做面積。
3、常見圖形的周長和面積計算公式

⑥ 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

⑦ 小學階段的數學知識復習

我這可有講解哦,累死了!!!!!!!!1

小學數學知識要點

一、意義

1、意義:把搜集的材料經過整理,填寫在一定格式的表格內,用來反
映情況,說明問題。
統計表 2、種類:⑴、單式。
⑵、復式。

1、意義:把統計資料中的數量關系用圖形表達出來,使之具體,給人
印象深刻
統計圖
⑴、條形統計圖:容易看出各種數量的多少:單式、復式。

2、種類: ⑵、折線統計圖:能清楚地表示出數量增減變化的情況:單式、復式。

⑶扇形統計圖:能清楚地表示出各部分數量同總數之間的關系。

二、數
1、小數的網路圖:
純小數 有限小數
小數 無限不循環小數
帶小數 無限小數 純循環小數
無限循環小數
混循環小數
2、整數:
倍數 公倍數 最小公倍數:幾個數公有的倍數叫做這幾個數的公
倍數,其中最小的一個叫做這幾個數
整除 的最小公倍數。

約數 公約數 最大公約數:幾個數公的的約數叫做這幾個數的公
約數,其中最大的一個叫做這幾個數
的最大公約數。
質數 合數 互質數

質因數 分解質因數

能被2.3.5整除的數的特徵

3、 互質數:概念:公約數只有1的兩個數。
⑴、一定互質(①、1和任何自然數;②、相鄰的兩個自然數;
互質數 ③、兩個不同的質數)
⑵、不一定互質(①、一個質數與一個合數;②、兩個不同的合數)
質數:一個數,如果只有1和它本身兩個約數,叫做質數。
合數:一個數,如果除了1和它本身,還有別的約數,叫做合數。
★、一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身;一個數的倍數的個數是無限的,其中最小的倍數是它本身。一個數最小的倍數等於它最大的約數。
★、整數a除以整數b(b≠0),除得的商正好是整數而沒有餘數,我們就說a能被b(b≠0)整除,或b(b≠0)能整除a。這是整除部分知識中最基本的概念。
自然數按能否被2整除的情況,分為奇數、偶數。
自然數按約數的個數分為0、1、質數、合數。
自然數按約數的個數分,0有無限個約數,除以所有自然數(0除外)。
改寫
改寫成分母是10,100,1000,……的分數,再約分。
小數 分數
用分母去除分子
小數點向右移動兩位,添上%

寫成分數形式並約分
去掉%,小數點 先寫成小數
向左移動兩位。 再寫成百分數
百分數

一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數,有時還可以根據需要,省略這個數某一位後面的尾數,寫成近似數。

4、比較
分數:分母相同的分數,分子大的分數比較大;分子相同的分數,分母小的分數比較大;分子和分母都不相同,把分數通分後再比較。
數的比較 整數:先看個位上的數,個位上的數大的就大;個位上的數相同,個位上的數大的就大;個位上的數也相同,百位上的數大的就大……
小數:比較兩個小數的大小,先看它們的整數部分,整數部分大的那個數就大,整數部分小的就小;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同,百分位上的數大的那個數就大……
5、數位
整數部分 小數點 小數部分
… … 億 級 萬 級 個 級
數位 … … 千億位 百億位 十億位 億

位 千萬位 百萬位 十萬位 萬

位 千

位 百

位 於

位 個



十分位 百分位 千分位 …
計數單位 … … 千
億 百
億 十億 億 千萬 百萬 千萬 萬 千 百 十 一(個) . 十分之一 百分之一 千分之一 …
整數和小數都是按照十進制計數法寫出的數,其中個、十、百……以及十分之一、百分之一……都是計數單位。各個計數單位所佔的位置,叫做數位。數位是按一定的順序排列的。
數位:寫數時,按照一定的順序把各個計算單位排列在一定的位置上,各個不同的計數單位所佔的位置叫做數位。
位數:一個整數含有數位的數目叫做位數。(含有一個數位的數叫做一位數)

6、 意義
自然數:我們在數物體的時候,用來表示物體個數的1,2,3,……叫做自然數。一個物體也沒有,用0表示。0也是自然數。自然數都是整數。
分數:把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數是這個分數的分數單位。
兩個整數相除,它們的商可以用分數表示。即:a÷b=a/b(b≠0)
小數:把整數「1」平均分成10份,100份,1000份,……這樣的一份或幾份是十分之幾,百分之幾,千分之幾……可以用小數表示。如:0.1等都是小數。
有限小數:小數的小數部分的位數是有限的,就叫做有限小數。
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。小數部分的位數是無限的,叫做無限小數。循環小數是無限小數。
補充(1)四則運算:在一個沒有括弧的算式里,如果含有同一級運算,要從左往右依次計算;如果含有兩級運算,要先做第二級運算,後做第一級運算。如果在一個有括弧的算式里,要先算小括弧裡面的,再算中括弧裡面的。
注意:計算時要認真審題,看清運算符號和數的特點,靈活選擇合理的計算方法。

三.四則運算
(1)四則運算
數的范圍

運算 意義
名稱 整數 小數 分數 字母表示

加法(一級運算) 把兩個數合並成一個數的運算。 與整數加法的意義相同。 與整數加法的意義相同 a+b=c
減法(一級運算) 己知兩個數的和與其中的一個加數,求另一個加數的運算。 與整數減法的意義相同。 與整數減法的意義相同。 c-b=a
乘法(二級運算) 求幾個相同加數的和的簡便運算。 一個數與小數相乘,可以看作是求這個數的十分之幾、百分之幾……是多少。 一個數與分數相乘,可以看作是求這個數的幾分之幾是多少。 a×b=c
除法(二級運算) 已知兩個數的積與其中一個因數,求另一個因數的運算 與整數除法的意義相同 與整數除法的意義相同。 c÷b=a
減法是加法的逆運算;除法是乘法的逆運算;乘法是加法的同數相加的簡便運算;除法是減法的同數相減的簡便運算。
分成四種:①、同級 ②、兩級 ③、帶括弧 ④、簡便計算
(2)運算定律與簡便演算法
加法交換律:a+b=b+a 加法結合律:a+b+c=a+(b+c)
加減法的速演算法:a-b=a-c-d 、 a+b=a+c+d
減法的性質:a-b-c=a-(b+c) 乘法交換律:a×b=b×a
乘法結合律:a×b×c=a×(b×c) 乘法分配律:(a+b) ×c=a×c+b×c
積不變的性質:ab=(a×c)×( b÷c) 除法的性質:a÷b÷c=a÷(b×c)
商不變的性質:a÷b=(a÷c) ÷(b÷c)、 a÷b=(a×c) ÷(b×c)

四、方程
方程:含有未知數的算式叫做方程。
代數:1、用字母表示數可以簡明地表達數量關系,運算定律和計算公式。
2、數與字母相乘,省略乘號,數字寫在字母的前面。(如1a=a×1)
3、字母與字母相乘,可省略乘號,也可以寫成乘號的簡寫法(如a×b=ab=a.b)
4、數與數不能省略乘號。
使方程左右兩邊相等的求知數的值,叫做方程的解。只是一個數。
求方程的解的過程,叫做解方程。只是一個過程。
當n表示任何一個自然數時,2n表示偶數,因為能被2整除。2n+1表示奇數。
方程不是比例,比例是方程。

五、應用題
1、簡單應用題
小學數學中基本的應用題是簡單應用題,各種應用題是在簡單應用題基礎上合成的。
2、復合應用題
一般應用題解題各種步驟(如下)
(1)審題,理解題意(基礎) (2)分析數量關系(關鍵) (3)列式計算(重點)
(4)驗算(正確的保證) (5)寫答句(完整的必須)
簡單應用題四大類:1、總數與部分數的關系。2、大數、小數與相差數的關系。3、一倍數、幾倍數和倍數的關系。4、總數、份數與每份數的關系。11種:⑴求總數。⑵求剩餘。⑶求相同的數的和。⑷平均除。⑸包含除。⑹兩數的相差數。⑺大數比小數多多少。⑻小數比大數少多少。⑼一個數是另一個數的幾倍。⑽求一個數的幾倍是多少。⑾己知一個數和另一個數的幾分之幾,求這個數。

六、比、分數和除法的聯系
前項——分子——被除數 比號——分數線——除號
後項——分母——除數 比值——分數值——商
比是兩個數之間的倍數關系。 分數是一個數。 除法是一種運算。

七、比、比例
兩個數相除又叫做兩個數的比,兩個比相等的式子叫做比例。
比的基本性質:比的前項和後項都乘上或除以相同的數(0除外),比值不變。
比例的基本性質:在比例里,兩內項的積等於兩個外項的積。
求比值和化簡比的不同:求比值是一個商;化簡比是一個比,前項、後項都是整數。
正比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。Y/x=k(一定)
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。x×y=k(一定)
正、反比例的相同點:都有三種量,其中兩種是相關聯的量,另一種是一定的量。一種量的變化,另一種量也隨著變化。

八、方程解與算術解的不同
方程解是順向思維,把求知量當成己知量。算術解是逆向思維。
1、 分數應用題
比較量÷標准量=? /?或?%(求百分率)
「1」的量×所求量的對應分率=所求量
方程解:己知量÷對應分率=「1」的量

九、幾何圖形
1、圖形面積計算公式表
名稱 面積字母計算公式 面積計算公式
長方形 S長=ab 長方形的面積=長×寬
正方形 S正=a2 正方形的面積=邊長×邊長
三角形 S三角=ah÷2 三角形的面積=底×高÷2
平行四邊形 S平行=bh 平行四邊形面積=底×高
梯形 S梯=(a+b)×h÷2 梯形的面積=(上底+下底)×高÷2
圓 S圓=πr2 圓面積=半徑2×圓周率
扇形(半圓) S圓=πr2×n/360 扇形的面積=半徑2×圓周率×n/360

2、 圖形周長計算公式表
名稱 周長字母計算公式 周長計算公式
長方形 C長=(a+b)×2 長方形的周長=(長+寬)×2
正方形 C正=4a 正方形的周長=邊長×4
三角形
平行四邊形 C平行=(a+b)×2 平行四邊形周長=(斜邊+底邊)×2
梯形
圓 C圓=2πr 圓周長=直徑×圓周率
扇形(半圓) C扇=dπ×n/360+2r 扇形周長=直徑×圓周率×n/360+半徑×2
3、 進率
① 長度單位:
1千米=1000米 1千米=10000分米 1千米=100000厘米 1千米=1000000毫米1米=10分米 1米=100厘米 1米=1000毫米 1分米=10厘米
1分米=100毫米 1厘米=10毫米
② 面積單位
1平方千米=100公頃=1000000平方米=100000000平方分米=10000000000平方厘米
1公頃=10000平方米=1000000平方分米=100000000平方厘米
1平方米=100平方分米=10000平方厘米 1平方分米=100平方厘米
③ 體積(容積)單位
1立方米=1000立方分米=1000升=1000000立方厘米=1000000毫升
1立方分米=1升=1000立方厘米=1000毫升 1立方厘米=1毫升
④ 質量單位
1噸=1000千克=1000000克 1千克=1000克
⑤ 時間單位
1世紀=100年 1年=12個月=52個星期=365或366天 一年=四個季 1季=3個月
1個月=3旬(上旬 下旬 下旬)1星期=7天 1日=24小時 1時=60分 1分=60秒
12個月中有7個大月,4個小月,1個少月。 大月是1、3、5、7、8、10、12月;小月是4、6、9、11月;少月是2月。 閏年2月有29天,平年2月有28天。
4、 名數
名數:計量的結果,要用數來表示,並且還要帶上單位名稱,通常把它們合起來叫做名數。例如:


5米 單名數 復名數 3米3分

單位名稱
名數的改寫:在實際中,同一種量卻不同單位的名數,常常需要進行互相改寫。把高級單位的名數改寫成低級單位的名數用進率去乘,把低級單位的名數改寫成高級單位的名數用進率去除。在名數的改寫中,為了簡便,可以應用移動小數點引起數的大小變化的規律來進行改寫。
5、 角
直線;直線是無限的。
線段:直線上兩點間的一段叫做線段。線段有兩個端點。線段是直線的一部分。
射線:把線段的一端無限延長,就得到一條射線。射線只有一個端點。
角:從一點引出兩條射線所組成的圖形叫做角。這個點叫做角的頂點。這兩條射線叫做角的邊。角通常用符號「∠」來表示。如下圖:


頂點

比較角的大小:先把兩個角的頂點和一條邊重合,然後看另一條邊的位置。哪個角的另一條邊在外面,哪個角就大。如果另一條邊也重合,說明兩個角相等。
角的大小要看兩條邊的大小叉開的越大,角越大。角的大小與角的兩邊畫出的長短沒有關系。
角的度量:角的計量單位是「度」,用符號「°」表示。把半圓分成180等份,每一份所對的角叫做1度的角。記作1°,用量角器量角的時候,把量角器放在角的上面,使量角器的中心和角的頂點重合。0°該度線和角的一條邊重合,角的另一條邊所對的量角器上的刻度,就是這個角的度數。
角的分類:大於0°,而小於90°的角叫做銳角。等於90°的角叫做直角。大於90°而小於180°的角叫做鈍角。角的兩邊成一條直線,等於180°的角叫做平角。一條射線繞它的端點旋轉一周所成為一個360°的角叫做周角。
垂線:兩條線相交成直角時,這兩條線叫做互相垂直,其中一條直線叫做另一條直線的垂線(如下圖1),這兩條直線的交點,叫做垂足。
平行:在同一個平面內永不相交的兩條直線叫做平行線(如下圖2)。也可以說這兩條直線互相平行。
垂直 平行

6、長方形、正方形
長方形與正方形都有四條邊,長方形相對兩條邊長度相等,正方形四條邊都相等。它們都有四個直角。正方形是特殊的長方形。
7、三角形
三角形的分類:三個角都是銳角的三角形叫做銳角三角形;有一個角是直角的三角形叫做直角三角形;有一個角是鈍角的三角形叫做鈍角三角形。
兩條邊相等的三角形叫做等腰三角形。在等腰三角形里,相等的兩條邊叫腰,另一條邊叫做底;兩腰的夾角叫做頂角;底邊上的兩個角叫做底角。
三條邊都相等的三角形叫做等邊三角形,又叫做正三角形。從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。三角形的內角和是180°。兩個完全相同的三角形可以拼成平行四邊形。
8、平行四邊形
兩組對邊分別平行的四邊形叫做平行四邊形。四個角都不是直角。
從平行四邊形的一條邊上的一點到對邊引一條垂線,這點和垂足之間的線段叫做平行四邊形的高,這條對邊叫做平行四邊形的底。
長方形、正方形都是特殊的平行四邊形。
8、梯形
只有一組對邊平行的四邊形叫做梯形。
在梯形里,互相平行的一組對邊叫做梯形的底(通常把較短的底叫做上底,較長的底叫做下底);不平行的一組對邊叫做梯形的腰;從上底的一點到下底引一條垂線,這點和垂足之間的線段叫做梯形的高。
兩腰相等的梯形叫做等腰梯形。
9、圓
圓中心的一點叫做圓心。圓心一般用字母「o」表示。
連接圓心產圓上任意一點的線段叫做半徑。半徑一般用字母「r」表示。
通過圓心並且兩端都圓上的線段叫做直徑。直徑一般用字母「d」表示。
一個圓里有無數條半徑與直徑。所有的直徑和半徑都有相等。直徑是半徑的2倍。半徑是直徑的直徑的1/2。圓心決定圓的位置,半徑決定圓的大小。
圓的周長和直徑的比值叫做圓周率,用字母「π」來表示。
π=3.141592653……
≈3.14
10、扇形、半圓
圓周長中任意兩點的距離叫做「弧」。
一條弧和經過這兩條弧兩端的兩條半徑所圍成的圖形叫做扇形。
兩條半徑之間的角,頂點在圓心。像這樣,頂點在圓心的角叫做圓心角。在同一個圓里,扇形的大小與這個扇形的圓心角有關。
11、軸對稱圖形
如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就叫做軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
12、長方體、正方體
兩個面相交的邊叫做棱。三條棱相交的點叫做頂點。
長方體是由6個長方形(特殊情況有兩個相對的面是正方形)圍成的立體圖形。在一個長方體中,相對的面完全相同,相對的棱長度相等。長方體有12條棱、8個頂點。相交於一個頂點的三條棱的長度分別叫做長方體的長、寬、高。
正方體是由6個完全相同的正方形圍成的立體圖形。正方體也有12條棱,它們的長度相等。正方體也有8個頂點。
正方體和長方體的面、棱和頂點的數目都一樣。只是正方體的棱長相等。正方體可以說是長、寬、高都相等的長方體,它是一種特殊的長方體。
13、圓柱
圓柱上、下兩個面叫做底面。它們是完全相同的兩個圓。圓柱有無數條高。圓柱有一個曲面,叫做側面。圓柱兩個底面之間的距離叫做高,高也叫長、寬、深。剪開垂線側面,會使它變成長方形,也可能得到正方形。
14、圓錐
圓錐的底面是個圓,圓錐的側面是一個曲面。從圓錐的頂點到底面圓心的距離是圓錐的高h。圓錐只有一個底面,圓錐有一個頂點一條高。圓錐的側面展開是個扇形。
體積計算公式
名稱 體積字母公式 體積公式
長方體 V長方體=a×b×h 長方體體積=長×寬×高
正方體 V長方體=a3 正方體體積=邊長×邊長×邊長
圓柱 V圓柱=πr2×h 圓柱體積=圓周率×半徑2×高
圓錐 V圓錐=1/3πr2×h 圓錐體積=圓周率×半徑2×高×1/3

表面積計算公式
名稱 表面積字母公式 表面積公式
長方體 S長方體=(a×b+a×h+b×h)×2 長方體表面積=(長×寬+長×高+寬×高) ×2
正方體 S正方體=a×a×6 正方體表面積=邊長×邊長×6
圓柱 S圓柱=πr2×2+πd×h 圓柱表面積=圓周率×半徑2×2+直徑×π×高
圓錐的體積=1/3底面×積高。公式:V=1/3Sh

1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)小學奧數公式
和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
差倍問題的公式
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
植樹問題的公式
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題的公式
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題的公式
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題的公式
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題的公式
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題的公式
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)

最後祝你考個好中學,O(∩_∩)O~

⑧ 小學數學知識點

一、教學目標
1、知識目標與技能:
①通過學習,學生能應用百分數解決實際問題。理解稅率、利率、折扣的含義。
②學生在經歷觀察、操作等活動的過程中認識圓柱和圓錐的特徵,能正確地判斷圓柱和圓錐,理解、掌握圓柱的表面積、圓柱和圓錐體積的計算方法,會正確地進行計算。
③學生結合實例認識扇形統計圖,理解眾數和平均數。
④初步掌握用方向和距離確定物體位置的方法。
⑤學生在解決實際問題的的過程中,學會用轉化的策略尋求解決問題的思路,並能根據具體的問題確定合理的解題方法,從而有效地觶決問題。
⑥學生理解比例的意義和基本性質,會解比例;認識比例尺,會看比例尺,會進行比例尺的有關計算;理解正比例和反比例的意義,能夠判斷兩種量是否成正比例或反比例,理解用比例關系解應用題的方法,學會用比例知識解答比較容易的應用題。
⑦學生通過系統的復習,鞏固和加深理解小學階段所學的數學知識,更好地培養比較合理的、靈活的計算能力,發展思維能力和空間觀念,並提高綜合運用所學數學知識解決簡單的實際問題的能力。
2、過程與方法:
本學期教學內容要緊密聯系學生生活環境,從學生的經驗和已有知識出發,創設有助於學生自主學習、合作交流,使學生通過觀察、操作、歸納、交流、反思活動,獲得基本的數學知識、技能,進一步發展思維能力,讓學生在情境體驗中,理解數學,增強空間觀念,發展形象思維,重視學生應用數學的意識和能力。能應用「轉換」的策略解決一些簡單的實際問題,進一步增強解決問題的策略意識和反思意識,體會解決問題策略的多樣性,培養根據實際問題的特點選擇相應策略的能力。
3、情感態度與價值觀:
①能積極參與各項數學活動,感受自己在數學知識和方法等方面的收獲與進步,增強對數學的好奇心與求知慾,進一步樹立學好數學的信心。
②在探索和理解百分數的計算方法,比例的基本性質,圓柱和圓錐的體積公式等活動中,進一步感受數學思考的嚴謹和數學結論的確定性,獲得一些成功的體驗,鍛煉克服困難的意志。
③通過閱讀「你知道嗎」以及參與「實踐與綜合應用」等活動,進一步了解有關數學知識的背景,體會數學對人類歷史發展的作用,培養民族自豪感,增強創新意識,鍛煉實踐能力。
4、質量目標:
各單元測試平均分達83以上,期末質量驗收平均分達85以上,優秀率、及格率分別達40%及95%以上。

二、教材分析
1、本學期教材的知識結構體系分析和技能訓練要求:
這冊教材包括下面地些內容:百分數的應用、圓柱和圓錐、比例、確定位置、正反比例、解決問題的策略、統計以及小學六年來所學數學內容的總復習。 本冊教材的這些內容是在前幾冊的基礎上按照完成小學數學的全部教學任務安排的,著重使學生認識一些常見的立體圖形,掌握它們的體積等計算方法,進一步發展空間觀念;進一步形成統計的觀念,掌握用扇形統計圖表示數據整理結果的方法,提高依據統計數據的分析、預測、判斷能力;理解比例、正比例、反比例的概念,加深認識一些常見的數量關系,會用比例知識解答比較容易的應用題。然後把小學數學的主要內容加以系統的整理和復習,鞏固所學的數學知識,使學生能夠綜合運用所學的數學知識解決比較簡單的實際問題;結合新的教學內容與系統的整理和復習,進一步發展思維能力,培養思維品質,進行思想品德教育

2、教學重點:
本冊教材中的圓柱和圓錐、比例都是小學數學的重要內容。首先,認識圓柱和圓錐的特徵,掌握圓柱和圓錐的一些計算,既可以為進一步學習其他形體的表面積和體積及其計算打好基礎,進一步發展空間觀念,也可以增強解決問題的策略和方法,逐步增強學生收集、處理信息的意識和能力。最後學習好比例的知識,不僅可以增強學生用數學方法處理數學問題的能力,而且也使學生獲得初步的函數觀念,為進一步學習相關知識作初步的准備。因此,讓學生認識這些內容的概念,學會應用這些概念、方法和計算解決一些實際問題,是教學的重點。

⑨ 小學數學怎樣確定教學重難點

解決問題,即應用題的教學,貫穿整個小學階段,歷來是小學數學教學的重點和難點。那麼在新課改下如何進行解決問題的教學呢?下面談一下自己學習後的粗淺見解。
一、要理解解決問題的基本過程。
數學問題解決,指的是按照一定的思維對策進行的一個思維過程,一步一步地接近目標,最終達到目標。也就是說,數學領域中的解決問題,不只是關心問題的結果,更重要的是關心求得結果的過程。要解決問題,就要搞清問題的求解目標和已知條件、未知條件,這是問題解決的第一步。它對思維的敏捷性和深刻性提出了很高要求,也為思維敏捷性和深刻性創造了極好的訓練機會。問題解決的第二步是設計求解計劃,這要求大量的分析綜合,嘗試與猜測、類比與聯想,這對訓練思維的靈活性和獨創性大有益處。問題解決的最後一步,就是對所得結果作檢驗和回顧。這時訓練思維的批判性和深刻性是具有十分重要的作用。
二、具體建議。
1、注意對「好」的問題的正確理解。
問題應當具有一定的探索性,解決這個問題沒有現成的方法和程序,而需要發揮學生的各種思考和創造;問題應當成具有一定的現實性和趣味性,既非人為編造的,又能激發每個學生的好奇心;解決問題的途徑和策略往往是多種的,需要學生綜合應用所學知識,並發揮多種的數學思考;問題應當具有一定的啟示意義,有利於學生掌握重要的數學思想方法和解決問題的策略,而不是所謂的「偏題」、「怪題」;同時,問題應具有適當的開放性,這種開放並不一定表現在答案的多樣性上,更為重要的是問題能使所有的學生都嘗試解決,不同的學生在解決問題的過程中都能獲得發展。
2.幫助學生讀懂題。
對於解決問題,學生的困難,一是讀懂題,二是分析數量關系。而只有讀懂題,才能為後面分析數量關系奠定基礎。怎樣是讀懂題呢?我們可以要求學生:一遍讀,搞清楚是什麼事;二遍讀,進行篩選,捕捉有用的數學信息,誰和誰有關系,有什麼關系。三遍讀,告訴我們解決什麼問題。這樣只有我們讀懂了題,才能更好地進行解決問題。教師在指導學生讀題時可用手勢、情景再現等方式幫助學生讀懂題。
3、在理解運算意義的基礎上,分析數量關系。
解決問題首先需要學生具有數學的眼光,能識別存在於日常生活、自然現象與其他學科等中蘊涵的數量關系,並把它們提煉出來,運用所學的知識對其進行分析,然後綜合應用所學的知識和技能加以解決。其次我們要重視對運算意義的教學。加、減、乘、除運算的意義是核心概念,只有學生真正理解了加、減、乘、除的意義,才知道在什麼時候該用什麼運算來解決問題。再次要注重對數量關系的分析。在解決具體問題時,教師要鼓勵學生通過實際操作、思考討論,尋找問題中所隱含的數量關系,強調對問題實際意義和數學意義的真正理解。
4、注重用方程解決問題。
方程是一種很好的數學思維,它能幫助人們用順向思維解決問題,思維過程比較簡單。用方程有意義,對於逆向思維有幫助。有些學生不願意用方程,覺得它格式繁瑣。教學中教師不要死摳格式,要有簡化意識,明白教學的目的在於培養學生應用方程的思想解決問題。
5.形成解決問題的一些基本策略,體驗解決問題策略的多樣性。
解決問題活動的價值不只是獲得具體問題的答案,更重要的是學生在解決問題過程中獲得的發展。其中重要的一點在於使學生學習一些解決問題的基本策略,體驗解決問題策略的多樣性,並在此基礎上形成自己解決問題的某些策略。教學中要重視對學生解決問題策略的指導,將「隱性」的解決問題的策略「顯性化」。如在具體求解問題前,教師可以鼓勵學生思考需要運用哪些解決問題的策略;在解決問題的過程中,教師可以根據具體情況,適時使學生注意是否要調整解決問題的策略;在解決問題之後,教師要鼓勵學生反思自己所使用的策略,並組織全班交流。總之,教師要將解決問題的策略作為重要的目標,有意識地加以指導和教學。另外,對學生所採用的策略,在老師的眼中也許有優劣之分,但在孩子的思考過程中並沒有好壞之別,都反映出學生對問題的理解和所作出的努力。只要學生的解題過程及答案具有合理性,就值得肯定,因為這為樹立學生的自信心和培養他們的創新精神提供了很有價值的機會。

熱點內容
晉商歷史 發布:2025-07-19 00:08:49 瀏覽:421
安大歷史考研 發布:2025-07-19 00:02:57 瀏覽:382
教師幫扶學生記錄 發布:2025-07-18 20:01:06 瀏覽:677
運動鞋哪些好 發布:2025-07-18 18:41:48 瀏覽:456
師生迷情八 發布:2025-07-18 11:58:43 瀏覽:478
三字經教學視頻 發布:2025-07-18 11:46:47 瀏覽:45
希臘的歷史 發布:2025-07-18 10:33:00 瀏覽:654
人體中的數學 發布:2025-07-18 07:53:58 瀏覽:951
一級建造師機電教學視頻 發布:2025-07-18 07:50:21 瀏覽:528
班主任工作計劃小學四年級 發布:2025-07-18 05:17:52 瀏覽:912