文科數學函數
『壹』 高三文科數學函數專題
函數與基本初等函數
函數的概念
(1)函數的概念
①設、是兩個非空的數集,如果按照某種對應法則,對於集合中任何一個數,在集合中都有唯一確定的數和它對應,那麼這樣的對應(包括集合,以及到的對應法則)叫做集合到的一個函數,記作.
②函數的三要素:定義域、值域和對應法則.
③只有定義域相同,且對應法則也相同的兩個函數才是同一函數.
(2)區間的概念及表示法
①設是兩個實數,且,滿足的實數的集合叫做閉區間,記做;滿足的實數的集合叫做開區間,記做;滿足,或的實數的集合叫做半開半閉區間,分別記做,;滿足的實數的集合分別記做.
注意:對於集合與區間,前者可以大於或等於,而後者必須.
(3)求函數的定義域時,一般遵循以下原則:
①是整式時,定義域是全體實數.
②是分式函數時,定義域是使分母不為零的一切實數.
③是偶次根式時,定義域是使被開方式為非負值時的實數的集合.
④對數函數的真數大於零,當對數或指數函數的底數中含變數時,底數須大於零且不等於1.
⑤中,.
⑥零(負)指數冪的底數不能為零.
⑦若是由有限個基本初等函數的四則運算而合成的函數時,則其定義域一般是各基本初等函數的定義域的交集.
⑧對於求復合函數定義域問題,一般步驟是:若已知的定義域為,其復合函數的定義域應由不等式解出.
⑨對於含字母參數的函數,求其定義域,根據問題具體情況需對字母參數進行分類討論.
⑩由實際問題確定的函數,其定義域除使函數有意義外,還要符合問題的實際意義.
(4)求函數的值域或最值
求函數最值的常用方法和求函數值域的方法基本上是相同的.事實上,如果在函數的值域中存在一個最小(大)數,這個數就是函數的最小(大)值.因此求函數的最值與值域,其實質是相同的,只是提問的角度不同.求函數值域與最值的常用方法:
①觀察法:對於比較簡單的函數,我們可以通過觀察直接得到值域或最值.
②配方法:將函數解析式化成含有自變數的平方式與常數的和,然後根據變數的取值范圍確定函數的值域或最值.
③判別式法:若函數可以化成一個系數含有的關於的二次方程,則在時,由於為實數,故必須有,從而確定函數的值域或最值.
④不等式法:利用基本不等式確定函數的值域或最值.
⑤換元法:通過變數代換達到化繁為簡、化難為易的目的,三角代換可將代數函數的最值問題轉化為三角函數的最值問題.
⑥反函數法:利用函數和它的反函數的定義域與值域的互逆關系確定函數的值域或最值.
⑦數形結合法:利用函數圖象或幾何方法確定函數的值域或最值.
⑧函數的單調性法.
函數的表示法
(5)函數的表示方法
表示函數的方法,常用的有解析法、列表法、圖象法三種.
解析法:就是用數學表達式表示兩個變數之間的對應關系.列表法:就是列出表格來表示兩個變數之間的對應關系.圖象法:就是用圖象表示兩個變數之間的對應關系.
(6)映射的概念
①設、是兩個集合,如果按照某種對應法則,對於集合中任何一個元素,在集合中都有唯一的元素和它對應,那麼這樣的對應(包括集合,以及到的對應法則)叫做集合到的映射,記作.
②給定一個集合到集合的映射,且.如果元素和元素對應,那麼我們把元素叫做元素的象,元素叫做元素的原象.
函數的基本性質
一、單調性與最大(小)值
(1)函數的單調性
①定義及判定方法
函數的
性質
定義
圖象
判定方法
函數的
單調性
如果對於屬於定義域I內某個區間上的任意兩個自變數的值x1、x2,當x1< x2時,都有f(x1)<f(x2),那麼就說f(x)在這個區間上是增函數.
(1)利用定義
(2)利用已知函數的單調性
(3)利用函數圖象(在某個區間圖
象上升為增)
(4)利用復合函數
如果對於屬於定義域I內某個區間上的任意兩個自變數的值x1、x2,當x1< x2時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.
(1)利用定義
(2)利用已知函數的單調性
(3)利用函數圖象(在某個區間圖
象下降為減)
(4)利用復合函數
②在公共定義域內,兩個增函數的和是增函數,兩個減函數的和是減函數,增函數減去一個減函數為增函數,減函數減去一個增函數為減函數.
③對於復合函數,令,若為增,為增,則為增;若為減,為減,則為增;若為增,為減,則為減;若為減,為增,則為減.
(2)打「√」函數的圖象與性質
分別在、上為增函數,分別在、上為減函數.
(3)最大(小)值定義
①一般地,設函數的定義域為,如果存在實數滿足:(1)對於任意的,都有;(2)存在,使得.那麼,我們稱是函數的最大值,記作.
②一般地,設函數的定義域為,如果存在實數滿足:(1)對於任意的,都有;(2)存在,使得.那麼,我們稱是函數的最小值,記作.
二、奇偶性
(4)函數的奇偶性
①定義及判定方法
函數的
性質
定義
圖象
判定方法
函數的
奇偶性
如果對於函數f(x)定義域內任意一個x,都有f(-x)=-f(x),那麼函數f(x)叫做奇函數.
(1)利用定義(要先判斷定義域是否關於原點對稱)
(2)利用圖象(圖象關於原點對稱)
如果對於函數f(x)定義域內任意一個x,都有f(-x)=f(x),那麼函數f(x)叫做偶函數.
(1)利用定義(要先判斷定義域是否關於原點對稱)
(2)利用圖象(圖象關於y軸對稱)
②若函數為奇函數,且在處有定義,則.
③奇函數在軸兩側相對稱的區間增減性相同,偶函數在軸兩側相對稱的區間增減性相反.
④在公共定義域內,兩個偶函數(或奇函數)的和(或差)仍是偶函數(或奇函數),兩個偶函數(或奇函數)的積(或商)是偶函數,一個偶函數與一個奇函數的積(或商)是奇函數.
〖補充知識〗函數的圖象
(1)作圖
利用描點法作圖:
①確定函數的定義域; ②化解函數解析式;
③討論函數的性質(奇偶性、單調性); ④畫出函數的圖象.
利用基本函數圖象的變換作圖:
要准確記憶一次函數、二次函數、反比例函數、指數函數、對數函數、冪函數、三角函數等各種基本初等函數的圖象.
①平移變換
②伸縮變換
③對稱變換
(2)識圖
對於給定函數的圖象,要能從圖象的左右、上下分別范圍、變化趨勢、對稱性等方面研究函數的定義域、值域、單調性、奇偶性,注意圖象與函數解析式中參數的關系.
(3)用圖
函數圖象形象地顯示了函數的性質,為研究數量關系問題提供了「形」的直觀性,它是探求解題途徑,獲得問題結果的重要工具.要重視數形結合解題的思想方法.
求值域的幾種常用方法
(1)配方法:對於(可化為)「二次函數型」的函數常用配方法,如求函數,可變為解決
(2)基本函數法:一些由基本函數復合而成的函數可以利用基本函數的值域來求,如函數就是利用函數和的值域來求。
(3)判別式法:通過對二次方程的實根的判別求值域。如求函數的值域
由得,若,則得,所以是函數值域中的一個值;若,則由得,故所求值域是
(4)分離常數法:常用來求「分式型」函數的值域。如求函數的值域,因為
,而,所以,故
(5)利用基本不等式求值域:如求函數的值域
當時,;當時,,若,則
若,則,從而得所求值域是
(6)利用函數的單調性求求值域:如求函數的值域
因,故函數在上遞減、在上遞增、在上遞減、在上遞增,從而可得所求值域為
(7)圖象法:如果函數的圖象比較容易作出,則可根據圖象直觀地得出函數的值域(求某些分段函數的值域常用此法)。
函數與映射的概念
推薦里買一本 小小本的 一本通, 高考之間我就是看著那本,把基本的知識點公式全記住。高考的考點就是對公式的活用 。 祝你成功了。
『叄』 文科數學中所有的公式
1.誘導公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2
a)=cos(a)
cos(π2
a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π
a)=-sin(a)
cos(π
a)=-cos(a)
2.兩角和與差的三角函數
sin(a
b)=sin(a)cos(b)
cos(α)sin(b)
cos(a
b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)
sin(a)sin(b)
tan(a
b)=tan(a)
tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1
tan(a)tan(b)
3.和差化積公式
sin(a)
sin(b)=2sin(a
b2)cos(a-b2)
sin(a)−sin(b)=2cos(a
b2)sin(a-b2)
cos(a)
cos(b)=2cos(a
b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a
b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半形公式
sin2(a2)=1-cos(a)2
cos2(a2)=1
cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1
cos(a)
6.萬能公式
sin(a)=2tan(a2)1
tan2(a2)
cos(a)=1-tan2(a2)1
tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推導出來的
)
a⋅sin(a)
b⋅cos(a)=a2
b2sin(a
c)
其中
tan(c)=ba
a⋅sin(a)
b⋅cos(a)=a2
b2cos(a-c)
其中
tan(c)=ab
『肆』 整個高中文科數學公式
|≤|常用數學公式表
公式分類 公式表達式
乘法與因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a
根與系數的關系 X1+X2=-b/a X1*X2=c/a 註:韋達定理
判別式 b2-4a=0 註:方程有相等的兩實根
b2-4ac>0 註:方程有一個實根
b2-4ac<0 註:方程有共軛復數根
三角函數公式
兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱體 V=pi*r2h
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1+x^2
12.y=arccotx y'=-1/1+x^2
『伍』 高中文科數學函數公式
二次函數
一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)
頂點式:y=a(x-h)^2+k
[拋物線的頂點P(h,k)]
交點式:y=a(x-x₁)(x-x
₂)
[僅限於與x軸有交點A(x₁
,0)和
B(x₂,0)的拋物線]
三角函數誘導公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(pi/2-a)=cos(a)
cos(pi/2-a)=sin(a)
sin(pi/2+a)=cos(a)
cos(pi/2+a)=-sin(a)
sin(pi-a)=sin(a)
cos(pi-a)=-cos(a)
sin(pi+a)=-sin(a)
cos(pi+a)=-cos(a)
tgA=tanA=sinA/cosA
兩角和與差的三角函數
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b))
tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b))
三角函數和差化積公式
sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2)
sin(a)?sin(b)=2cos((a+b)/2)sin((a-b)/2)
cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2)
cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2)
積化和差公式
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
二倍角公式
sin(2a)=2sin(a)cos(a)
cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a)
半形公式
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
萬能公式
sin(a)=
(2tan(a/2))/(1+tan^2(a/2))
cos(a)=
(1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)=
(2tan(a/2))/(1-tan^2(a/2))
其它公式
a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c)
[其中,tan(c)=b/a]
a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c)
[其中,tan(c)=a/b]
1+sin(a)=(sin(a/2)+cos(a/2))^2
1-sin(a)=(sin(a/2)-cos(a/2))^2
其他非重點三角函數
csc(a)=1/sin(a)
sec(a)=1/cos(a)
雙曲函數
sinh(a)=(e^a-e^(-a))/2
cosh(a)=(e^a+e^(-a))/2
tgh(a)=sinh(a)/cosh(a)
『陸』 大學文科數學函數
1、偶函數
2、奇函數
3、非奇非偶函數
4、非奇非偶函數
5、偶函數
6、奇函數
『柒』 所有的高中文科數學公式
1.誘導公式
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.兩角和與差的三角函數
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.和差化積公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)−sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.二倍角公式
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.半形公式
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.萬能公式
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推導出來的 )
a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
三角函數公式
兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半形公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
某些數列前n項和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 註: 其中 R 表示三角形的外接圓半徑
餘弦定理 b2=a2+c2-2accosB 註:角B是邊a和邊c的夾角
圓的標准方程 (x-a)2+(y-b)2=r2 註:(a,b)是圓心坐標
圓的一般方程 x2+y2+Dx+Ey+F=0 註:D2+E2-4F>0
拋物線標准方程 y2=2px y2=-2px x2=2py x2=-2py
直稜柱側面積 S=c*h 斜稜柱側面積 S=c'*h
正棱錐側面積 S=1/2c*h' 正稜台側面積 S=1/2(c+c')h'
圓台側面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2
圓柱側面積 S=c*h=2pi*h 圓錐側面積 S=1/2*c*l=pi*r*l
弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h
斜稜柱體積 V=S'L 註:其中,S'是直截面面積, L是側棱長
柱體體積公式 V=s*h 圓柱
二維圖形
下面是一些二維圖形的周長與面積公式。
圓:
半徑= r 直徑d=2r
圓周長= 2πr =πd
面積=πr2 (π=3.1415926…….)
橢圓:
面積=πab
a與b分別代表短軸與長軸的一半。
矩形:
面積= ab
周長= 2a+2b
平行四邊形(parallelogram):
面積= bh = ab sinα
周長= 2a+2b
梯形:
面積= 1/2h (a+b)
周長= a+b+h (secα+secβ)
正n邊形:
面積= 1/2nb2 cot (180°/n)
周長= nb
四邊形(i):
面積= 1/2ab sinα
四邊形(ii):
面積= 1/2 (h1+h2) b+ah1+ch2
三維圖形
以下是三維立體的體積與表面積(包含底部)公式。
球體:
體積= 4/3πr3
表面積= 4πr2
方體:
體積= abc
表面積= 2(ab+ac+bc)
圓柱體:
體積= πr2h
表面積= 2πrh+2πr2
圓錐體:
體積= 1/3πr2h
表面積=πr√r2+h2 +πr2
三角錐體:
若底面積為A,
體積= 1/3Ah
平截頭體(frustum):
體積= 1/3πh (a2+ab+b2)
表面積=π(a+b)c+πa2+πb2
橢球:
體積= 4/3πabc
環面(torus):
體積= 1/4π2 (a+b) (b–a) 2
表面積=π2 (b2–a2)
『捌』 文科數學函數公式有哪些
你是說三角函數嗎 把那些最基本的掌握了 多做些題 熟練了 三角函數很好得分的
『玖』 高中文科數學 函數
因為-f(x)=f(-x)
所以 -f(0)=f(-0)
所以 -d=d
d=0
同理 b=0