什麼是數學問題
數學問題就是在數學領域出現的運用相關數學知識去解決的問題。
比如歌德巴赫猜想,還有以下例子:
在1900年巴黎國際數學家代表大會上,希爾伯特發表了題為《數學問題》的著名講演。他根據過去特別是十九世紀數學研究的成果和發展趨勢,提出了23個最重要的數學問題。這23個問題通稱希爾伯特問題,後來成為許多數學家力圖攻克的難關,對現代數學的研究和發展產生了深刻的影響,並起了積極的推動作用,希爾伯特問題中有些現已得到圓滿解決,有些至今仍未解決。他在講演中所闡發的想信每個數學問題都可以解決的信念,對於數學工作者是一種巨大的鼓舞。
希爾伯特的23個問題分屬四大塊:第1到第6問題是數學基礎問題;第7到第12問題是數論問題;第13到第18問題屬於代數和幾何問題;第19到第23問題屬於數學分析。
[01]康托的連續統基數問題。
1874年,康托猜測在可數集基數和實數集基數之間沒有別的基數,即著名的連續統假設。1938年,僑居美國的奧地利數理邏輯學家哥德爾證明連續統假設與ZF集合論公理系統的無矛盾性。1963年,美國數學家科恩(P•Choen)證明連續統假設與ZF公理彼此獨立。因而,連續統假設不能用ZF公理加以證明。在這個意義下,問題已獲解決。
[02]算術公理系統的無矛盾性。
歐氏幾何的無矛盾性可以歸結為算術公理的無矛盾性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明,哥德爾1931年發表不完備性定理作出否定。根茨(G•Gentaen,1909-1945)1936年使用超限歸納法證明了算術公理系統的無矛盾性。
[03]只根據合同公理證明等底等高的兩個四面體有相等之體積是不可能的。
問題的意思是:存在兩個登高等底的四面體,它們不可能分解為有限個小四面體,使這兩組四面體彼此全等德恩(M•Dehn)1900年已解決。
[04]兩點間以直線為距離最短線問題。
此問題提的一般。滿足此性質的幾何很多,因而需要加以某些限制條件。1973年,蘇聯數學家波格列洛夫(Pogleov)宣布,在對稱距離情況下,問題獲解決。
[05]拓撲學成為李群的條件(拓撲群)。
這一個問題簡稱連續群的解析性,即是否每一個局部歐氏群都一定是李群。1952年,由格里森(Gleason)、蒙哥馬利(Montgomery)、齊賓(Zippin)共同解決。1953年,日本的山邁英彥已得到完全肯定的結果。
[06]對數學起重要作用的物理學的公理化。
1933年,蘇聯數學家柯爾莫哥洛夫將概率論公理化。後來,在量子力學、量子場論方面取得成功。但對物理學各個分支能否全盤公理化,很多人有懷疑。
[07]某些數的超越性的證明。
需證:如果 是代數數, 是無理數的代數數,那麼 一定是超越數或至少是無理數(例如, 和 )。蘇聯的蓋爾芳德(Gelfond)1929年、德國的施奈德(Schneider)及西格爾(Siegel)1935年分別獨立地證明了其正確性。但超越數理論還遠未完成。目前,確定所給的數是否超越數,尚無統一的方法。
[08]素數分布問題,尤其對黎曼猜想、哥德巴赫猜想和孿生素共問題。
素數是一個很古老的研究領域。希爾伯特在此提到黎曼(Riemann)猜想、哥德巴赫(Goldbach)猜想以及孿生素數問題。黎曼猜想至今未解決。哥德巴赫猜想和孿生素數問題目前也未最終解決,其最佳結果均屬中國數學家陳景潤。
[09]一般互反律在任意數域中的證明。
1921年由日本的高木貞治,1927年由德國的阿廷(E•Artin)各自給以基本解決。而類域理論至今還在發展之中。
[10]能否通過有限步驟來判定不定方程是否存在有理整數解?
求出一個整數系數方程的整數根,稱為丟番圖(約210-290,古希臘數學家)方程可解。1950年前後,美國數學家戴維斯(Davis)、普特南(Putnan)、羅賓遜(Robinson)等取得關鍵性突破。1970年,巴克爾(Baker)、費羅斯(Philos)對含兩個未知數的方程取得肯定結論。1970年。蘇聯數學家馬蒂塞維奇最終證明:在一般情況答案是否定的。盡管得出了否定的結果,卻產生了一系列很有價值的副產品,其中不少和計算機科學有密切聯系。
[11]一般代數數域內的二次型論。
德國數學家哈塞(Hasse)和西格爾(Siegel)在20年代獲重要結果。60年代,法國數學家魏依(A•Weil)取得了新進展。
[12]類域的構成問題。
即將阿貝爾域上的克羅內克定理推廣到任意的代數有理域上去。此問題僅有一些零星結果,離徹底解決還很遠。
[13]一般七次代數方程以二變數連續函數之組合求解的不可能性。
七次方程 的根依賴於方程中的3個參數 、 、 ; 。這一函數能否用兩變數函數表示出來?此問題已接近解決。1957年,蘇聯數學家阿諾爾德(Arnold)證明了任一在 上連續的實函數 可寫成形式 ,這里 和 為連續實函數。柯爾莫哥洛夫證明 可寫成形式 ,這里 和 為連續實函數, 的選取可與 完全無關。1964年,維土斯金(Vituskin)推廣到連續可微情形,對解析函數情形則未解決。
[14]某些完備函數系的有限的證明。
即域 上的以 為自變數的多項式 , 為 上的有理函數 構成的環,並且 試問 是否可由有限個元素 的多項式生成?這個與代數不變數問題有關的問題,日本數學家永田雅宜於1959年用漂亮的反例給出了否定的解決。
[15]建立代數幾何學的基礎。
荷蘭數學家范德瓦爾登1938年至1940年,魏依1950年已解決。
註:舒伯特(Schubert)計數演算的嚴格基礎。
一個典型的問題是:在三維空間中有四條直線,問有幾條直線能和這四條直線都相交?舒伯特給出了一個直觀的解法。希爾伯特要求將問題一般化,並給以嚴格基礎。現在已有了一些可計算的方法,它和代數幾何學有密切的關系。但嚴格的基礎至今仍未建立。
[16]代數曲線和曲面的拓撲研究。
此問題前半部涉及代數曲線含有閉的分枝曲線的最大數目。後半部要求討論備 的極限環的最多個數 和相對位置,其中 、 是 、 的 次多項式。對 (即二次系統)的情況,1934年福羅獻爾得到 ;1952年鮑廷得到 ;1955年蘇聯的波德洛夫斯基宣布 ,這個曾震動一時的結果,由於其中的若干引理被否定而成疑問。關於相對位置,中國數學家董金柱、葉彥謙1957年證明了 不超過兩串。1957年,中國數學家秦元勛和蒲富金具體給出了 的方程具有至少3個成串極限環的實例。1978年,中國的史松齡在秦元勛、華羅庚的指導下,與王明淑分別舉出至少有4個極限環的具體例子。1983年,秦元勛進一步證明了二次系統最多有4個極限環,並且是 結構,從而最終地解決了二次微分方程的解的結構問題,並為研究希爾伯特第[16]問題提供了新的途徑。
[17]半正定形式的平方和表示。
實系數有理函數 對任意數組 都恆大於或等於0,確定 是否都能寫成有理函數的平方和?1927年阿廷已肯定地解決。
[18]用全等多面體構造空間。
德國數學家比貝爾巴赫(Bieberbach)1910年,萊因哈特(Reinhart)1928年作出部分解決。
[19]正則變分問題的解是否總是解析函數?
德國數學家伯恩斯坦(Bernrtein,1929)和蘇聯數學家彼德羅夫斯基(1939)已解決。
[20]研究一般邊值問題。
此問題進展迅速,己成為一個很大的數學分支。日前還在繼讀發展。
[21]具給定奇點和單值群的Fuchs類的線性微分方程解的存在性證明。
此問題屬線性常微分方程的大范圍理論。希爾伯特本人於1905年、勒爾(H•Rohrl)於1957年分別得出重要結果。1970年法國數學家德利涅(Deligne)作出了出色貢獻。
[22]用自守函數將解析函數單值化。
此問題涉及艱深的黎曼曲面理論,1907年克伯(P•Koebe)對一個變數情形已解決而使問題的研究獲重要突破。其它方面尚未解決。
[23]發展變分學方法的研究。
這不是一個明確的數學問題。20世紀變分法有了很大發展。
㈡ 什麼是數學題
與數學有關的題目,都是數學題。
㈢ 100個經典數學問題是什麼
第01題 阿基米德分牛問題Archimedes' Problema Bovinum
太陽神有一牛群,由白、黑、花、棕四種顏色的公、母牛組成.
在公牛中,白牛數多於棕牛數,多出之數相當於黑牛數的1/2+1/3;黑牛數多於棕牛,多出之數相當於花牛數的1/4+1/5;花牛數多於棕牛數,多出之數相當於白牛數的1/6+1/7.
在母牛中,白牛數是全體黑牛數的1/3+1/4;黑牛數是全體花牛數1/4+1/5;花牛數
是全體棕牛數的1/5+1/6;棕牛數是全體白牛數的1/6+1/7.
問這牛群是怎樣組成的?
第02題 德·梅齊里亞克的法碼問題The Weight Problem of Bachet de Meziriac
一位商人有一個40磅的砝碼,由於跌落在地而碎成4塊.後來,稱得每塊碎片的重量都是整磅數,而且可以用這4塊來稱從1至40磅之間的任意整數磅的重物.
問這4塊砝碼碎片各重多少?
第03題 牛頓的草地與母牛問題Newton's Problem of the Fields and Cows
a頭母牛將b塊地上的牧草在c天內吃完了;
a'頭母牛將b'塊地上的牧草在c'天內吃完了;
a"頭母牛將b"塊地上的牧草在c"天內吃完了;
?求出從a到c"9個數量之間的關系?
第04題 貝韋克的七個7的問題Berwick's Problem of the Seven Sevens
在下面除法例題中,被除數被除數除盡:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星號(*)標出的那些數位上的數字偶然被擦掉了,那些不見了的是些什麼數字呢
?
第05題 柯克曼的女學生問題Kirkman's Schoolgirl Problem
某寄宿學校有十五名女生,她們經常每天三人一行地散步,問要怎樣安排才能使每
個女生同其他每個女生同一行中散步,並恰好每周一次?
第06題 伯努利-歐拉關於裝錯信封的問題The Bernoulli-Euler Problem of the Misaddressed letters
求n個元素的排列,要求在排列中沒有一個元素處於它應當佔有的位置.
第07題 歐拉關於多邊形的剖分問題Euler's Problem of Polygon Division
可以有多少種方法用對角線把一個n邊多邊形(平面凸多邊形)剖分成三角形?
第08題 魯卡斯的配偶夫婦問題Lucas' Problem of the Married Couples
n對夫婦圍圓桌而坐,其座次是兩個婦人之間坐一個男人,而沒有一個男人和自己的
妻子並坐,問有多少種坐法?
第09題 卡亞姆的二項展開式Omar Khayyam's Binomial Expansion
當n是任意正整數時,求以a和b的冪表示的二項式a+b的n次冪.
第10題 柯西的平均值定理Cauchy's Mean Theorem
求證n個正數的幾何平均值不大於這些數的算術平均值.
第11題 伯努利冪之和的問題Bernoulli's Power Sum Problem
確定指數p為正整數時最初n個自然數的p次冪的和S=1p+2p+3p+…+np.
第12題 歐拉數The Euler Number
求函數?x)=(1+1/x)x及?x)=(1+1/x)x+1當x無限增大時的極限值.
第13題 牛頓指數級數Newton's Exponential Series
將指數函數ex變換成各項為x的冪的級數.
第14題 麥凱特爾對數級數Nicolaus Mercator's Logarithmic Series
不用對數表,計算一個給定數的對數.
第15題 牛頓正弦及餘弦級數Newton's Sine and Cosine Series
不用查表計算已知角的正弦及餘弦三角函數.
第16題 正割與正切級數的安德烈推導法Andre's Derivation of the Secant and Tangent Series
在n個數1,2,3,…,n的一個排列c1,c2,…,cn中,如果沒有一個元素ci的值介於兩個鄰近的值ci-1和ci+1之間,則稱c1,c2,…,cn為1,2,3,…,n的一個屈折排列.
試利用屈折排列推導正割與正切的級數.
第17題 格雷戈里的反正切級數Gregory's Arc Tangent Series
已知三條邊,不用查表求三角形的各角.
第18題 德布封的針問題Buffon's Needle Problem
在檯面上畫出一組間距為d的平行線,把長度為l(小於d)的一根針任意投擲在檯面
上,問針觸及兩平行線之一的概率如何?
第19題 費馬-歐拉素數定理The Fermat-Euler Prime Number Theorem
每個可表示為4n+1形式的素數,只能用一種兩數平方和的形式來表示.
第20題 費馬方程The Fermat Equation
求方程x2-dy2=1的整數解,其中d為非二次正整數.
第21題 費馬-高斯不可能性定理The Fermat-Gauss Impossibility Theorem
證明兩個立方數的和不可能為一立方數.
第22題 二次互反律The Quadratic Reciprocity Law
(歐拉-勒讓德-高斯定理)奇素數p與q的勒讓德互反符號取決於公式
(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2]
第23題 高斯的代數基本定理Gauss' Fundamental Theorem of Algebra
每一個n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n個根.
第24題 斯圖謨的根的個數問題Sturm's Problem of the Number of Roots
求實系數代數方程在已知區間上的實根的個數.
第25題 阿貝爾不可能性定理Abel's Impossibility Theorem
高於四次的方程一般不可能有代數解法.
第26題 赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem
系數A不等於零,指數