世界上最難數學題
現今世界上最難的數學題之一是哥德巴赫猜想。
從關於偶數的哥德巴赫猜想,可推出:任何一個大於7的奇數都能被表示成三個奇質數的和。後者稱為「弱哥德巴赫猜想」或「關於奇數的哥德巴赫猜想」。
若關於偶數的哥德巴赫猜想是對的,則關於奇數的哥德巴赫猜想也會是對的。2013年5月,巴黎高等師范學院研究員哈洛德·賀歐夫各特發表了兩篇論文,宣布徹底證明了弱哥德巴赫猜想。
(1)世界上最難數學題擴展閱讀:
華羅庚是中國最早從事哥德巴赫猜想的數學家。1936~1938年,他赴英留學,師從哈代研究數論,並開始研究哥德巴赫猜想,驗證了對於幾乎所有的偶數猜想。
1950年,華羅庚從美國回國,在中科院數學研究所組織數論研究討論班,選擇哥德巴赫猜想作為討論的主題。參加討論班的學生,例如王元、潘承洞和陳景潤等在哥德巴赫猜想的證明上取得了相當好的成績。
1956年,王元證明了「3+4」;同年,原蘇聯數學家阿·維諾格拉朵夫證明了「3+3」;1957年,王元又證明了「2+3」;潘承洞於1962年證明了「1+5」。
B. 世界上最難的數學題是什麼
哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德國的業余數學家哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:
(a)
任何一個n
³
6之偶數,都可以表示成兩個奇質數之和。
(b)
任何一個n
³
9之奇數,都可以表示成三個奇質數之和。
這就是著名的哥德巴赫猜想。從費馬提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數學證明尚待數學家的努力。目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理(Chen『s
Theorem)
¾
「任何充份大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」
通常都簡稱這個結果為大偶數可表示為
「1
+
2
」的形式。
在陳景潤之前,關於偶數可表示為
s個質數的乘積
與t個質數的乘積之和(簡稱
「s
+
t
」問題)之進展情況如下:
1920年,挪威的布朗(Brun)證明了
「9
+
9
」。
1924年,德國的拉特馬赫(Rademacher)證明了
「7
+
7
」。
1932年,英國的埃斯特曼(Estermann)證明了
「6
+
6
」。
1937年,義大利的蕾西(Ricei)先後證明了
「5
+
7
」,
「4
+
9
」,
「3
+
15
」和「2
+
366
」。
1938年,蘇聯的布赫
夕太勃(Byxwrao)證明了
「5
+
5
」。
1940年,蘇聯的布赫
夕太勃(Byxwrao)證明了
「4
+
4
」。
1948年,匈牙利的瑞尼(Renyi)證明了
「1
+
c
」,其中c是一很大的自然
數。
1956年,中國的王元證明了
「3
+
4
」。
1957年,中國的王元先後證明了
「3
+
3
」和
「2
+
3
」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩(BapoaH)證明了
「1
+
5
」,
中國的王元證明了
「1
+
4
」。
1965年,蘇聯的布赫
夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及
義大利的朋比利(Bombieri)證明了
「1
+
3
」。
1966年,中國的陳景潤證明了
「1
+
2
」。
最終會由誰攻克
「1
+
1
」這個難題呢?現在還沒法預測。參考資料:
http://www.qglt.com/bbs/ReadFile?whichfile=11891317&typeid=14
C. 世界上最難的數學題到底是什麼
最簡單:1+1=?
最難:被譽為「數學皇冠上的明珠」的哥德巴赫猜想,即任何一個大於4的偶數都可以寫成兩個奇素數的和,簡寫為1+1,可不是那些道聽途說的人說的「一加一為什麼等於二」的弱智問題。
哥德巴赫猜想至今無人證出,人們將它弱化為如下猜想,即任何一個大於4的偶數都可以寫成m個奇素數的積與n個奇素數的積的和,人們的目標就是減小m與n值,直到m=n=1。目前最好的成績是由我國數學家陳景潤取得的,他證出了1+2。
D. 請問世界上最簡單,最難的數學題分別是什麼
你好啊·這個看給什麼人做了最容易的有時候是最難的
E. 世界上最難的數學題有哪些
規尺作圖三大難題:
1.三等分任意角.
2.倍立方體,即作一個體積是給立方體體積2倍的立方體.
3.化圓為方,即作出與給定圓面積相等的正方形。
F. 世界上最難的數學題是哪一道
不知你是說給學生的習題還是給數學家的問題...
難度大致上可以用時間來看吧, 下面列出了幾個100年以上的重要數學問題.
猜想/定理 證明 提出 注
費馬大定理 1994 - 1637 = 357 10萬馬克等
哥德巴赫猜想 ? - 1742 > 272 希爾伯特23個問題
孿生素數猜想 ? - 1849 > 164 希爾伯特23個問題(部分解決)
黎曼猜想 ? - 1859 > 155 希爾伯特23個問題, 千禧年大獎難題
地圖四色定理 1976 - 1852 = 124
龐加萊猜想 2006 - 1904 = 102 千禧年大獎難題
當然時間並不完全代表難度, 還與數學家的投入有密切關系, 而投入的多少與問題的重要性有關, 問題的重要性(以及難度)可以從是否有懸賞(懸賞金額), 是否廣泛關注來大致認識.
考慮到近兩個世紀地球人口劇增, 近期提出的問題其實也應該相當有難度.
貌似一般認為黎曼猜想是現在未證明的而又最具有深遠影響的定理了.
G. 世界上最難的數學題是什麼要有題...還有答案的
最難的數學題是證明題「哥德巴赫猜想」。
哥德巴赫猜想(GoldbachConjecture)大致可以分為兩個猜想(前者稱"強"或"二重哥德巴赫猜想,後者稱"弱"或"三重哥德巴赫猜想):1.每個不小於6的偶數都可以表示為兩個奇素數之和;2.每個不小於9的奇數都可以表示為三個奇素數之和。考慮把偶數表示為兩數之和,而每一個數又是若干素數之積。如果把命題"每一個大偶數可以表示成為一個素因子個數不超過a個的數與另一個素因子不超過b個的數之和"記作"a+b"。1966年,陳景潤證明了"1+2",即"任何一個大偶數都可表示成一個素數與另一個素因子不超過2個的數之和"。離猜想成立即"1+1"僅一步之遙。
H. 世界上最難的數學題是哪一條
哥德巴赫猜想復是數學上的制皇冠,將由誰證明是無法預知的。但是最難可以肯定不是這個題,數論題跟平面幾何題遠遠弱於立體幾何難題。至於最難,不知道你有沒有聽過,「文無第一」這句話。理論是沒有最的,只有發現更難,然後攻克更難的題。
I. 世界上最難的數學題
這一很簡單。就是用那個九點去那個前面的數就等於那個數,然後加起來就是等於七。
J. 世界上最難的數學題!!!
哥德巴赫猜想(Goldbach
Conjecture)
公元1742年6月7日德國的業余數學家哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:
(a)
任何一個n
³
6之偶數,都可以表示成兩個奇質數之和。
(b)
任何一個n
³
9之奇數,都可以表示成三個奇質數之和。
這就是著名的哥德巴赫猜想。從費馬提出這個猜想至今,許多數學家都不斷努力想攻克它,但都沒有成功。當然曾經有人作了些具體的驗證工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,
16
=
5
+
11,
18
=
5
+
13,
.
.
.
.
等等。
有人對33×108以內且大過6之偶數一一進行驗算,哥德巴赫猜想(a)都成立。但驗格的數學證明尚待數學家的努力。目前最佳的結果是中國數學家陳景潤於1966年證明的,稱為陳氏定理(Chen『s
Theorem)
¾
「任何充份大的偶數都是一個質數與一個自然數之和,而後者僅僅是兩個質數的乘積。」
通常都簡稱這個結果為大偶數可表示為
「1
+
2
」的形式。
在陳景潤之前,關於偶數可表示為
s個質數的乘積
與t個質數的乘積之和(簡稱
「s
+
t
」問題)之進展情況如下:
1920年,挪威的布朗(Brun)證明了
「9
+
9
」。
1924年,德國的拉特馬赫(Rademacher)證明了
「7
+
7
」。
1932年,英國的埃斯特曼(Estermann)證明了
「6
+
6
」。
1937年,義大利的蕾西(Ricei)先後證明了
「5
+
7
」,
「4
+
9
」,
「3
+
15
」和「2
+
366
」。
1938年,蘇聯的布赫
夕太勃(Byxwrao)證明了
「5
+
5
」。
1940年,蘇聯的布赫
夕太勃(Byxwrao)證明了
「4
+
4
」。
1948年,匈牙利的瑞尼(Renyi)證明了
「1
+
c
」,其中c是一很大的自然
數。
1956年,中國的王元證明了
「3
+
4
」。
1957年,中國的王元先後證明了
「3
+
3
」和
「2
+
3
」。
1962年,中國的潘承洞和蘇聯的巴爾巴恩(BapoaH)證明了
「1
+
5
」,
中國的王元證明了
「1
+
4
」。
1965年,蘇聯的布赫
夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及
義大利的朋比利(Bombieri)證明了
「1
+
3
」。
1966年,中國的陳景潤證明了
「1
+
2
」。
最終會由誰攻克
「1
+
1
」這個難題呢?現在還沒法預測。
"X&P
_,S|:Yt}[0
o
o
o
o
o
桌面天下WX
g
ps^b/M
o
o
o
o
桌面天下1G6g
i%H&@^{
o
o
o
o
o
桌面天下4sR&~!g
S;hQ%@?L
o
o
o
o
o
yLOSh0o
o
o
o
o
]%RC
bo'Fz
d9n0桌面天下D#lw7P+XX
?4N
將每個圈用直線連起來,不能用斜線,不能空一個,
線不能交叉。桌面天下?6A3^S#Nn+I
Y
?3r
(imf3b#~2c*H;k^0
zFO,o'r0
5g)g[O-]9T'b
H0桌面天下,t|tz
Y*Vvmb
桌面天下
uZS
]@
rI
桌面天下1O&D.x&R$i+Z
8U8ge2MH+t(i0顯然右上角的點為起點(或終點),不妨以它為起點,我們對地盤進行染色:
6n"S!b
E8K3wZ+]5M0o
.
o
.
*
桌面天下"Zh8C
H`z
.
o
.
o
*}
V
m]/y%y/z6TC0o
.
o
.
o
z0g*Y2@+l
U0.
o
.
o
.
8gS;^&{?t&lk
u0o
.
o
.
o
O4F9?kSamh'o'~-e0
P:I$X(Y_0"*"為起點,"."是黑色,"o"是白色,顯然,從*出發,每經過一個"."下一步必經過"o"(除了終點),而白色共12個,黑色11個,路線顏色必然是:
桌面天下)IPG&Nz/Jd(X(ql
黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白黑白白,顯然矛盾,故不存在這樣的路線